

SUSY Search

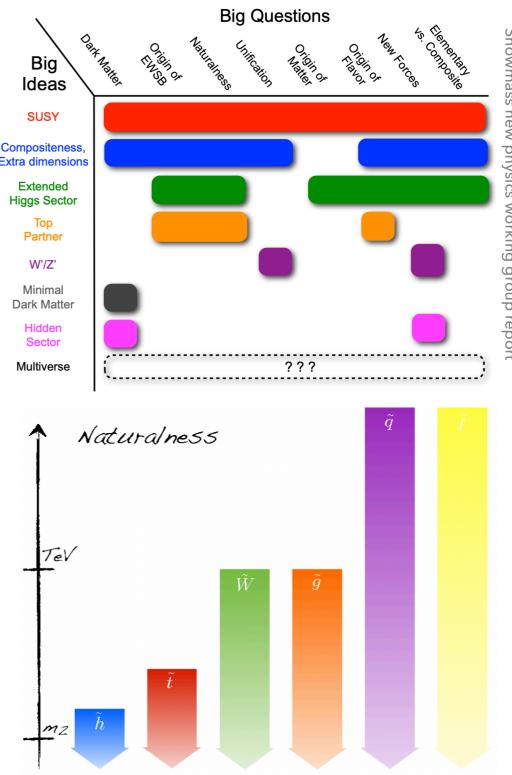
LHC

Yang Liu @

SYSU

yang.l@cern.ch Jan 22 2024

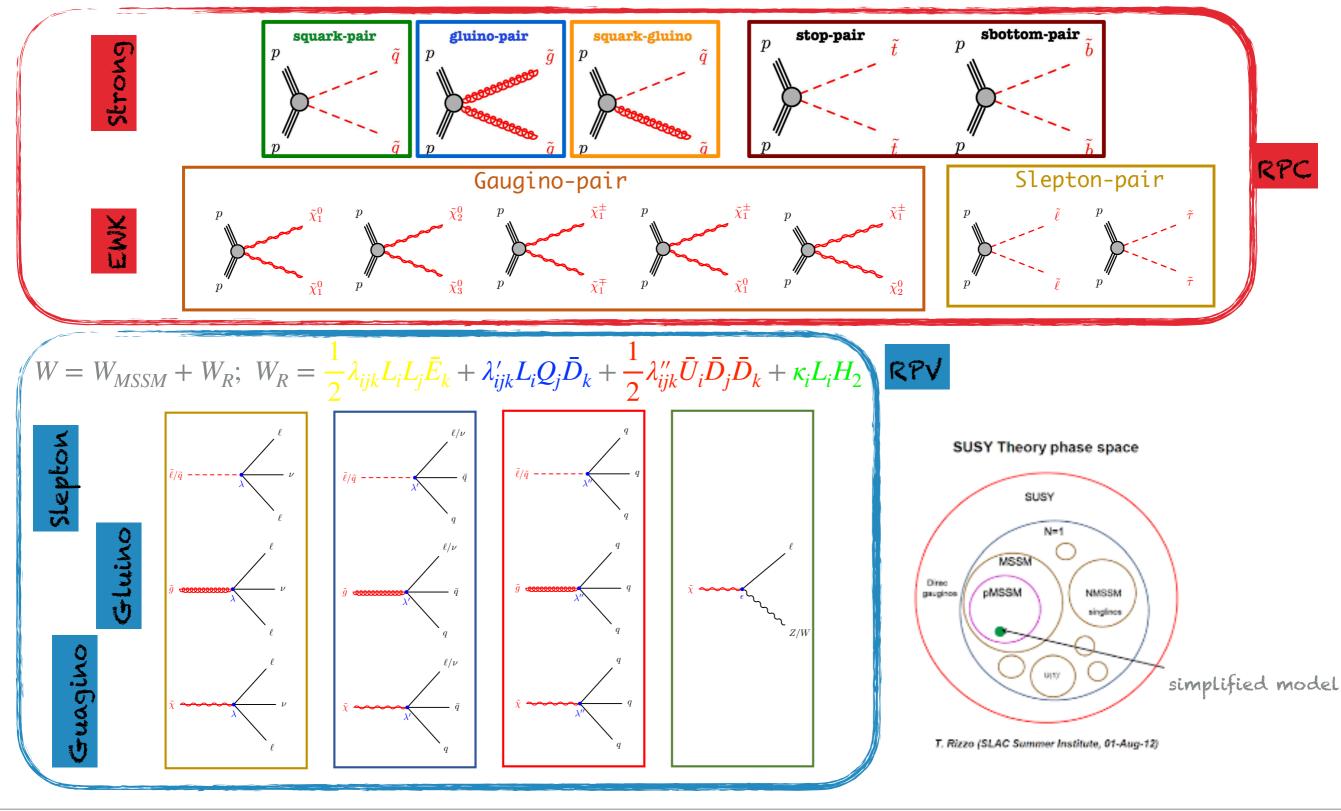
- General strategy for searching SUSY
- SUSY searches in run2
- Towards to run3
- One more thing...



Why SUSY:

- Despite the huge success of the SM theory, physics beyond SM is strongly motivated:
 - hierarchy problem, dark matter, quantum description of gravity, the GUT e.t.c...
- Supersymmetry (SUSY) extend the SM and connect SM Fermions & Bosons with their super partner into a set of super-multiplets
 - Solving hierarchy problem if only soft breaking of supersymmetry (mass constraint within TeV scale, could be produced in the LHC)
 - Provide stable DM candidate (Lightest-SUSY-Particle) if R-parity is conserving (RPC)

$$P_R = (-1)^{3B + L + 2S}$$


Including graviton & gravitino needed for the GUT...

General strategy of searching SUSY:

Dozens of analysis team covering all aspects of SUSY scenarios and models: further separated via final states

General strategy of searching SUSY:

Finding signal regions

- Dedicated SRs are designed for targeting signal models to enhance the signal sensitivity
- Different sets of SRs are designed to target at different phase space (e.g: boost, compressed)
- "Multi-bin" strategy is applied to maximize the exclusion power
- Best CLs value for each point are chosen from those inclusively SRs

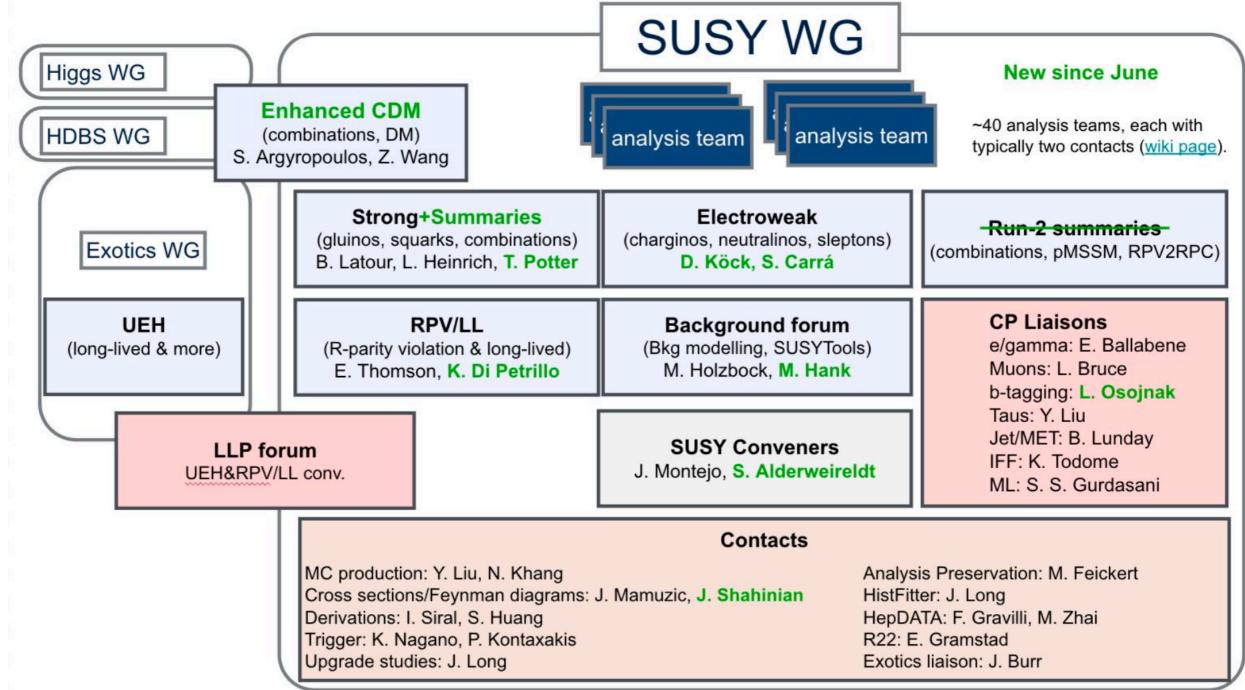
Statistical interpretations

- With estimations of BKGs and data events in SRs, excess or agreement could be seen
- 95% CLs exclusion limits will be drawn for targeted models on phase space if there is no excess observed

