Possible evidences from $H(z)$ parameter data for physics beyond ΛCDM

Rong-Jia Yang

College of Physics Science and Technology Hebei University

New Astronomy 108 (2024) 102180

イロメ イ母メ イヨメ イヨメ

Outline

2 [Theoretical method and](#page-3-0) $H(z)$ parameter data

- **o** [Theoretical method](#page-3-0)
- \bullet H(z) [parameter data](#page-11-0)

3 [Applications](#page-13-0)

医阿里氏阿里氏

 $-10⁻¹⁰$

 2990

э

Motivation

- The Universe is experiencing an accelerated expansion.
- Hubble tension may also provide evidences for physics beyond ΛCDM.
- Statistical methods, such as the maximum likelihood, are generally used to analyze the observational data to fit the parameters.
- These statistical method yields the best statistical results, but it is easy to eliminate some interesting (possibly important) data.
- Here we propose a model-independent method by using the Lagrange mean value theorem to analyze $H(z)$ parameter data.

←ロ ▶ (何) (ヨ) (ヨ) 。

[Theoretical method](#page-3-0) $H(z)$ [parameter data](#page-11-0)

Outline

2 [Theoretical method and](#page-3-0) $H(z)$ parameter data **• [Theoretical method](#page-3-0)** \bullet H(z) [parameter data](#page-11-0)

3 [Applications](#page-13-0)

[Summary](#page-15-0)

and and

 $\mathcal{A} \oplus \mathcal{B}$ \rightarrow $\mathcal{A} \oplus \mathcal{B}$ \rightarrow $\mathcal{A} \oplus \mathcal{B}$

 2990

э

[Motivation](#page-2-0) [Theoretical method and](#page-3-0) $H(z)$ parameter data [Applications](#page-13-0) [Summary](#page-15-0) [Theoretical method](#page-3-0) $H(z)$ [parameter data](#page-11-0)

consider a spatially flat FRWL spacetime here, the Friedmann equations take the form

$$
H2 = \frac{8\pi G}{3}\rho,
$$

\n
$$
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3\rho),
$$
\n(1)

or equivalently

$$
\dot{H} = -4\pi G(\rho + \rho),\tag{3}
$$

where the $H = \frac{a}{a}$ is the Hubble parameter with the dot denoting the derivative with respect to the cosmic time t . The total energy density ρ and pressure ρ contain contributions coming from the radiation, nonrelativistic matter, and other components.

イロト イタト イモト イモト

つくへ

[Theoretical method](#page-3-0) $H(z)$ [parameter data](#page-11-0)

Because $dz = -(1+z)Hdt$, we have

$$
\dot{H} = -(1+z)H\frac{dH}{dz}.
$$
\n(4)

Combining Eqs. [\(3\)](#page-4-0) and [\(4\)](#page-5-0), yields

$$
\frac{dH}{dz} = \frac{4\pi G}{(1+z)H}(\rho + \rho) = \frac{4\pi G\rho(1 + w_t)}{(1+z)H},
$$
(5)

where $w_{\rm t}$ is the total EoS. From this equation, we can judge whether the total EoS is greater than, equal to, or less than -1 : see for example, if $dH/dz < 0$, we have $w_x < w_t < -1$ because of the positive of H and ρ . In an era dominated by dark energy, we can also determine with Eq. [\(5\)](#page-5-1) wether the EoS of dark energy is equal to -1 : if $dH/dz = 0$, then one have $w_x \simeq w_t = -1$. If $dH/dz \le 0$, we know the Universe is experiencing an accelerated expansion.

KABKABK B

 QQ

But if $dH/dz > 0$, we can't judge whether the Universe speeds up. At this point, we need another important physical quantity, the deceleration parameter, which is defined as

$$
q=-1+(1+z)\frac{1}{H}\frac{dH}{dz}.
$$
\n(6)

Now a question naturally rise: if we have some $H(z)$ parameter data, how can we use them to directly determine dH/dz or q?

ARACTES

[Motivation](#page-2-0) [Theoretical method and](#page-3-0) $H(z)$ parameter data [Applications](#page-13-0) [Summary](#page-15-0) [Theoretical method](#page-3-0) H(z) [parameter data](#page-11-0)

Think of Lagrange mean value theorem in Calculus, which states: for a continuous and differentiable function $f(x)$, there exists $x_1 < x_1$ ₂ x_2 satisfying

$$
\frac{df}{dx}\big|_{x=x_{12}} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.\tag{7}
$$

Applying this theorem to Hubble parameter which we assume is a continuous and differentiable function of z, and taking function $H(z)$ as $f(x)$ in [\(7\)](#page-7-0), we have

$$
H'(z_{ij}) \equiv \frac{dH}{dz}\Big|_{z=z_{ij}} = \frac{H(z_i) - H(z_j)}{z_i - z_j},
$$
 (8)

where $z_j < z_{ij} < z_i$. Combining this equation and Hubble parameter data, namely, taking the $H(z)$ data from the table [14](#page-12-0) for $H(z_i)$ and $H(z_j)$ and the corresponding z data for z_i and z_j , we can obtain a lot of data for $H'(z_{ij})$. (ロ) (母) (ヨ) (ヨ) ニヨ

