广州大学

Analytic N³LO QCD corrections to top quark and semileptonic b→u decays

Long-Bin Chen

2024-1-22

Based on arXiv:2212.06341 (Phys.Rev.D 108.054003) and arXiv:2309.00762 In collaborations with H.T.Li, Z.Li, J.Wang, Y.F.Wang, Q.F. Wu

Top quark mass

Motivation

- Top decay width Γ_t is the fundamental properties of top-quark.
- Γ_t is large due to the large mass of top quark($\Gamma_t > 1$ GeV).
- The measurement of Γ_t may hint at new-physics.
- The study of b \rightarrow u decay is helpful for the determination of the CKM matrix element V_{ub} . (See Yanxi Zhang's talk)

Motivation

- Top decay decays almost exclusively to W b. $\Gamma_t = \Gamma_t (t \rightarrow W b)$.
- At LHC, indirect techniques are precise but model dependent.
- The most precise measurement is $\Gamma_t = 1.36 \pm 0.02(stat.)^{+0.14}_{-0.11}(syst.)$ GeV [CMS, 2014].
- Direct techniques are less precise but model independent.
- Direct result by ATLAS is $\Gamma_t = 1.9 \pm 0.5$ GeV [ATLAS, 2019].
- Γ_t cab be measured with an uncertainty of 30 MeV in future electronpositron collider [Martinez, Miquel 2019].

Top quark decay width up to NNLO

NNNLO QCD corrections is need

Motivation

 $\mu \in [mt/2, 2mt]$

Motivation

- To obtain more precise theoretical predictions, a crucial step is to calculate multi-loop Feynman integrals.
- Analytic calculation of the high order corrections have many benefits. We can obtain the numerical effect of high order corrections very fast, expand them at any kinematic point, and integrate them to obtain more interesting results.

Integration-By-Parts (IBP)

K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B **192**, 159 (1981)

Calculation Method for master integrals: Differential Equations (DE)

A. V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. **B254** (1991) 158–164.

A. V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. **B267** (1991) 123–127. [Erratum: Phys. Lett.B295,409(1992)].

Multiloop integrals in dimensional regularization made simple

Johannes M. Henn (Princeton, Inst. Advanced Study) (Apr 5, 2013)

Published in: Phys.Rev.Lett. 110 (2013) 251601 • e-Print: 1304.1806 [hep-th]

Choosing canonical(UT) basis

For random basis **g**, we may have:

$$\partial_x \vec{g}(x;\epsilon) = B(x,\epsilon) \, \vec{g}(x;\epsilon)$$

We can choose new basis f:

$$d \vec{f}(x,\epsilon) = \epsilon \left(d \tilde{A} \right) \vec{f}(x;\epsilon)$$

$$\tilde{A} = \left[\sum_{k} A_k \log \alpha_k(x)\right] \,.$$

Top quark inclusive decay

$$\Gamma_t = \frac{\operatorname{Im}[\mathcal{M}(t \to Wb \to t)]}{m_t}$$

02

Optical Theorem

Calculated by Integrating the Feyman parameters

Expansion in \in

$$-1 + 2\epsilon \log \left(1 - \frac{m_W^2}{m_t^2}\right) + \frac{1}{4}\epsilon^2 \left(\pi^2 - 8\log^2 \left(1 - \frac{m_W^2}{m_t^2}\right)\right) + \frac{1}{6}\epsilon^3 \left(8\log^3 \left(1 - \frac{m_W^2}{m_t^2}\right) - 3\pi^2 \log \left(1 - \frac{m_W^2}{m_t^2}\right) + 14\zeta(3)\right) + O(\epsilon^4)$$

Next-to Leading Order

Jeabek, Kuhn 1989, Czarnecki 1990, Li, Oakes, Yuan 1991

陈龙斌

NLO master Integrals: ("kite integrals")

$$I_{n_1,n_2,n_3,n_4,n_5} = \frac{1}{\pi} \operatorname{Im} \int \frac{\mathcal{D}^d k_1 \ \mathcal{D}^d k_2}{[k_1^2 - m_W^2]^{n_1} \ [(k_1 - p)^2]^{n_2} \ [k_2^2 - m_t^2]^{n_3} \ [(k_2 + p)^2]^{n_4} \ [(k_1 + k_2)^2]^{n_5}}$$