BKG estimations

Dominant bkgs:

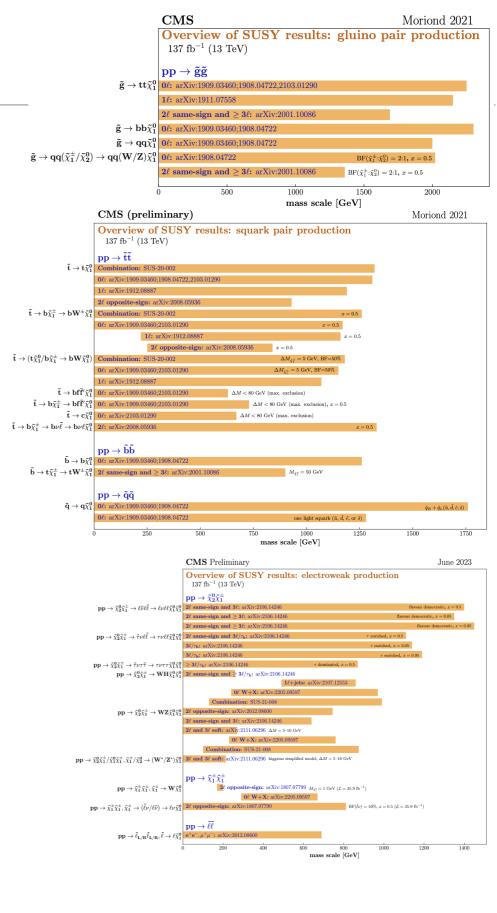
- Estimated directly from data events in control regions (CRs):
 - Data-Driven (DD) methods e.g: ABCD, MxM and FakeFactor methods
- Corrected by data in CRs
- Estimations will be validated by comparing to data events in validation regions
- Minor bkgs: Estimated directly via MC simulations


Systematics estimations

- Experimental uncertainties:
 - Uncertainties coming from the imperfection of the simulation, obtained by all kinds of correction factors e.g: Lumi, pileup ...
 - Uncertainties coming from DD estimation methods
- Theoretically uncertainties:
 - Uncertainties coming from the parameter choices of used MC sample e.g: renormalization and factorization scales, PDF ...

General strategy of searching SUSY:

The SUSY group structure

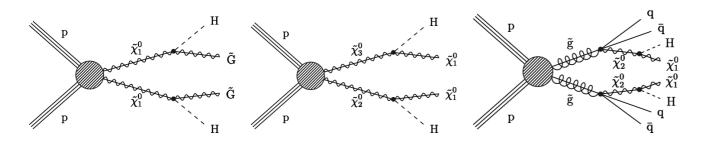

Current searching results:

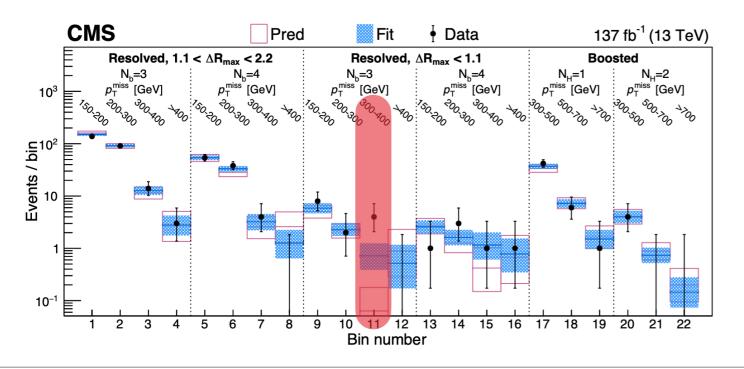
ATLAS SUSY Searches* - 95% CL Lower Limits

