

ICTP-AP International Centre for Theoretical Physics Asia-Pacific 国际理论物理中心-亚太地区

耗散效应作为宇宙相变的新观测量

郭怀珂

2024年1月20日

27th LHC Mini-workshop

Based on HG [2310.10927]

Universe sible the of Radius

Gravitational Wave Sources

The current understanding:

 $16\pi G_T$ $\Box \bar{h}_{\mu\nu} =$ c4

turbulent fluid + magnetic field

Magnetohydrodynamic Turbulence

Properties

Horizon size: 1/H*

nHz (~100MeV) QCD scale

~mHz : (~100GeV) weak scale

~100Hz (~PeV - EeV) high scale

From Theory to Experiment

theorist

LIGO, LISA/Taiji/Tianqin, PTA, ...

5

experimentalist

Problem: parameter degeneracy

Models	Strong 1 st order phase transition	GW signal	Cold DM	Dark Radiation and small scale structure
SM charged				
Triplet [20-22]	1	1	1	×
complex and real Triplet [23]	1	1	1	×
(Georgi-Machacek model)				
Multiplet [24]	V	1	1	
2HDM [25–30]	1	1		×
MLRSM [31]	1	1	×	×
NMSSM [32–36]	1	1	1	×
SM uncharged				
S _r (xSM) [37–49]	1	1	×	×
$2 S_r$'s [50]	1	1	1	×
S _c (cxSM) [49, 51–54]	1	1	1	×
U(1) _D (no interaction with SM) [55]	1	1	1	×
U(1) _D (Higgs Portal) [56]	1	1	1	2 2
U(1) _D (Kinetic Mixing) [57]	1	1	1	
Composite SU(7)/SU(6) [58]	1	1	1	9
U(1) _L [59]	1	1	1	×
$SU(2)_D \rightarrow global SO(3)$			1	×
by a doublet [60–62]				
$SU(2)_D \rightarrow U(1)_D$			1	1
by a triplet [63–65]	r			
$SU(2)_D \rightarrow Z_2$			1	×
by two triplets [66]				
$SU(2)_D \rightarrow Z_3$			1	×
by a quadruplet [67, 68]				
$SU(2)_D \times U(1)_{B-L} \rightarrow Z_2 \times Z_2$			1	×
by a quintuplet and a $S_c \ [69]$				2
$SU(2)_D$ with two dark Higgs doublets [70]	1	1	×	×
$SU(3)_D \rightarrow Z_2 \times Z_2$ by two triplets [62, 71]			1	×
U(3) _D (dark QCD) (Higgs Portal) [72, 73]	1	1	1	
$G_{\rm SM} \times G_{\rm D,SM} \times Z_2$ [74]	1	1	1	
$G_{\rm SM} \times G_{\rm D,SM} \times G_{\rm D,SM} \cdots$ [75]	1	1	1	
Current work				
$SU(2)_D \rightarrow U(1)_D$ (see the text)	1	1	1	1

Many models can lead to the same PT parameter values

Solutions: New Observables

Anisotropy

Geller, Hook, Sundrum, Yuhsin Tsai, PRL [1803.10780] Li, Huang, Wang, Zhang, PRD [2112.01409] Li, Yan, Huang, PRD [2211.03368]

• Primordial magnetic field

Di,Wang,Zhou,Bian,Cai, PRL [2012.15625] Yang,Bian,PRD [2102.01398], ...

Primordial black holes and solitons

Hong, Jung, Xie, PRD [2008.04430] Kawana,Xie,PLB [2106.00111] Liu,Bian,Cai,Guo,Wang, PRD [2106.05637] Lu,Kawana,Xie, PRD [2202.03439]

Curvature perturbations

Liu,Bian,Cai,Guo,Wang,PRL[2208.14086] Jiang,Liu,Sun,Wang, PLB [1512.07538]

Anything directly readable from the isotropic GW spectrum?

