

Searching for axion-like particles at future e^+e^- and e^-p colliders

Han Wang (王晗)

Liaoning Normal University

27th Mini-workshop on the frontier of LHC

2024.01.22

Based on Phys.Lett.B 848 (2024) 138368 with C.-X. Yue and Y.-Q. Wang Phys.Rev.D 107 (2023) 11, 115025 with C.-X. Yue, X.-J Cheng and Y.-Q. Wang J.Phys.G 49 (2022) 11, 115002 with C.-X. Yue, Y.-C. Guo, X.-J Cheng and X.-Y. Li

1.1 Properties of axion-like particles (ALPs)

• generalizations of QCD axions

- CP-odd neutral pseudoscalars
 - singlets

couplings to the SM particles

the masses

independent parameters

1.2 Effective interactions of ALP

The effective interactions of ALP with the SM particles:

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{1}{2} m_{a}^{2} a^{2} + \frac{\partial^{\mu} a}{f_{a}} \sum_{\psi = Q_{L}, Q_{R}, \atop L_{L}, L_{R}} \overline{\psi} \gamma_{\mu} X_{\psi} \psi - C_{\tilde{B}} \frac{a}{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu} - C_{\tilde{W}} \frac{a}{f_{a}} W_{\mu\nu}^{i} \tilde{W}^{i\mu\nu}$$

 m_a : the mass of ALP

 f_a : the characteristic scale

 $W_{\mu\nu}^{i}$ and $B_{\mu\nu}$: the field strength tensors of $SU(2)_{L}$ and $U(1)_{Y}$ $C_{\tilde{W}}$ and $C_{\tilde{B}}$: the coupling constants

 X_{ψ} : Hermitian matrices in flavour space

After electroweak symmetry breaking:

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{1}{2} m_a^2 a^2 + i g_{a\psi} a \sum_{\psi = Q,L} m_{\psi}^{diag} \overline{\psi} \gamma_5 \psi$$
$$- \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} g_{aZZ} a Z_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{1}{4} g_{a\gamma Z} a F_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{1}{4} g_{aWW} a W_{\mu\nu} \tilde{W}^{\mu\nu}$$

 m_{ψ}^{diag} : the diagonalizable fermion mass matrix

- $F_{\mu\nu}$: the photon field strength tensor
- $Z_{\mu\nu}$: the Z boson field strength tensor
- $W_{\mu\nu}$: the *W* boson field strength tensor

all the couplings $g_{a\gamma\gamma}$, g_{aZZ} , $g_{aZ\gamma}$, g_{aWW} and $g_{a\psi}$ are governed by f_a

where

$$g_{a\gamma\gamma} = \frac{4}{f_a} (c_W^2 C_{\tilde{B}} + s_W^2 C_{\tilde{W}}), \quad g_{aZZ} = \frac{4}{f_a} (s_W^2 C_{\tilde{B}} + c_W^2 C_{\tilde{W}}),$$
$$g_{a\gamma Z} = \frac{8}{f_a} s_W c_W (C_{\tilde{W}} - C_{\tilde{B}}), \quad g_{aWW} = \frac{4}{f_a} C_{\tilde{W}}$$

 s_W and c_W : the sine and cosine of the weak mixing angle

D. d'Enterria, in Workshop on Feebly Interacting Particles (2021), 2102.08971

1.3 The constraints on the effective couplings of ALP to the SM bosons or fermions

Existing constraints on the ALP–photon coupling (left) and ALP– W^{\pm} coupling (right)

J. Bonilla, I. Brivio, J. Machado-Rodríguez, and J. F. de Trocóniz, JHEP 06, 113 (2022), 2202.03450

1.3 The constraints on the effective couplings of ALP to the SM bosons or fermions J. Liu, X. Ma, L.-T. Wang, and X.-P. Wang, Phys. Rev. D 107, 095016 (2023), 2210.09335

M. Bauer, M. Neubert, and A. Thamm, JHEP 12, 044 (2017), 1708.00443

Existing constraints on the ALP–electron coupling (left) and ALP–muon coupling (right) 8