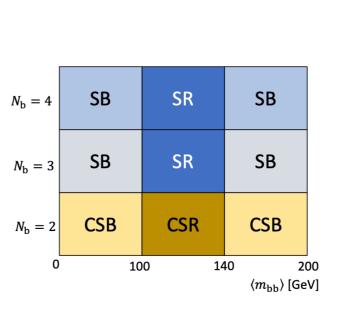
S	$\tilde{q}\tilde{q},\tilde{q}{\rightarrow}q\tilde{\chi}_{1}^{0}$	0 e, µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	140 140	φ [1x, 8x Degen.] 1.0 1.85 m(λ ₁ ⁰)<400 G
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	E_T^{miss}	140	\tilde{g} 2.3 m(\tilde{g}_{1}^{0})=00 G \tilde{g} 7.15-1.95 m(\tilde{g}_{1}^{0})=1000 G
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 е,µ ее,µµ	2-6 jets	rmiss	140	<i>ğ</i> 2.2 m(<i>ξ̃</i> ⁰)<600 G
	$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \to qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	2 jets 7-11 jets 6 jets	E_T^{miss} E_T^{miss}	140 140 140	\$\vec{x}\$ 2.2 m(k ²)/2700 \$\vec{x}\$ 1.97 m(k ²)/2700 \$\vec{x}\$ 1.15 m(k ²)m(k ²)/2200
	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 e,μ SS e,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	140 140 140	\tilde{s} 1.13 $m(\tilde{y})m(\tilde{x}_1)=200$ \tilde{g} 2.45 $m(\tilde{k})^2(500G)$ \tilde{g} 1.25 $m(\tilde{y})m(\tilde{x}_1)=200G$
3 rd gen. squarks direct production	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b	$E_T^{\rm miss}$	140	\tilde{b}_1 1.255 $m(\tilde{c}_1^0) < 400$ G \tilde{b}_1 0.68 10 GeV $< m(\tilde{b}_1, \tilde{c}_1^0) < 20$ G
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}^0_2 {\rightarrow} b h \tilde{\chi}^0_1$	0 e,μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	140 140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ 1 <i>e</i> ,μ	≥ 1 jet 3 jets/1 b	E_T^{miss} E_T^{miss}	140 140	T_1 1.25 $m(t_1^0)=1G$ T_1 Forbidden 1.05 $m(t_1^0)=500G$
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to W b \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \to \tau \tilde{G}$	1-2 τ	2 jets/1 b	E_T E_T E_T	140	<i>ĩ</i> ₁ <i>Forbidden</i> 1.4 m(\tilde{r}_1)=800 G
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,µ 0 e,µ	2 c mono-jet	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	36.1 140	$ \begin{array}{c} \tilde{c} & 0.85 & m(\tilde{c}_{1}^{0}) = 0 G \\ \tilde{l}_{1} & 0.55 & m(\tilde{l}_{1},\tilde{c}) = m(\tilde{k}_{1}) = 5G \\ \end{array} $
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0 \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 e,μ 3 e,μ	1-4 <i>b</i> 1 <i>b</i>	E_T^{miss} E_T^{miss}	140 140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	Multiple ℓ/jets ee, μμ	≥ 1 jet	$E_T^{\rm miss}$ $E_T^{\rm miss}$	140 140	$ \begin{array}{ccc} \tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0} & & & \\ \tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{cccc} 0.96 & & & & \\ m(\tilde{\chi}_{1}^{*})=0, \text{ wino-b} \\ m(\tilde{\chi}_{1}^{*})=5 & \text{GeV, wino-b} \\ \end{array} \\ \end{array} $
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 <i>e</i> , μ		E_T^{miss}	140	$\tilde{\chi}_1^{\pm}$ 0.42 m($\tilde{\chi}_1^0$)=0, wino-b
		Multiple ℓ/jets 2 e, μ		E_T^{miss} E_T^{miss}	140 140	$ \begin{array}{ccc} \bar{\chi}_{1}^{\pm}/\bar{\chi}_{2}^{0} & \text{forbidden} & 1.06 & m(\tilde{\chi}_{1}^{0}){=}70 \text{ GeV, wino-b} \\ \bar{\chi}_{1}^{\pm} & 1.0 & m(\tilde{\chi}_{1}^{*}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{*}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{*}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{*}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{*}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{*}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{*}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{*}){=}0.5(m(\tilde{\chi}_{1}^{*}){+}m(\tilde{\chi}$
direct	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ		E_T^{miss}	140	$\tilde{\tau}$ [$\tilde{\tau}_{R}, \tilde{\tau}_{R,L}$] 0.34 0.48 m($\tilde{\chi}_{1}^{0}$)
dir	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,μ ee,μμ	0 jets ≥ 1 jet	$\begin{array}{c} E_T^{\rm miss} \\ E_T^{\rm miss} \end{array}$	140 140	$ \begin{array}{c c} \tilde{\ell} & 0.7 & m(\tilde{\ell}_1^0) \\ \tilde{\ell} & 0.26 & m(\tilde{\ell}) - m(\tilde{\ell}_1^0) = 10 \ G \end{array} $
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets 2 large jets	E_T^{miss} E_T^{miss}	140 140	\bar{H} 0.94 $BR(\bar{\xi}_1^0 \to h\bar{G})$ \bar{H} 0.55 $BR(\bar{\xi}_1^0 \to Z\bar{G})$ \bar{H} 0.45-0.93 $BR(\bar{\xi}_1^0 \to Z\bar{G})$
		$0 \ e, \mu \geq$	2 large jet	E_T^{miss}	140	\tilde{H} 0.45-0.93 BR $(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})$
		2 <i>e</i> , <i>µ</i>	≥ 2 jets	E_T^{miss}	140	$\tilde{H} = 0.77 \qquad BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 0$
	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	140	\hat{x}_1^* 0.66 Pure W \hat{x}_1^* 0.21 Pure higgs
particles	Stable \tilde{g} R-hadron	pixel dE/dx		E_T^{miss} E_T^{miss}	140	<i>š</i> 2.05
arti	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}'_1$ $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$	pixel dE/dx Displ. lep		E_T^{miss} E_T^{miss}	140 140	\tilde{g} [r(\tilde{g}) =10 ns] 2.2 m(\tilde{k}_{0}^{0})=100 G $\tilde{e}, \tilde{\mu}$ 0.7 $\tau(\tilde{\ell})$ = 0.1
particles	$\iota \iota, \iota \rightarrow \iota 0$	pixel dE/dx		E_T E_T^{miss}	140	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0},\tilde{\chi}_{1}^{\pm}{\rightarrow}Z\ell{\rightarrow}\ell\ell\ell$	3 <i>e</i> , µ			140	$\tilde{X}_{1}^{z}/\tilde{X}_{1}^{0}$ [BR(Zr)=1, BR(Ze)=1] 0.625 1.05 Pure W
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to W W / Z \ell \ell \ell \ell \nu \nu$	4 e,µ	0 jets ≥8 jets	E_T^{miss}	140 140	$\tilde{k}_1^+/\tilde{k}_2^0$ [$k_{133} \neq 0, k_{12k} \neq 0$] 0.95 1.55 m (\tilde{k}_1^0) =200 G \tilde{k} [m (\tilde{k}_1^0) =50 GeV, 1250 GeV] 1.6 2.25 Large J
	$\widetilde{g}\widetilde{g}, \ \widetilde{g} \to qq\widetilde{\chi}_1^0, \ \widetilde{\chi}_1^0 \to qqq$ $\widetilde{t}, \ \widetilde{t} \to t\widetilde{\chi}_1^0, \ \widetilde{\chi}_1^0 \to tbs$		Multiple		36.1	$\frac{g}{\tilde{t}} \begin{bmatrix} l_{133}^{0} = 2e-4, 1e-2 \end{bmatrix} \qquad 0.55 \qquad 1.05 \qquad m(\tilde{t}_{1}^{0}) = 200 \text{ GeV}, \text{ bio-}$
RPV	$\widetilde{t}t, \widetilde{t} \to b\widetilde{\chi}_1^+, \widetilde{\chi}_1^+ \to bbs$		$\geq 4b$		140	i Forbidden 0.95 m(x_1)=500 G
-	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 b		36.7	$\tilde{t}_1 = [qq, bs]$ 0.42 0.61
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e,μ 1 μ	2 <i>b</i> DV		36.1 136	$ \begin{array}{c c} \tilde{t}_1 & 0.4-1.45 & BR(\tilde{t}_1 \rightarrow be/b\mu) > 2\\ \hline \tilde{t}_1 & [1e-10 < \lambda'_{x_{1k}} < 1e-8, 3e-10 < \lambda'_{x_{1k}} < 3e-9] & 1.0 & 1.6 & BR(\tilde{t}_1 \rightarrow d\mu) = 100\%, \cos\theta \\ \hline \end{array} $
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1-2 <i>e</i> ,μ	≥6 jets		140	$\tilde{\chi}_1^0$ 0.2-0.32 Pure higgs
	Lyie -	-				

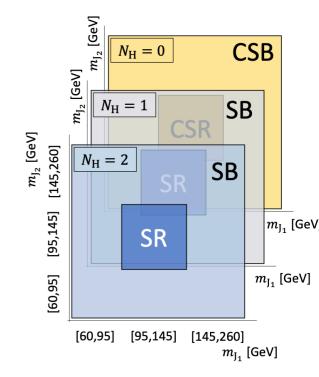
*Only a selection of the available mass limits on new states of phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

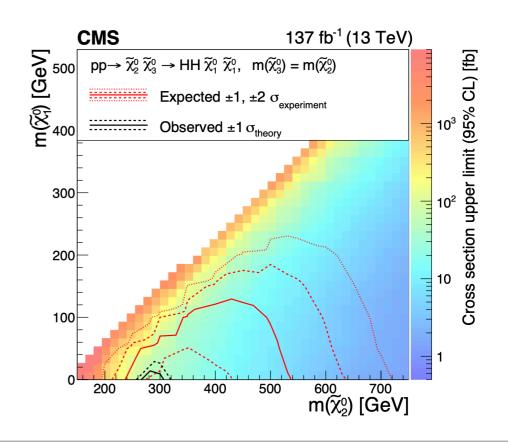
- No significant excess observed yet
- BTY, $2/3\sigma$ excess are normal in SUSY searches
- Up to ~2.5/1.2/1/0.7 TeV $\tilde{g}/\tilde{q}_{(3rd)}/\tilde{\chi}/\tilde{l}$ got excluded



