

Spin asymmetry and dipole moments in tau-pair production with ultraperipheral heavy ion collisions

邵鼎煜 复旦大学

第27届LHC Mini-Workshop

中山大学物理与天文学院 Jan 22, 2024

see also 成瞳光's talk

高能重离子超边缘碰撞中极化光致反应

- 相对论重离子碰撞产生极强电磁场:两个带电重离子在相对论性条件下碰撞,可以产生高达 10¹⁵T 的电磁场。
- 等效光子近似:从量子场论的角度出发,这种超强电磁场可以被视为一种准实光子束流。
- 准实光子与核电荷的耦合:当光子波长远长于原子核半径,准实光子与原子核中的电荷源会整体地耦合在一起。
- 相干光子的数密度:相应的准实光子的数密度与重离子的核电数Z
 的平方成正比,并被称为相干光子。
- 相干光子束流的亮度:对于重离子来说,Z通常是一个相当大的数,因此其伴随的相干光子束流具有极高的亮度。

Weizsäcker-Williams method of virtual photon

The photon distribution from a relativistically moving charge particle can be computed from its boosted electromagnetic fields Fermi 1924, Weizsäcker 1934, Williams 1934

- 11.18 The electric and magnetic fields of a particle of charge q moving in a straight line with speed $v = \beta c$, given by (11.152), become more and more concentrated as $\beta \rightarrow 1$, as is indicated in Fig. 11.9. Choose axes so that the charge moves along the z axis in the positive direction, passing the origin at t = 0. Let the spatial coordinates of the observation point be (x, y, z) and define the transverse vector \mathbf{r}_{\perp} , with components x and y. Consider the fields and the source in the limit of $\beta = 1$.
 - (a) Show that the fields can be written as

$$\mathbf{E} = 2q \, \frac{\mathbf{r}_{\perp}}{r_{\perp}^2} \, \delta(ct - z); \qquad \mathbf{B} = 2q \, \frac{\mathbf{\hat{v}} \times \mathbf{r}_{\perp}}{r_{\perp}^2} \, \delta(ct - z)$$

where $\hat{\mathbf{v}}$ is a unit vector in the direction of the particle's velocity.

(b) Show by substitution into the Maxwell equations that these fields are consistent with a 4-vector source density,

$$J^{\alpha} = q c v^{\alpha} \delta^{(2)}(\mathbf{r}_{\perp}) \delta(ct - z)$$

where the 4-vector $v^{\alpha} = (1, \hat{\mathbf{v}})$.

(c) Show that the fields of part a are derivable from either of the following 4-vector potentials,

$$A^{0} = A^{z} = -2q\delta(ct - z) \ln(\lambda r_{\perp}); \qquad \mathbf{A}_{\perp} = 0$$

or

$$A^0 = 0 = A^z;$$
 $\mathbf{A}_{\perp} = -2q\Theta(ct - z) \nabla_{\perp} \ln(\lambda r_{\perp})$

where λ is an irrelevant parameter setting the scale of the logarithm.

Show that the two potentials differ by a gauge transformation and find the gauge function, χ .

Reference: R. Jackiw, D. Kabat, and M. Ortiz, Phys. Lett. B 277, 148 (1992).

Figure 11.9 Fields of a uniformly moving charged particle. (a) Fields at the observation point P in Fig. 11.8 as a function of time. (b) Lines of electric force for a particle at rest and in motion ($\gamma = 3$). The field lines emanate from the *present* position of the charge.

"Classical Electrodynamics" Jackson

Linearly Polarized Photon

- Typical transverse momentum of the photon is 1/R, e.g. 30MeV for Pb
- Photons from the highly Lorentz contracted EM filed are linearly polarized in \bullet the transverse plane

Spin interference effect predicts $\cos 4\varphi$ modulation

Azimuthal angle distribution for dilepton photoproduction

Phys. Rev. Lett. 127(2021)052302

				Data	QED
$A_{4\Delta\phi}$	Au+Au	UPC	ee	16.8 ± 2.5	16.5
	Au+Au	PC	ee	27 ± 6	34.5
	Ru/Zr	PC	ee	47 ± 14	40
	Au+Au	PC	μμ	$35 \pm 8 \pm 7$	22
$A_{2\Delta\phi}$	Au+Au	UPC	ee	2.0 ± 2.4	0
	Au+Au	PC	ee	6 <u>±</u> 6	0
	Ru/Zr	PC	ee	6 ± 13	0
	Au+Au	PC	μμ	$20 \pm 8 \pm 3$	13

cos2arphi modulation $\propto m_l^2/p_T^2$

Azimuthal asymmetries of muon pair production in UPCs

DYS, Zhang, Zhou, Zhou '23

• We consider

$$\gamma(x_1P+k_{1\perp})+\gamma(x_2\bar{P}+k_{2\perp}) \rightarrow l^+(p_1)+l^-(p_2)$$