Han Wang, Chong-Xing Yue*, J.Phys.G 49 (2022) 11, 115002 Yu-Chen Guo, Xue-Jia Cheng and Xin-Yang Li

$$C_{\tilde{W}} = C_{\tilde{B}} \longrightarrow = g_{a\gamma\gamma} = g_{aZZ} = g_{aWW} \text{ and } g_{a\gamma Z} = 0$$

The Feynman diagrams for the process of $e^+e^- \rightarrow a\gamma \rightarrow 3\gamma$

- CEPC $E_{CM} = 240 \,\text{GeV}$ $\mathcal{L} = 5.6 \,\text{ab}^{-1}$ $1 \,\text{GeV} < m_a \le 200 \,\text{GeV}$
- The cross section of the process $e^+e^- \rightarrow a\gamma \rightarrow 3\gamma$ as a function of the ALP mass m_a

• Basic cuts:

$$p_T^{\gamma} > 10 \text{ GeV}$$

 $\left| \eta_{\gamma} \right| < 2.5$

$$\Delta R_{\gamma\gamma} > 0.2 \qquad (\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2})$$

Tools added:

MLAnalysis https://github.com/NBAlexis/MLAnalysis

• The angular separation of the two photons from ALP decay strongly depends on the ALP mass

•
$$m_a \leq 20 \,\mathrm{GeV} \longrightarrow N_{\gamma} \geq 1$$

the invariant mass of all final state photons m_{γ}

the transverse momentum of the hardest photon in the final states $p_T^{\gamma_1}$

observables

$$m_a > 20 \,\text{GeV} \longrightarrow N_{\gamma} \ge 3$$

 $\eta_{\gamma_1} \quad E_T \quad m_{\gamma\gamma} \longrightarrow \text{observables}$

13

• The symbols γ_1 , γ_2 and γ_3 :

The photons with the largest, intermediate and smallest momentum

high mass ALP $\longrightarrow \gamma_1 \gamma_2$

low mass ALP $\longrightarrow \gamma_2 \gamma_3$

• The improved cuts

mass Cut	$1 \text{ GeV} < m_a \le 20 \text{ GeV}$	$20 \text{ GeV} < m_a \le 200 \text{ GeV}$
Cut1	$N_{\gamma} \ge 1$	$N_\gamma \geq 3$
Cut2	$m_{\gamma} \leq 20 \ { m GeV}$	$ \eta_{\gamma_1} < 1.7$
Cut3	$p_T^{\gamma_1} \geq 20~{\rm GeV}$	$E_T \ge 100 \text{ GeV}$
Cut4	_	$ m_{\gamma\gamma} - m_a \le 5 \mathrm{GeV}$

2000	cross sections for signal(background)[pb]						
ma [GeV]	Basic Cuts	Cut1	Cut2	Cut3	Cut4	55	
10	$6.5893 imes 10^{-4}$ (0.2851)	$6.5303 \times 10^{-4} (0.2850)$	$5.8278 imes 10^{-4} (0.0087)$	$5.8259 imes 10^{-4} (0.0086)$		14.38	
20	9.0768×10^{-4} (0.2851)	9.0260×10^{-4} (0.2850)	$4.9382 imes 10^{-4} (0.0087)$	4.9369×10^{-4} (0.0086)	.—-	12.24	
40	8.9170×10^{-4} (0.2851)	$8.1998 imes 10^{-4}$ (0.2679)	$7.7072 imes 10^{-4}$ (0.1842)	$7.5997 imes 10^{-4}$ (0.1739)	7.5569×10^{-4} (0.0202)	12.35	
80	$8.0760 imes 10^{-4}$ (0.2851)	7.3533×10^{-4} (0.2679)	$6.8321 imes 10^{-4}$ (0.1842)	6.7924×10^{-4} (0.1739)	$5.4713 imes 10^{-4} (0.0178)$	9.56	
120	5.0300×10^{-4} (0.2851)	4.5322×10^{-4} (0.2679)	$4.2267 imes 10^{-4} (0.1842)$	4.2141×10^{-4} (0.1739)	$2.8405 imes 10^{-4}$ (0.0189)	4.85	
140	3.4438×10^{-4} (0.2851)	3.0861×10^{-4} (0.2679)	2.8993×10^{-4} (0.1842)	2.8918×10^{-4} (0.1739)	2.5867×10^{-4} (0.0204)	4.26	
160	2.0613×10^{-4} (0.2851)	1.8364×10^{-4} (0.2679)	1.7283×10^{-4} (0.1842)	1.7234×10^{-4} (0.1739)	1.2056×10^{-4} (0.0103)	2.80	
200	3.0873×10^{-5} (0.2851)	$2.7060 \times 10^{-5}(0.2679)$	$2.5737 \times 10^{-5}(0.1842)$	$2.5585 \times 10^{-5} (0.1739)$	$2.3273 \times 10^{-5}(0.0251)$	0.35	

