

Cutting-edge jet networks and their impact on LHC hadronic-channel searches

Congqiao Li (李聪乔), Peking University

27th Mini-workshop on the frontier of LHC · Zhuhai 20 January, 2024

1

Jets in hadron colliders

Jets are collinear sprays of particles initiated by quark/gluons

Jets in CMS physics measurements/search

- → Jets are clustered from CMS particle-flow candidates
- → Clustering radius controls jet cone size
- → Many jet analyze techniques:
 - identify the origin (jet tagging): b/c/light? composed W->qq/H->bb/t->bqq?
 - reveal the substructure
 - N-subjettiness
 - energy correctors
- → Construction of variables either rule-based/machine-learning-based
 - to make selections
 - ✤ as intermediate observables for multivariate analysis

*

Inspiration from CMS results

Congqiao Li (Peking University)

Inspiration from CMS results

- → Higgs self-coupling & quartic VVHH coupling (κ_{2V}) measured via HH→4b channel
 - novel boosted-jet phase space explored by CMS
 - Advanced NN (ParticleNet) for H→bb̄ jet identification and mass regression
 - **first time** excluding $\kappa_{2V} = 0$ (by 6.3 σ)

Inspiration from CMS results

Logic behind the scene

- → "Purify" signal events from the vast backgrounds are key to ~all CMS measurements
- → A fundamental problem arise:
 - given our current detector capability and data collected, where is that upper bound for purifying the signal?
- ➔ Formulate the problem in statistics: likelihood ratio is always the best discriminant
 - but.. it is so intractable (the data format is too complex, and the dimension is high)
 - rule-based methods have helped us thus far (since ~1960, beginning of our collider experiment journeys), but we don't know how far is it to the ideal "upper bound"
 - these results remind us: there is much to improve in hadronic channels!

Deep, advanced NN as closest solution

Deep, advanced NN as closest solution

results in

$$p_1: p_2: \ldots = \rho_1(x_0): \rho_2(x_0): \ldots$$

- It is a direct estimation of ρ s
 - The network capacity decides how close the estimation is

How to design a most performant jet NN?

- → We have to ask: How to design a most performant jet NN?
- → This is a highly physics-ML interdisciplinary subject
 - The following slides: cherry-pick some recent advancements

"Graph" neural networks

- → View input particles as a set/graph
 - guarantee the *permutational invariance* of input particles
- → The **edges** of graph: enable communication between pairs of particles

[image from link]

"Graph" neural networks

"Graph" processing prototype

Input jet with per-particle features

- four-momentum; or equiv. ($E, p_{\mathrm{T}}, \eta, \phi$)
- reconstructed particle ID
- track displacement (for charged particle)

• ...

"Graph" processing prototype

Input jet with per-particle features

- four-momentum; or equiv. ($E, p_{\mathrm{T}}, \eta, \phi$)
- reconstructed particle ID
- track displacement (for charged particle)

•

Massage passing layers "communicate between particles"

"Graph" processing prototype

Input jet with per-particle features

- four-momentum; or equiv. ($E, p_{\mathrm{T}}, \eta, \phi$)
- reconstructed particle ID

•

track displacement (for charged particle)

Massage passing layers "communicate between particles" Feature pooling "summarize all particles into one"

The full process is invariant to the permutation of particles

✦ Preferred full connected

✦ Average information by weights

✦ "Multi" over "one"

✦ Pairwise features help

Reference:

ABCNet: <u>V. Mikuni et al. EPJC 2020; 135(6): 463</u> LGN: <u>A. Bogatskiy et al. arXiv: 2006.04780, ICML 2020</u> ParticleNeXt: <u>H. Qu. Talk@ML4Jets2021</u> LundNet: <u>F. Dreyer et al. JHEP 03 (2021) 052</u> PCN: <u>C. Shimmin. arXiv:2107.02908</u> LorentzNet: <u>S. Gong et al. JHEP 07 (2022) 030</u> PCT@hep: <u>V.Mikuni et al. 2021 MLST 2 035027</u> ParT: <u>H. Qu et al. arXiv:2202.03772, ICML 2022</u> CPT : <u>S. Qiu et al. PRD 107 (2023) 11, 114029</u> HMPNet : <u>F. Ma et al. PRD 108 (2023) 7, 072007</u> PELICAN: A.Bogatskiy et al. arXiv:2211.00454

Preferred full connected

Average information by weights

✦ "Multi" over "one"

In terms of performance:

fully-connected graph

- > edges from nearest neighbours
- > no edge

Preferred full connected

✦ Average information by weights

In terms of performance:

fully-connected graph

- > edges from nearest neighbours
- > no edge

Congqiao Li (Peking University)

when aggregating features among all particles, using average/max pooling losses more information; assigning learnable weights to particles usually works better

ParticleNeXt: <u>H. Qu. Talk@ML4Jets2021</u>

Congqiao Li (Peking University)

Congqiao Li (Peking University)

Congqiao Li (Peking University)

Congqiao Li (Peking University)

27th Mini-workshop on the frontier of LHC

Summary of the talk

- → From two recent CMS results, we reveal the underlying message to experimentalists
 - sensitivity in hadronic channels is quite under-explored
 - formulate the problem from a statistical view: recognize the "upper bound" and understand how close we are now
 - reveal that the cutting-edge NN approaches provide the closest way by far to reach the target
- → Overview of the progress made in designing advanced jet NN
 - better jet representations
 - "graph" building and its engineering experiences
 - impacts from intrinsic jet symmetries
- → Picturing a promising path of our experimental evolution with advanced AI

Backup

View of a jet

→ DL model design draw from experiences in Computer Vision

<u>H.Qu, L.Gouskos. PRD 101 (2020) 056019</u>

A powerful and popular model in the HEP community with a variety of applications

"Post-ParticleNet" DL studies

disclaimer: only shows a part of relevant works

→ Further study to enhance the jet tagging model mainly divided into two approaches

More advanced model

Graph neural networks

Brief intro to ParT

- ➔ Transformer model is the new state-of-the-art architecture introduced in DL community
 - ✤ Language models: BERT, GPT-3...
 - Computer Vision: ViT, Swin-T
 - AI for Science: AlphaFold2 for protein structure prediction
- → Transformers architecture
 - consists only of self-attention blocks
 - more scalable with large model/data
 - big model (more parameters) + more training data + affordable computing complexity > better performance

) ParT

v:2202.03772, proceedings of 39th ICML, Vol.162]

(b) Particle Attention Block

Allention

Block

Allention

Block

ML

 x'_{class}

SoftM

ParT architecture

H.Qu et al. arXiv:2202.03772, proceedings of 39th ICML, Vol.162

(b) Particle Attention Block

Transformer illustration

Input	Thinking	Machines	
Embedding	X 1	X ₂	
Queries	q 1	q ₂	
Keys	k 1	k ₂	
Values	V1	V2	
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96	
Divide by 8 ($\sqrt{d_k}$)	14	12	
Softmax	0.88	0.12	
Softmax X Value	V1	V2	
Sum	Z 1	Z 2	[image from <u>link]</u>