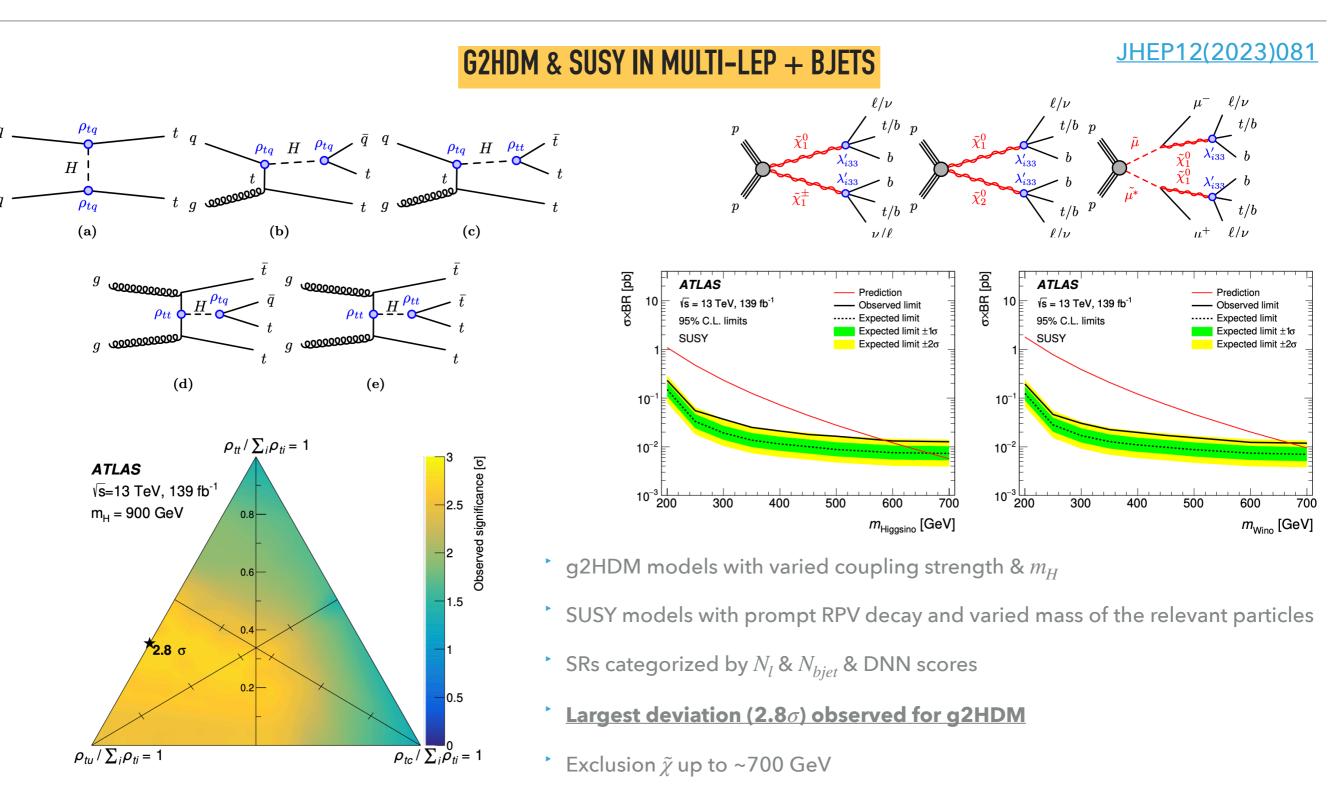

SUSY excess observed in run2:


HIGGSINO WITH TWO HIGGS SEARCHES IN MULTI-BJETS EVENTS

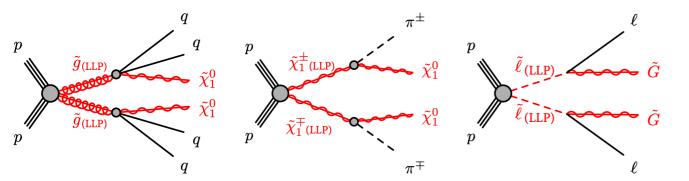

JHEP05(2022)014

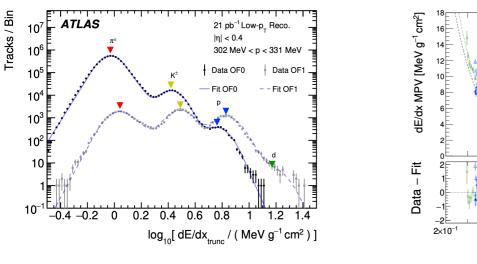


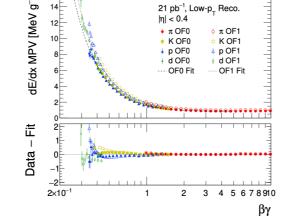
- Events are categorized by boosted two bjets or resolved two bjets
- Backgrounds were estimated using sideband and controlled by control regions: $N_{\text{SR}}^{\text{pred}} = \kappa \frac{N_{\text{CSR}}}{N_{\text{CSB}}} N_{\text{SB}}$
- **Excess observed in bin11, reaching to 2.1** σ
- Even it doesn't looks like an SUSY excess, but still good sign to investigate



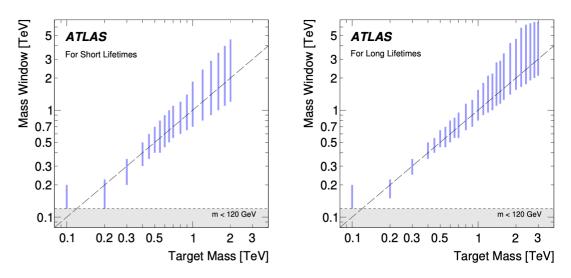
SUSY excess observed in run2:


SUSY searches can be guidelines for all NP phenomena


SUSY excess observed in run2:

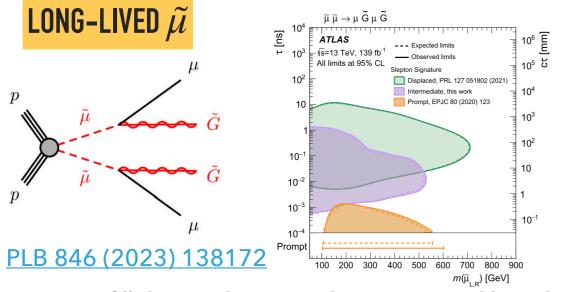

LONG-LIVED CHARGED SUSY PARTICLES IN DE/DX MEASUREMENT

- Massive long-lived and charged particle leaves track in the inner track detector
- * With pixel tracker, dE/dX can be measured for each track
- * With Bethe-Bloch equation ($dE/dX = f(\beta\gamma)$), and pT one can obtain the particle mass from the track



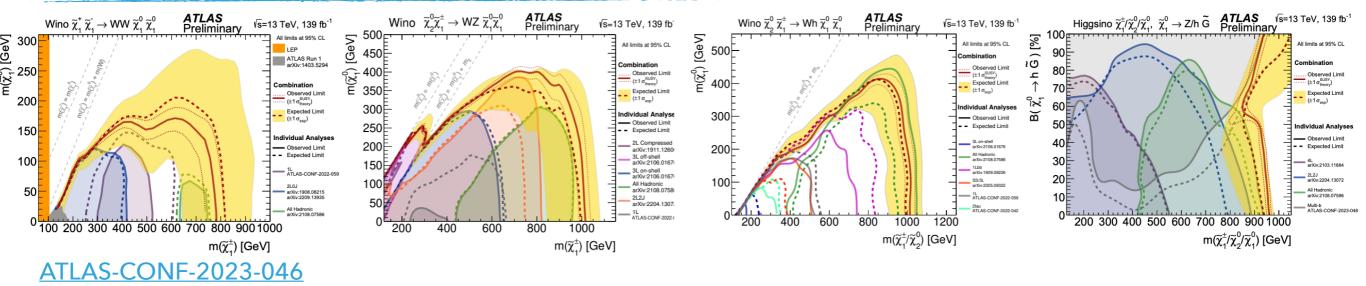
ATLAS

$$MPV_{dE/dx}(\beta\gamma) = \frac{1 + (\beta\gamma)^2}{(\beta\gamma)^2} \left(c_0 + c_1 \log_{10}(\beta\gamma) + c_2 \left[\log_{10}(\beta\gamma) \right]^2 \right)$$


Category	Item	Description				
Pixel dE/dx	Inclusive	Low: $dE/dx \in [1.8, 2.4] \text{ MeV g}^{-1} \text{cm}^2$				
	Inclusive	High: $dE/dx > 2.4 \text{ MeV g}^{-1} \text{cm}^2$				
		$\texttt{IBL0_Low:} \qquad \mathrm{d}E/\mathrm{d}x \in [1.8, 2.4] \ \mathrm{MeV} \mathrm{g}^{-1} \mathrm{cm}^2 \ \mathrm{and} \ \texttt{OF}_{\mathrm{IBL}} = 0$				
	Binned	IBLO_High: $dE/dx > 2.4 \text{ MeV g}^{-1} \text{cm}^2$ and $\text{OF}_{IBL} = 0$				
		IBL1: $dE/dx > 1.8 \text{ MeV g}^{-1} \text{cm}^2 \text{ and } \text{OF}_{\text{IBL}} = 1$				