•
$$g_{a\gamma\gamma} = 10^{-4} \, \mathrm{GeV}^{-1}$$

• The 3σ and 5σ curves for the process $e^+e^- \rightarrow a\gamma \rightarrow 3\gamma$ in the $(m_{a_{,}} g_{a\gamma\gamma})$ plane

• The promising sensitivities as $g_{a\gamma\gamma} \in [0.0325, 0.37] \text{ TeV}^{-1}$ with $m_a \in [2.9, 190] \text{ GeV}$ at 2σ level

Sensitivity of the future e^-p collider to the coupling of axion-like particles with W^{\pm} bosons

3 Sensitivity of the future e^-p collider to the coupling of axion-like particles with W^{\pm} bosons

Searching for ALP via $e^- p \rightarrow v_e ja(a \rightarrow \mu^+ \mu^-)$ • LHeC $E_{CM} = 1.3 \text{ TeV}$

 $\mathcal{L} = 1 \, \mathrm{ab}^{-1}$

- $5 \,\mathrm{GeV} \le m_a \le 1000 \,\mathrm{GeV}$
 - Basic cuts:
 - $P_T^l > 10 \text{ GeV}$
 - $P_T^j > 20 \text{ GeV}$
 - $\left|\eta_{l}\right| < 2.5 \qquad \left|\eta_{j}\right| < 5$

 $\Delta R_{ll} > 0.4 \quad \Delta R_{jj} > 0.4 \quad \Delta R_{lj} > 0.4$

• $5 \,\mathrm{GeV} \le m_a \le 100 \,\mathrm{GeV}$

21

• $100 \,\mathrm{GeV} < m_a \le 1000 \,\mathrm{GeV}$

• The improved cuts

Cuta	Mass				
Cuts	$5 \text{ GeV} \le m_a \le 100 \text{ GeV}$	$100 \text{ GeV} < m_a \leq 1000 \text{ GeV}$			
Cut 1	$N_{\mu^+} \ge 1, N_{\mu^-} \ge 1, N_j \ge 1$	$N_{\mu^+} \ge 1, N_{\mu^-} \ge 1, N_j \ge 1$			
Cut 2	$\Delta R_{\mu^+\mu^-} < 1.8$	$\theta_{\mu^+\mu^-} > 2.1$			
Cut 3	$p_T^{\mu^+\mu^-} > 20~{ m GeV}$	$E_T > 250 \text{ GeV}$			
Cut 4		$m_{\mu^+\mu^-} > 100 \text{ GeV}$			

Sensitivity of the future e^-p collider to the coupling of axion-like particles with W^{\pm} bosons