• The joint impact parameter and transverse momentum dependent cross section

• The resumed cross section reads

$$\frac{d\sigma(q_{\perp})}{d\mathcal{P}.\mathcal{S}.} = \int \frac{d^2 r_{\perp}}{(2\pi)^2} \left[1 - \frac{2\alpha_e c_2}{\pi} \cos 2\phi_r + \frac{\alpha_e c_4}{\pi} \cos 4\phi_r \right] e^{ir_{\perp} \cdot q_{\perp}} e^{-\operatorname{Sud}(r_{\perp})} \int d^2 q'_{\perp} e^{ir_{\perp} \cdot q'_{\perp}} \frac{d\sigma_0(q'_{\perp})}{d\mathcal{P}.\mathcal{S}.} d\sigma_0(q'_{\perp}) d\sigma_0(q'_{\perp})) d\sigma_0(q'_{\perp}) d\sigma_0(q'_{\perp}) d\sigma_0(q'_{\perp}) d\sigma_0(q'_{\perp}) d\sigma_0$$

• Sudakov factor in the large mass approximation

$$\operatorname{Sud}(r_{\perp}) = \frac{\alpha_e}{\pi} \ln \frac{M^2}{m^2} \ln \frac{P_{\perp}^2}{\mu_r^2}$$

Hatta, Xiao, Yuan & Zhou '21 PRL & PRD

Azimuthal asymmetries of muon pair production in UPCs

DYS, Zhang, Zhou, Zhou '23

• However, at RHIC energy, where the muon mass is roughly the same order of p_T or M, the soft factor receives the sizable finite lepton mass correction

 $q_{\perp} \ll m \sim M$

- We consider the full finite lepton-mass correction. Its correction to the unpolarized cross section is tiny.
- The contribution from the muon mass effect to the asymmetries is quite sizable

More EFTs

 $q_{\perp} \ll m \sim M$

 $q_{\perp} \ll m \ll M$

 $q_{\perp} \sim m \ll M$

HQET

b-HQET

SCET-M

Lepton pair production in UPCs Toward a precision test of the resummation formalism

DYS, Zhang, Zhou, Zhou '23

- We improve the accuracy of the previous calculations beyond the double leading logarithm approximation.
- Notably, the single logs arising from the collinear region are greatly enhanced by the small mass of the leptons.
- Our findings demonstrate the accessibility of these subleading resummation effects through the analysis of angular correlations in lepton pairs produced in UPCs.

Precision physics at Heavy ion collisions

UPC and beyond SM

Axion-like particle search

Knapen, Lin, Lou, and Melia '17 PRL

Dark photon search

Xu, Lewis, Wang, Brandenburg, Ruan '22

Anomalous magnetic dipole moments

电子反常磁矩

缪子反常磁矩

A significant challenge arises due to the short lifetime of the τ lepton.

Tau magnetic moments at e⁺e⁻

All the knowledge regarding the a_{τ} and d_{τ} relies heavily on the theoretical assumptions made in the analysis, such as the frequent exclusion of other possible NP effects.

Tau lepton pair production in UPCs

Magnetic moments in UPCs

With this measurement, ATLAS can now measure the tau lepton's magnetic moment with precision competitive with lepton colliders.

Spin asymmetry and dipole moments in tau-pair production with UPCs DYS, Yan, Yuan, Zhang '23

The joint impact parameter b_{\perp} and q_{\perp} dependent cross section from the QED and dipole interactions

$$d\sigma \sim \left[A_0 + B_0^{(1)}F_2 + B_0^{(2)}F_2^2 + C_0^{(2)}F_3^2 + \left(A_2 + B_2^{(2)}F_2^2 + C_2^{(2)}F_3^2\right)\cos 2\phi + A_4\cos 4\phi\right]$$

$$\Gamma^{\mu}_{\text{eff.}}(q^2) = -ie \left[iF_2(q^2) + F_3(q^2)\gamma^5 \right] \frac{\sigma^{\mu\nu}q_{\nu}}{2m_{\tau}}$$

 $F_2(0) = a_\tau$

$$F_3(0) = 2m_\tau d_\tau / e$$

Spin asymmetry and dipole moments in tau-pair production with UPCs

DYS, Yan, Yuan, Zhang '23

 To determine the coefficients of the cos2φ modulation, it is convenient to define

 $A_{c2\phi} = \frac{\sigma(\cos 2\phi > 0) - \sigma(\cos 2\phi < 0)}{\sigma(\cos 2\phi > 0) + \sigma(\cos 2\phi < 0)}$

- Assume that the cut efficiencies for future Pb+Pb collision would be same as the current values of the ATLAS and CMS experiments, and the statistical uncertainty $\delta A_{c2\varphi}$ can be obtained by properly rescaling.
- Incorporating the azimuthal asymmetry into the analysis can significantly reduce the parameter space of a_{τ} and d_{τ}
- With the inclusion of more decay modes of τ leptons and further optimization, we expect that future experimental analyses could significantly improve the limit for d_{τ}