6

Ghosh, HG, Han, Liu, JHEP [2012.09758]

Dissipative Effects as New Observables

GW depends on (large) bulk velocity of the system
$$h\sim 10^{-22}\frac{M/M_\odot}{r/100{\rm Mpc}}\left(\begin{matrix} v \\ c \end{matrix} \right)^2$$

Dissipative effects dissipate away the bulk kinetic energy (leaves imprint)

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right) = -\nabla p + \mu \nabla^2 \mathbf{v} + (\zeta + \frac{1}{3}\mu)\nabla(\nabla \cdot \mathbf{v})$$

Navier–Stokes equations (Newtonian fluid mechanics)

7

GW calculation requires: relativistic (magneto-)hydrodynamics

Sound Waves

Usually the dominant source (Hindmarsh, Huber, Rummukainen, Weir, PRL [1304.2433])

$$T^{ij} \propto (p+e)v^i v^j$$

$$h^2 \Omega_{\rm sw}(f) = 2.65 \times 10^{-6} \left(\frac{100}{g_*}\right)^{\frac{1}{3}} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\rm sw}\alpha}{1+\alpha}\right)^2 v_w S_{\rm sw}(f) \Upsilon(\tau_{\rm sw})$$

$$S_{\rm sw}(f) = \left(\frac{f}{f_{\rm sw}}\right)^3 \left[\frac{7}{4+3(f/f_{\rm sw})^2}\right]^{7/2} \qquad f_* = \frac{2\beta}{\sqrt{3}v_w} \approx \frac{3.4}{R_*}$$

Hindmarsh, Huber, Rummukainen, Weir, PRD [1504.03291]

Slight different fit obtained by the same group, PRD [1704.05871]

$$\Omega_{
m SW}(f \lesssim f_{
m peak}) \propto f^3$$

 $\Omega_{\rm SW}(f\gtrsim f_{\rm peak})\propto f^{-4}$

8

HG, Sinha, Vagie, White, JCAP [2007.08537]

 $\Upsilon = 1 - (1 + 2 au_{
m sw} H_{
m pt})^{-1/2}$ (radiation domination)

Sound Waves: Recent Development

Analytical Modelling

- Refine the sound shell model
- Synergy with simulations

Sound Shell Model

Hindmarsh, PRL [1608.04735] Hindmarsh, Hijazi, JCAP [1909.10040] HG, Sinha, Vagie, White, JCAP [2007.08537] Cai, Wang, Yuwen, PRD Letter [2305.00074] Pol, Procacci, Caprini [2308.12943]

Numerical Simulation

- Suppression found for strong transitions with small vw
- Need to cover more parameter space (very strong PT)

$$h^2 \Omega_{\rm sw}(f) = 2.65 \times 10^{-6} \left(\frac{100}{g_*}\right)^{\frac{1}{3}} \left(\frac{H_*}{\beta}\right) \left(\underbrace{\kappa_{\rm sw}\alpha}{1+\alpha}\right)^2 v_w S_{\rm sw}(f) \Upsilon(\tau_{\rm sw})$$

Sound Waves: Modelling

Sound Shell Model

Effects of Dissipation

Disturbed fluid comes into rest eventually

$$v^{i}(\eta, \mathbf{x}) = \int \frac{d^{3}q}{(2\pi)^{3}} \left[v^{i}_{\mathbf{q}} e^{-i\omega\eta + i\mathbf{q}\cdot\mathbf{x}} + c.c. \right]$$

$$v^i_{f q}(\eta) \propto \exp\left[-\int \Gamma(\mu,\zeta,\xi) d\eta
ight]$$

Sound Shell Model with Dissipation

Dampings due to Dissipation

- Velocity power spectrum and stress tensor correlator are generally non-stationary (unequal time correlator depends not just on time difference)
- Damping at large frequencies (small scales)

All plots assuming constant effective damping length for illustration (leads to stationary spectrum)

Lifetime of Sound Waves

expansion of the Universe (dilution)

dissipation (damping)

onset of MHD turbulence (abrupt turnoff)

14

• Realistic cases: intertwining of these effects (makes GW spectrum model dependent)

GW spectrum carries information about each model (break parameter degeneracy)

Upsilon factor becomes frequency and model dependent.

Microscopic Origin

- Viscosity in the early universe is very small
- But can be significant for phase transitions in the dark sector
- Can also be stronger when BSM physics are included (from very weak interactions)
- Viscosity and transport coefficients calculable from semi-classical kinetic theory or Green-Kubo relations

15

> Dissipative effects can serve as new obervables for cosmic phase transitions

> New portals to probe microscopic particle (very weak) interactions

> Experimental searches of new spectrum are desired