- Excess observed in in the high-dE/dx and highmass range
- Reach to 3.6 σ in the SR for $M_x = 1.4TeV$
- * This search not only suits for SUSY models but is also sensitive to every similar case
- ^{*} Unfortunately, the excess was killed by the following studies using TOF info to obtain the $\beta\gamma$

SUSY highlights in run2:

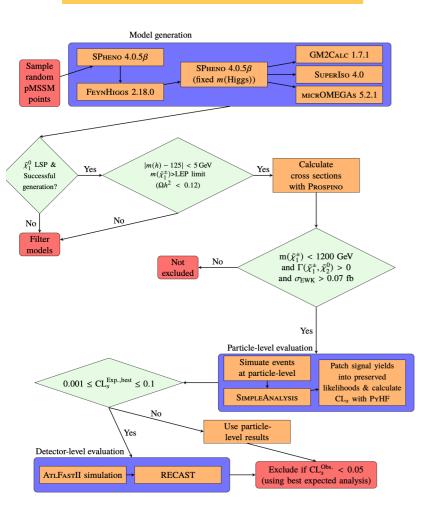


First time fill the gap between the prompt and long-lived scenario using reinterpretation

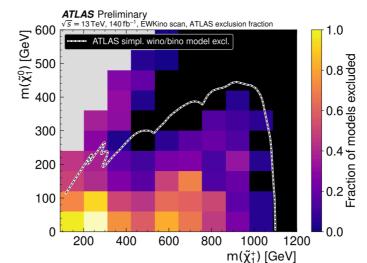
 $\widetilde{\chi}/\widetilde{l}$ combination

Production mode	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$	Wino $ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$	$\begin{array}{c} \text{Wino} \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \end{array}$	$\begin{vmatrix} \text{Higgsino GGM} \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^{\pm} \tilde{\chi}_{1,2}^0, \tilde{\chi}_1^0 \tilde{\chi}_2^0 \end{vmatrix}$
Decay mode	$\left \begin{array}{c} \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0 \\ \end{array} \right.$	$ \begin{vmatrix} \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0 \end{vmatrix} $	$\begin{vmatrix} \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \to h \tilde{\chi}_1^0 \end{vmatrix}$	$\tilde{\chi}_1^0 \to Z/h\tilde{G}$
Searches				
All Hadronic [23]	√	\checkmark	✓	√
1L [24]	1	\checkmark		
1Lbb [25]			\checkmark	
2L Compressed [26]		\checkmark		
$2L0J \Delta m > m(W)$ [27]	1			
$2L0J \Delta m \sim m(W)$ [28]	✓			
2L2J [29]		\checkmark		\checkmark
2tau [30]			\checkmark	
<i>3L</i> [3 1]		\checkmark	✓	
SS/3L [32]		√	✓	
4L [33]				√
Multi-b [34]				√

More will come in recent days in RPC-RPV studies



- First time to have a combination in SUSY, full use the published results
- \tilde{l} studies also performed, but no extra sensitivity was gained
- Lots of studies on combination ahead: \tilde{l} , \tilde{g} , \tilde{q} , \tilde{t} and \tilde{b}



SUSY highlights in run2:

EWK PMSSM-19 SCANNING

Parameter	min	max	Note		
$ \frac{M_{\tilde{L}_{1}} (=M_{\tilde{L}_{2}})}{M_{\tilde{e}_{1}} (=M_{\tilde{e}_{2}})} \\ \frac{M_{\tilde{L}_{3}}}{M_{\tilde{L}_{3}}} $	10 TeV 10 TeV 10 TeV	10 TeV 10 TeV 10 TeV	Left-handed slepton (first two gens.) mass Right-handed slepton (first two gens.) mass Left-handed stau doublet mass Right-handed stau mass	Analysis	Simplified models targeted
$M_{\tilde{e}_3}^{L_3}$	10 TeV	10 TeV			<u></u>
$ \frac{M_{\tilde{Q}_1} (=M_{\tilde{Q}_2})}{M_{\tilde{u}_1} (=M_{\tilde{u}_2})} \\ M_{\tilde{d}_1} (=M_{\tilde{d}_2}) \\ M_{\tilde{Q}_3} \\ M_{\tilde{u}_3} \\ M_{\tilde{d}_3} \\ M_{\tilde{d}_3} \\ \frac{M_1}{M_1} $	10 TeV 10 TeV 10 TeV 2 TeV 2 TeV 2 TeV 2 TeV	10 TeV 10 TeV 10 TeV 5 TeV 5 TeV 5 TeV 2 TeV	Left-handed squark (first two gens.) mass Right-handed up-type squark (first two gens.) mass Right-handed down-type squark (first two gens.) mass Left-handed squark (third gen.) mass Right-handed top squark mass Right-handed bottom squark mass Bino mass parameter	FullHad [24] 1Lbb [15] 2L0J [19] 2L2J [25] 3L [23] 4L [22] Compressed [20] Disappearing-track [27]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{-}$ via WW, Higgsino GGM Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Septon pairs Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Higgsino GGM Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, Higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$, Higgsino GGM Higgsino GGM Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$ Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$
M_1 M_2 μ M_3	-2 TeV -2 TeV -2 TeV 1 TeV	2 TeV 2 TeV 2 TeV 5 TeV	Wino mass parameter Bilinear Higgs mass parameter Gluino mass parameter		
$ \begin{array}{c} A_t \\ A_b \\ A_{\tau} \\ M_A \\ \tan \beta \end{array} $	-8 TeV -2 TeV -2 TeV 0 TeV 1	8 TeV 2 TeV 2 TeV 5 TeV 60	Trilinear top coupling Trilinear bottom coupling Trilinear τ lepton coupling Pseudoscalar Higgs boson mass Ratio of the Higgs vacuum expectation values		

• $\tilde{\chi}_1^* / \tilde{\chi}_2^0$ co. ann

• $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow Z h$

ų

ATLAS Preliminary Bino-DM scan Before ATLAS Run 2

10

の語を見たる

• $\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow t\bar{t}$

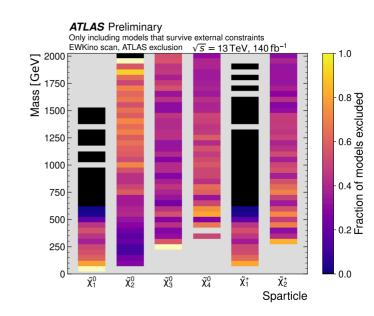
5 10⁻

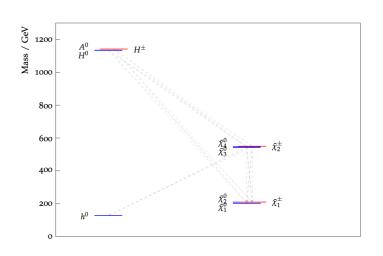
10⁻²

10

10

• $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow b \bar{b}$


• $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow VV$


Z/h funnel

A/H funnel

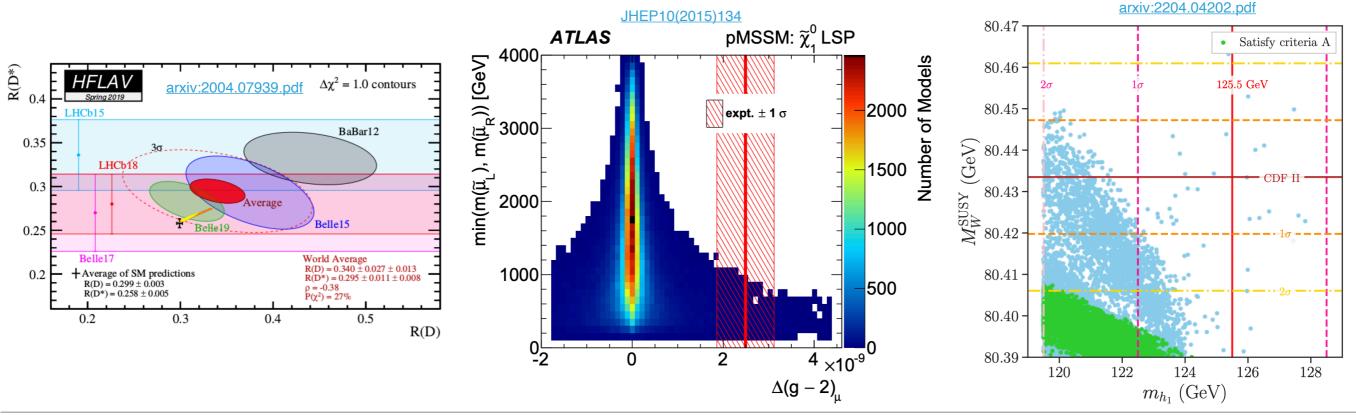
m(χ̃⁰₁) [GeV]