Summary

- UPC is a golden probe of the strong electromagnetic field
- All the results support linear polarization
- Spin interference generates many interesting phenomena
- It provides a great laboratory to study:
 - Gluon saturation
 - QGP in EM field
 - all-order precision resummation
 - BSM (tau MDM & EDM, axion-like particle, dark photon)

Thank you

UPC physics 2023 26 May - 28 May 2023 **Fudan University** indico.ihep.ac.cn/event/18418 Local organizers: Xu-Guang Huang Guo-Liang Ma Ding-Yu Shao NSFC Jie Zhao 理论物理专款 12023年UPC物理研讨会 2023 4 5 4 26 - 28 9

		08:30 - 09:00	
		09:00 - 09:10	
散射和类轴子产生 读百飞			
g for the new physics at the EJC 岩橋		**************************************	3
ş		0950-1020 TY J 170J=3	-
ous Story of the Photon 肖博文		10:20 - 10:50	
arameter dependence of photon-induced processes in heavy-ion co	llisions 畅帅	1050-1120	
n Breit-Wheeler Process in Heavy-Ion Collisions and its Application	n to Nuclear Cha	we Refer Masserence 杨物理	
		5虫功物均	
Coulomb correction at EIC and EicC 用创		14.00 - 14.30	
xxcitation by electron capture in electron-ion collisions 吴道彬		3 14:30 - 15:00	
duction of e+e- in peripheral isobar collisions 林碩	09:00	・ Multi-scale Imaging of Nuclear and Proton Geometries 記文紙(終上)	_
		mon-scale singing of focient and From Geometries 22(19) (321)	
rkonium Production at LHCb 学衡讷		Probing ultra-dense gluonic matter via UPCs at CMS 計早晨(线上)	
IPC 愿华圣(线上)	10:00	Very low-pT J/ψ production in Au+Au collision at 200 GeV and U+U collisions at 193 GeV at STAF	१ 李 子
ctromagnetic field dependence of photon-induced production in is		茶歌	
	11:00	Lepton pair photoproduction in peripheral, ultra- peripheral and isobar heavy-ion collisions 浦实	
		Probing the small-x gluon tomography in polarized photo-nuclear reactions 周雅瑾	
		Photon-induced letton nairs production in Au+Au collisions at VeNN = 200 GeV at STAD 干部体	
	12:00		
		+18 	
	13:00		
	14:00	EicC review 林德旭	
		Azimuthal asymmetries in photon induced ultraperipheral heavy ion collisions 张成	
	15:00	Reaction plane alignment with linearly polarized photon in heavy-ion collisions 吴鑫	
		茶歌	
	16:00	Two-point functions from chiral kinetic theory in magnetized plasma 格立新	
		Exclusive Jipsi photoproduction simulation and physics at EIC 李欣柏	
		Probing positivity with UPC 舒驰	

17:00

09:00 - 09:30

09:30 - 10:00

10:00 - 10:20

10:20 - 10:50

10:50 - 11:20

11:20 - 11:50

11:50 - 12:10

12:10 - 14:00

14:00 - 14:30

14:30 - 15:00

15:00 - 15:20

15:20 - 15:50

15:50 - 16:20 16:20 - 16:40

16:40 - 17:00

ns at 193 GeV at STAR 李子阳

注册

开幕致辞 强场光光

茶歌+合影

The Curi

Resul 曉民 12:00

午餐

initial ele

17:00

10.0

13:00

The 2nd Workshop on Ultra-Peripheral Collision Physics: Strong Electromagnetic fields, UPC and EIC/EicC

April 12 – 15, 2024 Particle and Nuclear Physics School of Physical Sciences, USTC https://indico.pnp.ustc.edu.cn/e/upc2024

Local organizers: Qi-peng Hu, Shi Pu (co-chair), Ze-bo Tang, Qun Wang, Wang-mei Zha (co-chair), Yi-fei Zhang

Selected events must contain exactly one muon, which targets a muonic decay of one of the τ leptons while reducing backgrounds from $\gamma\gamma \rightarrow \mu\mu$ and $\gamma\gamma \rightarrow q\bar{q}$. Three signal regions (SRs) then categorize events by the decay signature of the other τ lepton. The μe -SR category additionally requires one electron and no additional tracks separated from the muon (electron) by $\Delta R_{\mu(e),\text{trk}} > 0.1$, which targets fully leptonic decays of both τ leptons. The different-flavor (μe) requirement suppresses same-flavor backgrounds dominated by $\gamma \gamma \rightarrow \mu \mu / ee$. The $\mu 1$ T-SR $(\mu 3T-SR)$ category requires exactly one track (three tracks) separated from the muon by $\Delta R_{\mu,trk} > 0.1$, which targets τ -lepton decays to one or three charged hadrons. The onetrack requirement also captures leptonic τ -lepton decays that fail electron or muon reconstruction. The electric charges of the muon, electron, and tracks must sum to zero.