3

0	cross sections for signal (background) [pb]					
Cuts	$m_a = 5 \text{ GeV}$	$m_a = 15 \text{ GeV}$	$m_a = 30 \text{ GeV}$	$m_a = 50 \text{ GeV}$	$m_a = 70 \text{ GeV}$	$m_a = 100 \text{GeV}$
Dici	1.7442×10^{-6}	5.2885×10^{-4}	2.0437×10^{-3}	2.8861×10^{-3}	2.9864×10^{-3}	2.7399×10^{-3}
Basic Cuts	(0.0142)	(0.0142)	(0.0142)	(0.0142)	(0.0142)	(0.0142)
0.11	1.4435×10^{-6}	4.6473×10^{-4}	1.8361×10^{-3}	2.6165×10^{-3}	2.7072×10^{-3}	2.4812×10^{-3}
Cut I	(0.0128)	(0.0128)	(0.0128)	(0.0128)	(0.0128)	(0.0128)
G . A	1.4435×10^{-6}	4.6463×10^{-4}	1.8156×10^{-3}	2.4350×10^{-3}	2.2205×10^{-3}	1.5666×10^{-3}
Cut 2	(3.9212×10^{-3})	(3.9212×10^{-3})	(3.9212×10^{-3})	(3.9212×10^{-3})	(3.9212×10^{-3})	(3.9212×10^{-3})
0.12	1.3934×10^{-6}	4.6375×10^{-4}	1.8155×10^{-3}	2.4349×10^{-3}	2.2205×10^{-3}	1.5666×10^{-3}
Cut 3	(3.8963×10^{-3})	(3.8963×10^{-3})	(3.8963×10^{-3})	(3.8963×10^{-3})	(3.8963×10^{-3})	(3.8963×10^{-3})
SS	0.022	7.015	24.022	30.609	28.396	21.196
	1			14 I SELL		
Cuts			cross sections for sign	nal (background) [pb]		
	$m_a = 150 \mathrm{GeV}$	$m_a = 300 \text{ GeV}$	$m_a = 500 \text{ GeV}$	$m_a = 700 \text{ GeV}$	$m_a = 900 \text{GeV}$	$m_a = 1000 \text{ GeV}$
	2.1509×10^{-3}	8.8581×10^{-4}	2.0197×10^{-4}	2.7954×10^{-5}	1.5617×10^{-6}	1.9118×10^{-7}

Cuta			cross sections for sig	nal (background) [pb]		
Cuts	$m_a = 150 \text{GeV}$	$m_a = 300 \text{ GeV}$	$m_a = 500 \text{ GeV}$	$m_a = 700 \text{ GeV}$	$m_a = 900 \mathrm{GeV}$	$m_a = 1000 \mathrm{GeV}$
P. i. C. i.	2.1509×10^{-3}	8.8581×10^{-4}	2.0197×10^{-4}	2.7954×10^{-5}	1.5617×10^{-6}	1.9118×10^{-7}
Basic Cuts	(0.0142)	(0.0142)	(0.0142)	(0.0142)	(0.0142)	(0.0142)
0.11	1.9429×10^{-3}	7.9889×10^{-4}	1.8218×10^{-4}	2.4999×10^{-5}	1.3965×10^{-6}	1.7116×10^{-7}
Cut I	(0.0128)	(0.0128)	(0.0128)	(0.0128)	(0.0128)	(0.0128)
0.10	1.9417×10^{-3}	7.9882×10^{-4}	1.8218×10^{-4}	2.4999×10^{-5}	1.3965×10^{-6}	1.7116×10^{-7}
Cut 2	(0.0112)	(0.0112)	(0.0112)	(0.0112)	(0.0112)	(0.0112)
0.12	1.3790×10^{-3}	7.7811×10^{-4}	1.8218×10^{-4}	2.4999×10^{-5}	1.3965×10^{-6}	1.7116×10^{-7}
Cut 3	(3.2070×10^{-3})					
0.11	1.3713×10^{-3}	7.7691×10^{-4}	1.8208×10^{-4}	2.4989×10^{-5}	1.3965×10^{-6}	1.7116×10^{-7}
Cut 4	(2.2571×10^{-4})					
SS	34.309	24.526	8.986	1.581	0.093	0.011

 $\boldsymbol{g}_{aWW} = 1 \,\mathrm{TeV}^{-1}$

3

Searching for ALP via $e^- p \rightarrow v_e ja(a \rightarrow bb)$

- $E_{CM} = 1.3 \text{ TeV}$ $\mathcal{L} = 1 \text{ ab}^{-1}$
- $15 \,\mathrm{GeV} \le m_a \le 1000 \,\mathrm{GeV}$
 - Basic cuts:
 - $P_T^l > 10 \text{ GeV}$
 - $P_T^j > 20 \text{ GeV}$
 - $\left|\eta_{l}\right| < 2.5 \qquad \left|\eta_{j}\right| < 5$