Other

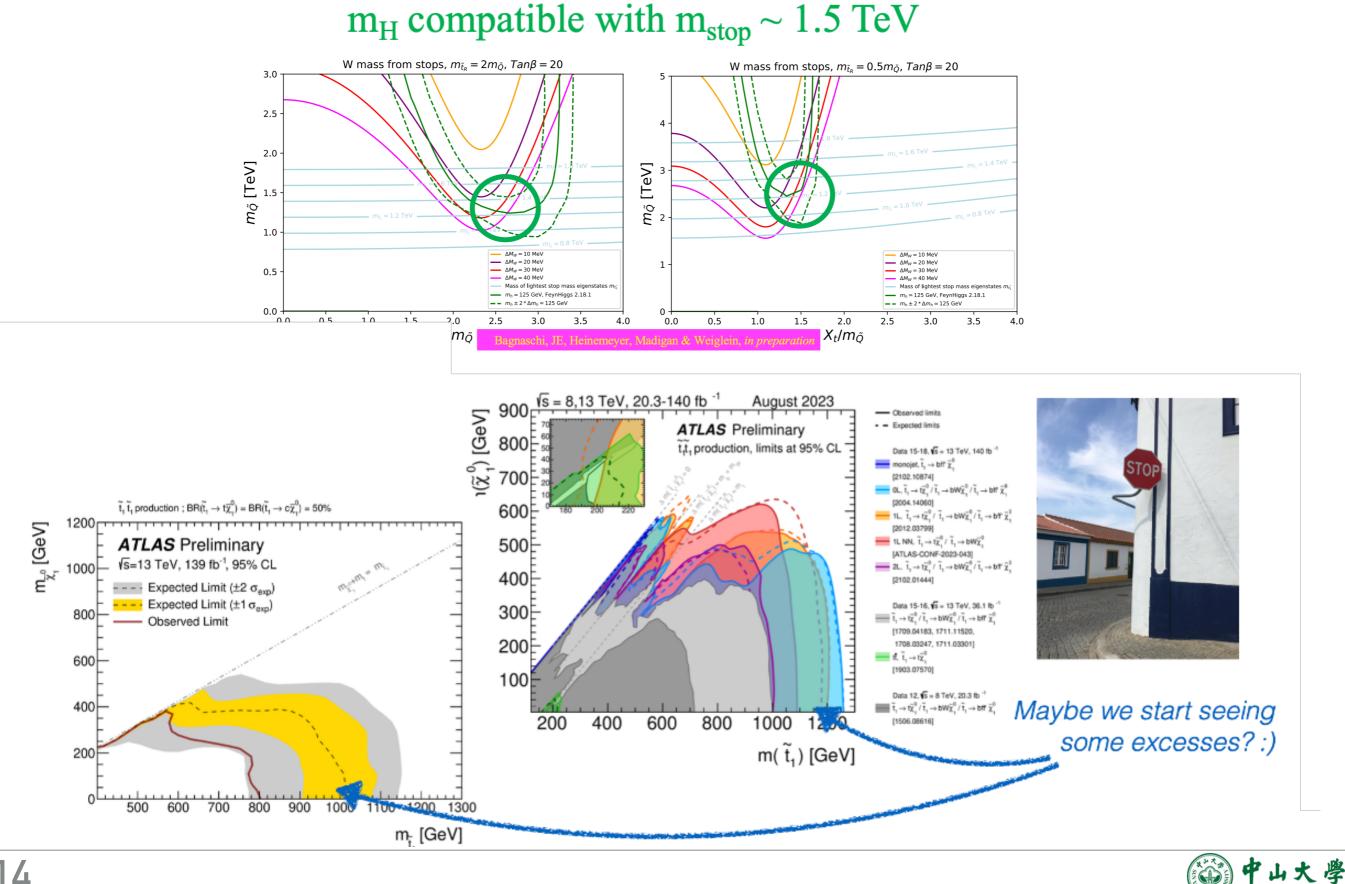
- More scanning results are coming: general scanning and strong scanning
- Strong relationship with phenomenologists
- Recasting (reana) is applied and can be published for use in the <u>future</u>
- Other highlights like Unfolding SUSY searches:
 - W^+W^- measurement using unfolded SUSY 2L0J search [EPJC]

Guidelines for searches in run3

Novelty:


- * 13 TeV/139 fb-1 to 13.6 TeV/~250fb-1 won't have a significant improve in searches
- Focus more on the "new" "model-driven" strategy instead of the "signature-driven"

Excess/Anomalies:

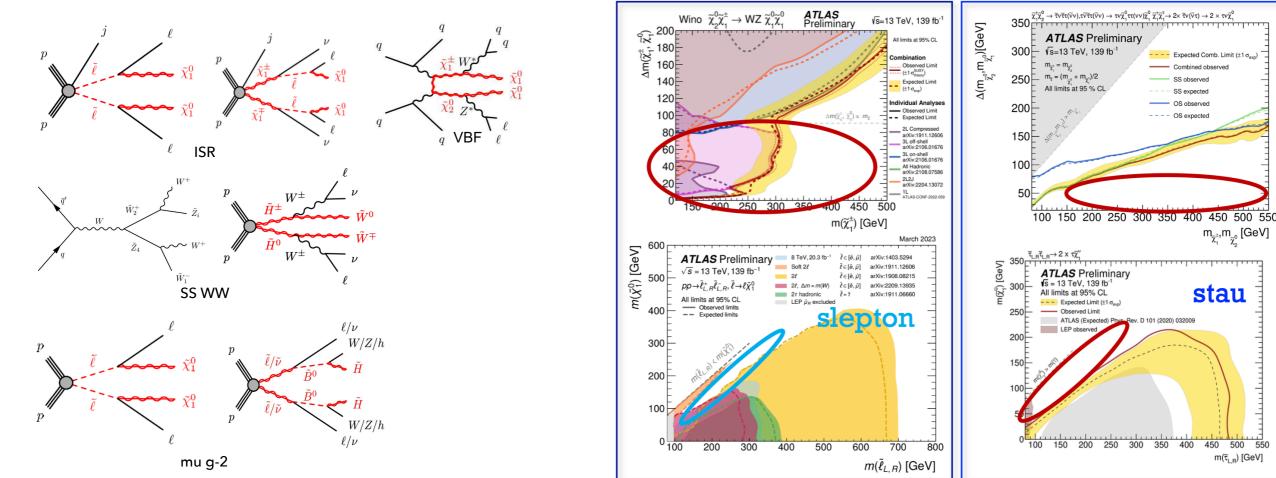

- B anomalies, mu g-2 and W mass all can constraint the pMSSM phase space
- Follow-ups on the excess observed before

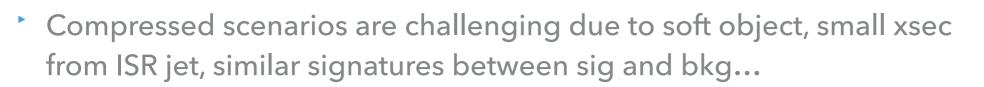
Holes in pMSSM scanning:

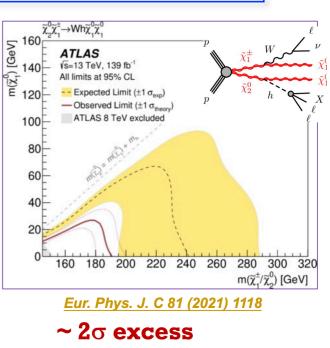
- * Will use the coming pMSSM scanning results as a guideline to search for the SUSY models
- With "clustering" tech to choose the benchmark models
- Compressed regions are expected to be highlighted

Stop searches in run3:

Stop searches in run3:


++ ANY HOLES OBSERVED IN PMSSM SCANNING


- Need to probe all possible stop **√**s = 8,13 TeV, 20.3-140 fb 00 m($\widetilde{\chi}_{1}^{0}$) [GeV] August 2023 Observed limits productions and decay modes and run Expected limits **ATLAS** Preliminary t₁t₁ production, limits at 95% CL combinations! Data 15-18, Vs = 13 TeV, 140 fb ⁻¹ monojet, $\tilde{t}_1 \rightarrow bff' \tilde{\chi}_1^0$ [2102.10874] $= 0L, \tilde{t}_1 \to t \tilde{\chi}_1^0 / \tilde{t}_1 \to b W \tilde{\chi}_1^0 / \tilde{t}_1 \to b f f \tilde{\chi}_1^0$ 3-body 2-body 4-body [2004.14060] 600 = 1L, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow bW \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow bff' \tilde{\chi}_1^0$ [2012.03799] = 1L NN, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ 500 [ATLAS-CONF-2023-043] 2L, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow b f \tilde{\chi}_1^0$ **400** [2102.01444] Data 15-16, **v**s = 13 TeV, 36.1 fb ⁻¹ 300È $= \widetilde{t}_1 \to t \widetilde{\chi}_4^0 / \widetilde{t}_1 \to b W \widetilde{\chi}_4^0 / \widetilde{t}_1 \to b ff \widetilde{\chi}_4^0$ [1709.04183, 1711.11520, t/b200 1708.03247, 1711.03301] $tt, t_1 \rightarrow t\tilde{\chi}^0$ [1903.07570] 100 Data 12, Vs = 8 TeV, 20.3 fb -1 $\underset{t_1}{\overset{t_1}{\longrightarrow}} \widetilde{t}_1 \xrightarrow{t_1} \xrightarrow{t_1} \widetilde{t}_1 \xrightarrow{t_1} \xrightarrow{t_1} \widetilde{t}_1 \xrightarrow{t_1} \xrightarrow{t_1} \widetilde{t}_1 \xrightarrow{t_1} \xrightarrow{t$ 1000 1200 800 200 600 400 [1506.08616] m(\tilde{t}_1) [GeV] Observing mixed-flavor squark production W^+ could probe the (semi-) Weak vertex directly: $W - \tilde{q}_L - \tilde{q}'_L (W - g - \tilde{q}_L - \tilde{q}'_L)$ * Xsec of the resonant squark production at the LHC can easily exceed pair-production Expected to be found @ HL-LHC UDD yielding the resonant stop, where the constraints are weaker than the light version allowing larger coupling (a.k.a prompt decay case)
 - Contribute to FCNCs, potentially contributing to flavor physics observables


15

EWK searches in run3:

- Light $\tilde{\chi}_i^{\pm}$ and light $\tilde{\mu}$ can explain the μ g-2
- Follow-ups on the excess in run2: (soft 21,31)

400

Expected Comb Limit (4

 $m_{\widetilde{\chi}^{\pm}_{i}}, m_{\widetilde{\nu}^{0}}$ [GeV]

stau

450 500

m(τ̃_{L,R}) [GeV]

550

D 101 (2020) 0320

300 350

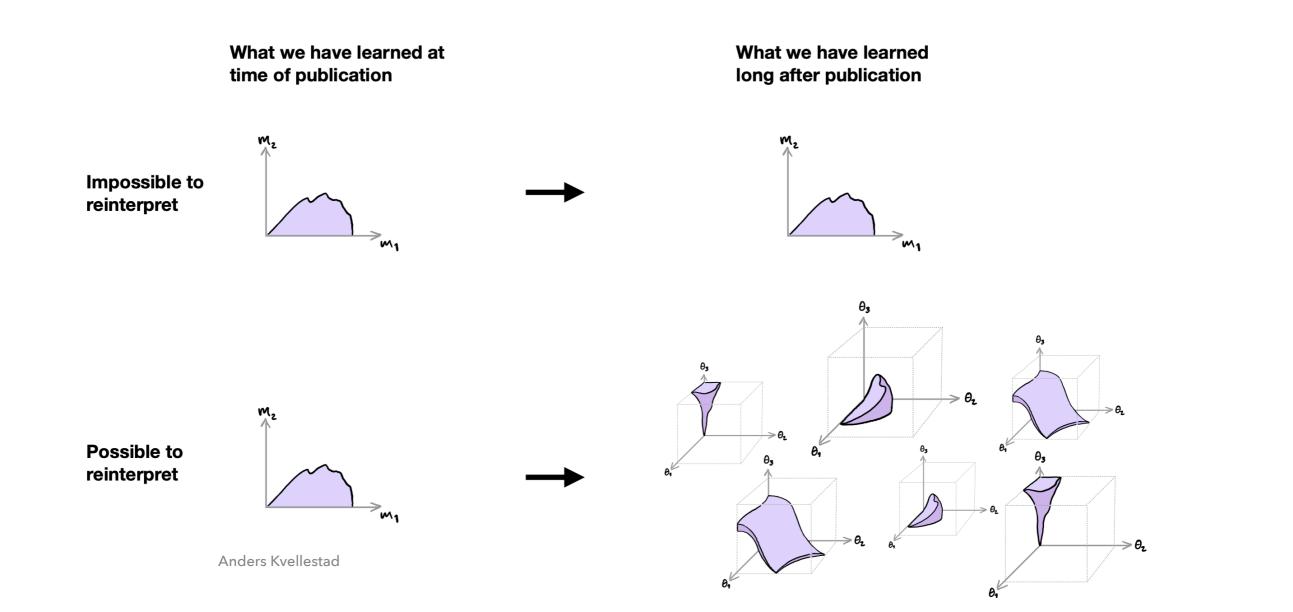
SS expected

OS observed

OS expected

SUSY towards to run3:

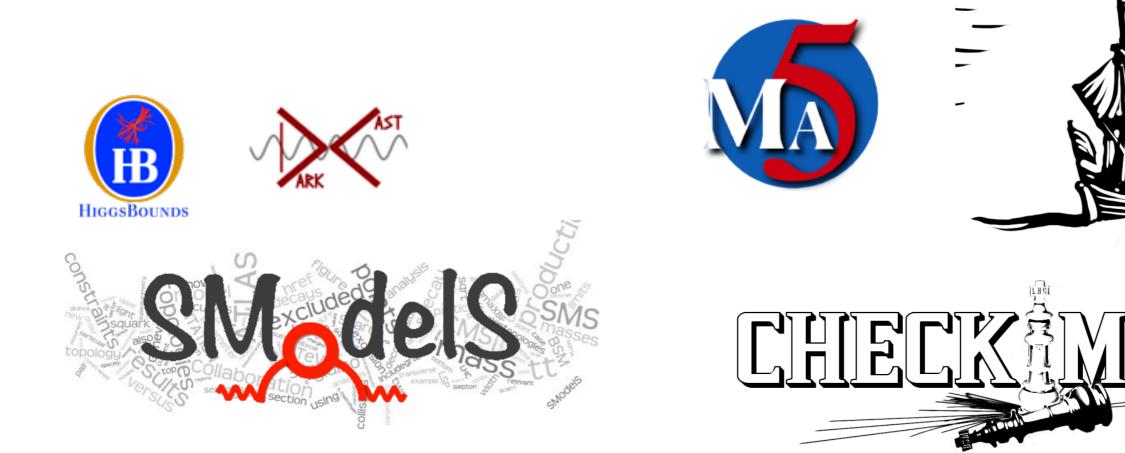
- * "SUSY is the most **complete** microscopic theory conceived so far to go beyond the SM":
 - In principle can be used to compute any* observable quantity
 - In principle contains the ingredients to deal with all/most issues that the SM cannot address
 - "Supersymmetric models are extremely compelling theoretically"
- "SUSY is the most complete "LHC" of experimental signals conceived so far to go beyond the SM":
 - * It is quite hard to find an experimental signature that can be attained in another model and cannot be attained in SUSY
 - The model also comes with "some" way to judge how likely it is the particular signal at hand
 - The model allows to derive the experimental implications of observing such signal
- Being "complete" in the theory and experimental sense:
 - You can use it to stress-test the capability of your present (or future) accelerator+experiment
 - Create a solid ground for exchange about <u>reinterpretation</u>/preservation of the searches