Since the difference between different data of Hubble parameters $H(z)$ in table [14](#page-12-0) in general is large, $H'(z_{ij})$ will be larger if $z_i - z_j \ll 1$, which will make relevant results less credible. In order to make the results credible, we will impose restrictions on $H(z_i) - H(z_i)$ and $z_i - z_i$ during the process of data analysis. When applying equation [\(6\)](#page-6-0) to analyze the data in table [14,](#page-12-0) z_{ii} and $H(z_{ii})$ are unknown, we take approximatively: $z_{ii} = (z_i + z_i)/2$ and $H(z_{ii}) \simeq [H(z_i) + H(z_i)]/2$, which can be called as mid-value approximate method.

←ロ ▶ (母) (ヨ) (ヨ) 。

if the difference between $H(z_i)$ and $H(z_i)$ and the difference between z_i and z_i are reasonable, this approximate method in general is credible. Then we have

$$
q(z_{ij}) \simeq -1 + \frac{(2+z_i+z_j) H'(z_{ij})}{H(z_i) + H(z_j)}.
$$
\n(9)

- 何 ▶ → ヨ ▶ → ヨ ▶

and and

 QQ

[Motivation](#page-2-0) [Theoretical method and](#page-3-0) $H(z)$ parameter data [Applications](#page-13-0) [Summary](#page-15-0) [Theoretical method](#page-3-0) $H(z)$ [parameter data](#page-11-0)

The uncertainties associated to the $H'(z)$ and $q(z)$ are given by, respectively

$$
\sigma_{H'} = \frac{\sqrt{\sigma_{H_i}^2 + \sigma_{H_j}^2}}{z_i - z_j},
$$
\n(10)

and

$$
\sigma_q = \frac{2(2+z_i+z_j)H_i}{(H_i+H_j)^2} \frac{\sqrt{\sigma_{H_i}^2 + \sigma_{H_j}^2}}{z_i - z_j}.
$$
 (11)

With $\sigma_{H'}$ and σ_q , we can determine whether the results are credible at 1 σ confidence level.

④ イラン イミン イラン

and and

 QQ

性

[Theoretical method](#page-3-0) H(z) [parameter data](#page-11-0)

Outline

2 [Theoretical method and](#page-3-0) $H(z)$ parameter data • [Theoretical method](#page-3-0) \bullet H(z) [parameter data](#page-11-0)

3 [Applications](#page-13-0)

and and

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \langle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$

 2990

э

[Motivation](#page-2-0)

[Theoretical method and](#page-3-0) $H(z)$ parameter data [Applications](#page-13-0) [Theoretical method](#page-3-0) $H(z)$ [parameter data](#page-11-0)

[Summary](#page-15-0)

TABLE I: Hubble parameter compilation from cosmic chronometers (DA) or from the radial BAO surveys (clustering).

目

 299

[Motivation](#page-2-0)

[Theoretical method and](#page-3-0) $H(z)$ parameter data
[Applications](#page-13-0)

[Summary](#page-15-0)

TABLE II: $H'(z)$ and $q(z)$ data obtained from $H(z)$ parameter data.

イロメ イ部メ イ君メ イ君メー 君

 299

- At redshifts z61, z71, z91, z131, z141, z171, z181, z201, z251, z271, z311, z139, z179, z189, z209, z259, z279, z319, z339, z2014, z2714, z359, z409, z419, z4324, z5150, z5550, z5650, z5552, z⁵⁶⁵² z5554, z_{5654} , and z_{5854} , the Universe experiences an accelerated expansion at 1σ confidence level.
- At redshifts z_{3418} , z_{3420} , z_{3718} , z_{3431} , z_{3727} , and z_{3731} , the Universe experiences an decelerated expansion at 1 σ confidence level.
- At redshifts z_{139} , z_{2014} , z_{5150} , z_{5550} , z_{5650} , z_{5552} , and z_{5854} , since $H'(z) < 0$, implying $w_{\rm x} \leq w_{\rm t} < -1$, but not at at 1 σ confidence level. However, we can infer that $w_x \leq w_t \leq -1$ at redshifts z_{5652} , z_{5554} , and z_{5654} at at 1 σ confidence level.

KEL KALA KEL KEL KARA

- There exists decelerated phase at 1 σ confidence level in the redshift range (0.38,0.59);
- The EoS of dark energy may be less than -1 at 1 σ confidence level at some redshifts in the redshift range (1.3,1.53);
- There exist accelerated phase at 1 σ confidence level in the redshift range (1.037,1.944).
- These results suggest that the dark energy maybe dynamic with EoS crossing −1 and the Universe may be accelerated first, then decelerated, and accelerated again recently.

イ伊 メ ミ メ ス ヨ メ

 QQ

Thanks!

Author Possible evidences from $H(z)$ parameter data for physics be

イロメ イ母メ イヨメ イヨメ

E

 299