 $\Delta R_{ll} > 0.4 \quad \Delta R_{jj} > 0.4 \quad \Delta R_{lj} > 0.4$

3 Sensitivity of the future e^-p collider to the coupling of axion-like particles with W^{\pm} bosons

26

• The improved cuts

Cuta	Mass				
Cuts	$15 \text{ GeV} \le m_a \le 100 \text{ GeV}$	$100 \mathrm{GeV} < m_a \le 1000 \mathrm{GeV}$			
Cut 1	$N_b \ge 2, N_j \ge 1$	$N_b \ge 2, N_j \ge 1$			
Cut 2	$m_{bb} > 10 \; \mathrm{GeV}$	$p_T^{b_1} > 85 \mathrm{GeV}$			
Cut 3	$p_T^{b_1} > 30 \; {\rm GeV}$	$E_T > 200 \text{ GeV}$			
Cut 4	$ heta_{bb} < 2.9$	$m_{bb} > 100 \mathrm{GeV}$			
Cut 5	$p_T^{bb} > 40 \; { m GeV}$	_			

Sensitivity of the future e^-p collider to the coupling of axion-like particles with W^{\pm} bosons

3

Cuto	cross sections for signal (background1, background2) [pb]					
Cuts	$m_a = 15 \text{GeV}$	$m_a = 30 \text{ GeV}$	$m_a = 50 \text{ GeV}$	$m_a = 70 \text{ GeV}$	$m_a = 90 \text{ GeV}$	$m_a = 100 \text{ GeV}$
D. I. C. I	6.1000×10^{-5}	1.5831×10^{-3}	2.8332×10^{-3}	3.0975×10^{-3}	3.1289×10^{-3}	3.1248×10^{-3}
Basic Cuts	(0.0490, 6.2968)	(0.0490, 6.2968)	(0.0490, 6.2968)	(0.0490, 6.2968)	(0.0490, 6.2968)	(0.0490, 6.2968)
0.1	2.8250×10^{-5}	8.1835×10^{-4}	1.5797×10^{-3}	1.8036×10^{-3}	1.8604×10^{-3}	1.8691×10^{-3}
Cut I	(0.0271, 0.0922)	(0.0271, 0.0922)	(0.0271, 0.0922)	(0.0271, 0.0922)	(0.0271, 0.0922)	(0.0271, 0.0922)
0.10	2.2980×10^{-5}	7.7615×10^{-4}	1.4986×10^{-3}	1.7120×10^{-3}	1.7665×10^{-3}	1.7751×10^{-3}
Cut 2	(0.0231, 0.0576)	(0.0231, 0.0576)	(0.0231, 0.0576)	(0.0231, 0.0576)	(0.0231, 0.0576)	(0.0231, 0.0576)
0.12	1.9960×10^{-5}	7.4325×10^{-4}	1.4409×10^{-3}	1.6500×10^{-3}	1.7096×10^{-3}	1.7228×10^{-3}
Cut 3	(0.0177, 0.0387)	(0.0177, 0.0387)	(0.0177, 0.0387)	(0.0177, 0.0387)	(0.0177, 0.0387)	(0.0177, 0.0387)
	1.7110×10^{-5}	6.1904×10^{-4}	1.1660×10^{-3}	1.3126×10^{-3}	1.3244×10^{-3}	1.3193×10^{-3}
Cut 4	(9.9450×10^{-3})	(9.9450×10^{-3})	(9.9450×10^{-3})	(9.9450×10^{-3})	(9.9450×10^{-3})	(9.9450×10^{-3})
	0.0250)	0.0250)	0.0250)	0.0250)	0.0250)	0.0250)
	1.6290×10^{-5}	6.1644×10^{-4}	1.1534×10^{-3}	1.2712×10^{-3}	1.2725×10^{-3}	1.2629×10^{-3}
Cut 5	(8.9469×10^{-3})	(8.9469×10^{-3})	(8.9469×10^{-3})	(8.9469×10^{-3})	(8.9469×10^{-3})	(8.9469×10^{-3})
	0.0220)	0.0220)	0.0220)	0.0220)	0.0220)	0.0220)
SS	0.093	3.468	6.434	7.078	7.084	7.032