Searches for supersymmetric models are extremely useful (even if SUSY is not realized in Nature) Reinterpretation/Preservation is the key

Reinterpretation & Preservation:

- Key point for future "generation":
 - SUSY could be hidden in the existing data
 - NP could be hidden in the existing SRs

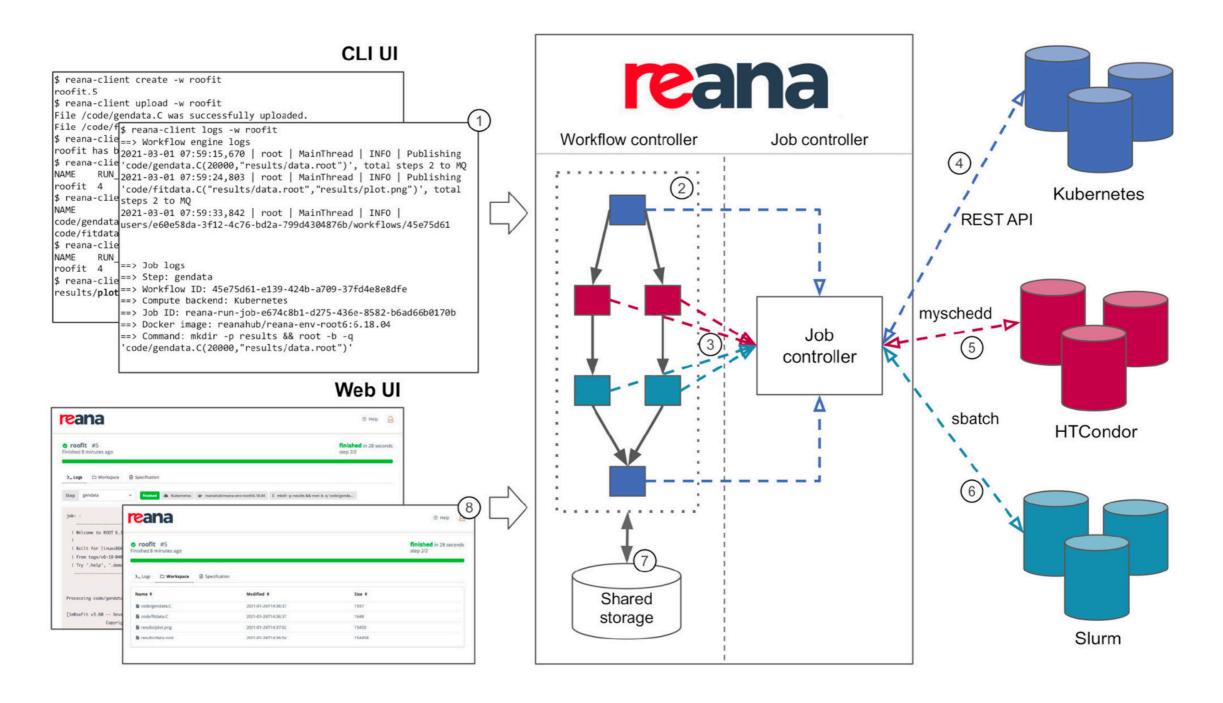
- Probe much more of SUSY theory space afterwards
- Probe much more of BSM theory space afterwards
- Identify best-fit scenarios afterwards



Reinterpretation & Preservation:

- What we have so far?
 - SModelS, HiggsTools, DarkCast:
 - Medium accuracy, less simulations
 - MadAnalysis, CheckMate, GAMBIT(ColliderBit), Contour+Rivet:
 - Medium accuracy, medium simulations

No tools for full simulation and can not access to analysis details

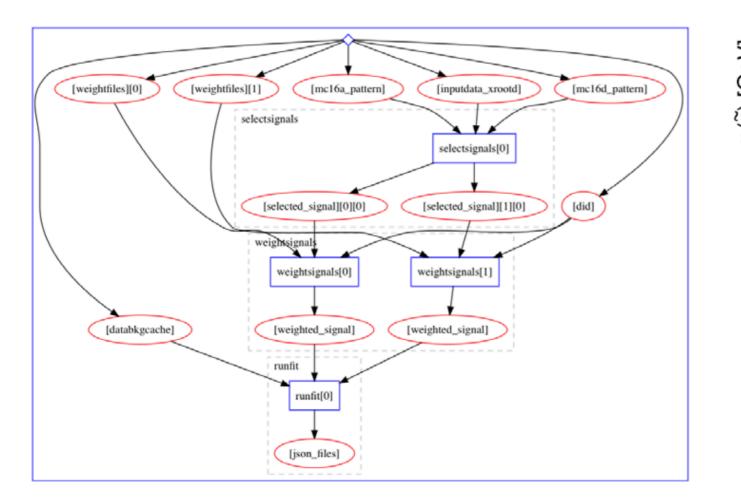


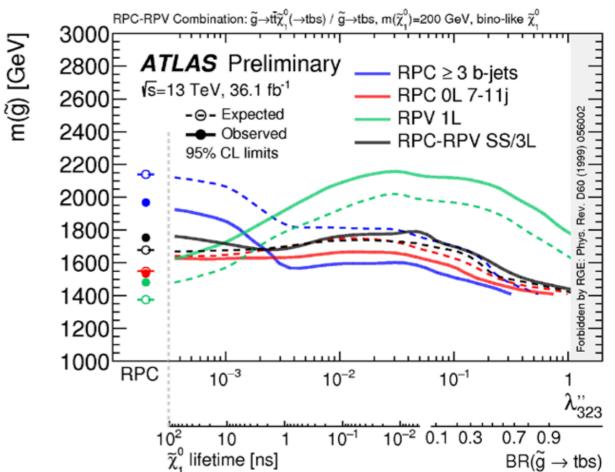
5

Reinterpretation & Preservation: reana


 reana: is a reproducible analysis platform allowing scientists to run containerised data analysis pipelines on remote compute clouds.

Reinterpretation & Preservation: reana


 reana: is a reproducible analysis platform allowing scientists to run containerised data analysis pipelines on remote compute clouds.



Reinterpretation & Preservation: reana

 reana: is a reproducible analysis platform allowing scientists to run containerised data analysis pipelines on remote compute clouds.

- The platform now is being used and tested internally:
 - PMSSM efforts
 - Combination efforts
 - Other reinterpretation efforts

- The platform now is being used and tested internally:
 - Almost all run2 SUSY analysis preserved their workflows
 - Will be published for use in the near future

Summary:

- Very completed searches have been performed for the run2 datasets:
 - Covering almost all the scenarios using simplified models
 - Null (almost) results so far with few excesses here or there
 - Up to ~2.5/1.2/1/0.7 TeV $\tilde{g}/\tilde{q}_{(3rd)}/\tilde{\chi}/\tilde{l}$ got excluded
- Warping up the run2 searches:
 - Combinations: $\tilde{\chi} \& \tilde{l} \& \tilde{t}$
 - RPC-RPV: Fill the gaps between the long-lived and prompt decays
 - PMSSM scanning: Understanding the current search power in the full picture

Brainstorms to the run3 and future:

- Novelty: new models, new phase space
- Guided by the anomalies
- Reinterpretations & Preservation:
 - Build a bridge between experimentalists and theorists

THE END