tagging efficiency of 5% for b jets

mistagging rate of % for c jets

mistagging rate of .1% for other light avor jets

0	cross sections for signal (background1, background2) [pb]					
Cuts	$m_a = 150 \text{GeV}$	$m_a = 300 \text{ GeV}$	$m_a = 500 \text{ GeV}$	$m_a = 700 \text{ GeV}$	$m_a = 900 \text{GeV}$	$m_a = 1000 \text{ GeV}$
D : C .	2.8355×10^{-3}	1.3969×10^{-3}	3.8331×10^{-4}	6.6391×10^{-5}	4.9981×10^{-6}	7.7509×10^{-7}
Basic Cuts	(0.0490, 6.2968)	(0.0490, 6.2968)	(0.0490, 6.2968)	(0.0490, 6.2968)	(0.0490, 6.2968)	(0.0490, 6.2968)
C . 1	1.7067×10^{-3}	8.2443×10^{-4}	2.1850×10^{-4}	3.6355×10^{-5}	2.5790×10^{-6}	3.8905×10^{-7}
Cut I	(0.0271, 0.0922)	(0.0271, 0.0922)	(0.0271, 0.0922)	(0.0271, 0.0922)	(0.0271, 0.0922)	(0.0271, 0.0922)
	1.0934×10^{-3}	6.9825×10^{-4}	2.0489×10^{-4}	3.4825×10^{-5}	2.4991×10^{-6}	3.7804×10^{-7}
Cut 2	(3.5966×10^{-3})	(3.5966×10^{-3})	(3.5966×10^{-3})	(3.5966×10^{-3})	(3.5966×10^{-3})	(3.5966×10^{-3})
	$9.6278 \times 10^{-3})$	$9.6278 \times 10^{-3})$	$9.6278 \times 10^{-3})$	$9.6278 \times 10^{-3})$	$9.6278 \times 10^{-3})$	$9.6278 \times 10^{-3})$
	1.0447×10^{-3}	6.9545×10^{-4}	2.0480×10^{-4}	3.4825×10^{-5}	2.4991×10^{-6}	3.7804×10^{-7}
Cut 3	(2.7793×10^{-3})	(2.7793×10^{-3})	(2.7793×10^{-3})	(2.7793×10^{-3})	(2.7793×10^{-3})	(2.7793×10^{-3})
	7.7577×10^{-3})	7.7577×10^{-3})	7.7577×10^{-3})	7.7577×10^{-3})	7.7577×10^{-3})	$7.7577 \times 10^{-3})$
	7.8474×10^{-4}	5.9819×10^{-4}	1.7398×10^{-4}	2.9176×10^{-5}	2.0992×10^{-6}	3.1304×10^{-7}
Cut 4	(8.1555×10^{-4})	(8.1555×10^{-4})	(8.1555×10^{-4})	(8.1555×10^{-4})	(8.1555×10^{-4})	(8.1555×10^{-4})
	8.8780×10^{-4})	$8.8780 \times 10^{-4})$	$8.8780 \times 10^{-4})$	$8.8780 \times 10^{-4})$	8.8780×10^{-4}	$8.8780 \times 10^{-4})$
SS	15.728	12.461	4.012	0.701	0.050	0.008

• $\boldsymbol{g}_{aWW} = 1 \,\mathrm{TeV}^{-1}$ 29

• $e^- p \rightarrow v_e ja(a \rightarrow \mu^+ \mu^-) \longrightarrow m_a \in [14, 924] \text{ GeV} \quad \mathcal{G}_{aWW} \in [0.15, 6.66] \text{ TeV}^{-1}$ • $e^- p \rightarrow v_e ja(a \rightarrow b\overline{b}) \longrightarrow m_a \in [39, 900] \text{ GeV} \quad \mathcal{G}_{aWW} \in [0.32, 6.67] \text{ TeV}^{-1}$ 31

4 Detecting the coupling of axion-like particles with fermions at the ILC

• Phys.Rev.D 104 (2021) 9, 092005, 2106.10085

 $g_{aWW} = 0.62 \mathrm{TeV}^{-1}$ 33

Detecting the coupling of axion-like particles with fermions at the ILC

Δ

ILC $E_{CM} = 1 \,\mathrm{TeV}$ $\mathcal{L} = 1 \, \mathrm{ab}^{-1}$ $P(e^{-}, e^{+}) = (-80\%, +20\%)$ Basic cuts: $P_T^b > 5 \,\mathrm{GeV}$ $P_T^l > 20 \,\mathrm{GeV}$ $\left|\eta_{b}\right| < 2.5 \qquad \left|\eta_{i}\right| < 5$ $\Delta R_{bb} > 0.4$ $\Delta R_{ii} > 0.4$

34

Detecting the coupling of axion-like particles with fermions at the ILC

•
$$15 \,\mathrm{GeV} \le m_a \le 50 \,\mathrm{GeV}$$

the invariant mass m_{bb}

the cone size ΔR_{bb}

the missing transverse energy \mathbb{E}_{T}

the angular separation $\Delta \theta_{hh}$

• $50 \,\mathrm{GeV} < m_a \le 300 \,\mathrm{GeV}$

the energy of the hardest b-jet E^{o_1}

the transverse momentum of the reconstructed ALP P_T^{bb}

observables

observables

4 Detecting the coupling of axion-like particles with fermions at the ILC

36

• The improved cuts

Cuta	Mass				
	$15~{\rm GeV} \le m_a \le 50~{\rm GeV}$	$50 \text{ GeV} < m_a \leq 300 \text{ GeV}$			
Cut 1	$N_b \ge 2$	$N_b \ge 2$			
Cut 2	$m_{bb} < 80 \; { m GeV}$	$E_{b_1} > 120 \; \mathrm{GeV}$			
Cut 3	$\Delta R_{bb} < 1$	$p_T^{bb} > 100~{\rm GeV}$			
Cut 4	$E_T > 40 { m ~GeV}$				
Cut 5	$\Delta heta_{bb} < 0.8$				

Cuta	Cross sections for signal $(bg-\nu_l\overline{\nu_l}b\overline{b}, bg-\nu_l\overline{\nu_l}jj)$ [pb]					
Cuts	$m_a = 100 \; { m GeV}$	$m_a = 200 \; { m GeV}$	$m_a = 300 \text{ GeV}$			
Basic Cuts	5.4310×10^{-3}	3.1891×10^{-3}	1.0866×10^{-3}			
Dasie Cuts	(0.6889, 0.8857)	(0.6889, 0.8857)	(0.6889, 0.8857)			
Cut 1	1.6686×10^{-3}	1.3018×10^{-3}	4.9840×10^{-4}			
	$(0.1809, 4.3155 \times 10^{-3})$	$(0.1809, 4.3155 \times 10^{-3})$	$(0.1809, 4.3155 \times 10^{-3})$			
Cut 2	1.3973×10^{-3}	1.1422×10^{-3}	4.6240×10^{-4}			
Cut 2	$(0.0835, 2.1934 imes 10^{-3})$	$(0.0835, 2.1934 imes 10^{-3})$	$(0.0835, 2.1934 \times 10^{-3})$			
Cut 3	1.3170×10^{-3}	1.0191×10^{-3}	3.9370×10^{-4}			
	$(0.0535, 1.6275 \times 10^{-3})$	$(0.0535, 1.6275 \times 10^{-3})$	$(0.0535, 1.6275 \times 10^{-3})$			
SS	5.545	4.300	1.671			

4 Detecting the coupling of axion-like particles with fermions at the ILC

5 Conclusions

- ALP appears naturally in broad extensions of the SM, which have various beneficial properties to search by many high energy experiments
- The promising sensitivities of the 240 GeV CEPC to the coupling $g_{a\gamma\gamma}$ are in the range of 0.0325 TeV^{-1} to 0.037 TeV^{-1} with m_a from 2.9 GeV to 190 GeV
- The 1.3 TeV LHeC is more sensitive to the coupling \mathcal{G}_{aWW} via the $W^+W^$ fusion processes $e^-p \rightarrow v_e ja(a \rightarrow \mu^+\mu^-)$ and $e^-p \rightarrow v_e ja(a \rightarrow b\overline{b})$ for ALP with the mass range of roughly a few tens to 900 GeV
- The currently unconstrained $m_a g_{a\Psi}$ parameter space can be covered by the 1 TeV ILC, for which the corresponding reaches are 1TeV^{-1} and 1.75TeV^{-1} from $37 \text{ GeV} \le m_a \le 50 \text{ GeV}$ and $52 \text{GeV} \le m_a \le 300 \text{ GeV}$, respectively

Han Wang (王晗)

Liaoning Normal University

27th Mini-workshop on the frontier of LHC

2024.01.22