IBP produces four Master Integrals:

UT basis for NLO

Choosing UT Basis

UT-basis :

$$B_{1} = \epsilon^{2} m_{t}^{2} I_{2,0,0,2,1},$$

$$B_{2} = \epsilon^{2} (m_{W}^{2} - m_{t}^{2}) I_{1,0,0,2,2} + 2\epsilon^{2} m_{W}^{2} I_{2,0,0,2,1},$$

$$B_{3} = \epsilon^{2} m_{t}^{2} I_{2,1,2,0,0},$$

$$B_{4} = \frac{m_{t}^{2}}{m_{W}^{2} + m_{t}^{2}} (\epsilon^{2} (1 - \epsilon) m_{W}^{2} I_{1,1,1,0,2} - \epsilon^{2} m_{t}^{2} I_{2,1,2,0,0}).$$

Construct UT basis: Libra 2012.00279

CANONICA 1705.06252 DlogBasis 2002.09492

....

The differential equations is very simple

Set $w = \frac{m_W^2}{m_{\star}^2}$, We have $\frac{\mathrm{d}\mathbf{B}}{\mathrm{d}w} = \epsilon \left(\frac{\mathbf{P}}{w} + \frac{\mathbf{N}}{w-1}\right)\mathbf{B}.$

Make the UT basis more simple.

Calculate the UT basis order by order in \in expansion

$$B = B^{0} + \epsilon B^{1} + \epsilon^{2} B^{2} + \epsilon^{2} B^{3} + \epsilon^{4} B^{4} + \dots$$

$$\mathbf{B}^{i} = \int \left(\frac{\mathbf{P}}{w} + \frac{\mathbf{N}}{w-1}\right) \mathbf{B}^{i-1} \mathrm{d}w + \mathbf{C}^{i}$$

Integrate Iteratively

Determination of Integration Constants (a more convenient way)

	Weigth-0	Weigth-1	Weigth-2	Weigth-3	Weigth-4
Integration constants C^i	1	0	π^2	$\zeta(3)$	π^4

Combing analytic calculation with AMFLOW, PSLQ, C can be obtained in a more easy way.

Elegant results

Results of UT basis (Harmonic Polylogarithms hep-ph/9905237):

	/ weight-0	weight-1	weight-2)
	1	$H_0(w) + 4H_1(w)$	$-H_{0,0}(w) + 4H_{0,1}(w) + 2H_{1,0}(w) + 16H_{1,1}(w) - \frac{3\pi^2}{2}$	
B =	-2	$-8H_1(w)$	$-4H_{1,0}(w) - 32H_{1,1}(w) + \frac{5\pi^2}{3}$	
	-1	$-2H_1(w)$	$\frac{\pi^2}{6} - 4H_{1,1}(w)$	
	1	$3H_1(w)$	$H_{0,1}(w) + 10H_{1,1}(w) - \frac{\pi^2}{6}$	[]

$$H_{0}(w) = \log(w),$$

$$H_{1}(w) = -\log(1 - w),$$

$$H_{-1}(w) = \log(1 + w),$$

$$H_{0,1}(w) = \text{Li}_{2}(w).$$

Evaluate HPL: hep-ph/0507152

Next-to-Next-to Leading Order

Gao, Li, Zhu, 2013, Brucherseifer, Caola, Melnikov 2013

陈龙斌

NNLO integral Families

(I)

DEs

NNLO decay width

$$\Gamma(t \to Wb) = \Gamma_0 \left[X_0 + \frac{\alpha_s}{\pi} X_1 + \left(\frac{\alpha_s}{\pi}\right)^2 X_2 \right]$$

$X_{2} = C_{F}(T_{R}n_{l}X_{l} + T_{R}n_{h}X_{h} + C_{F}X_{F} + C_{A}X_{A}).$

$$\begin{split} X_l &= -\frac{X_0}{3} \left[H_{0,1,0}(w) - H_{0,0,1}(w) - 2H_{0,1,1}(w) + 2H_{1,1,0}(w) - \pi^2 H_1(w) - 3\zeta(3) \right] + g_l(w), \\ X_h &= -\frac{(X_0 - 12w)}{3} \left[\zeta(3) - H_{0,0,1}(w) \right] + g_h(w), \\ X_F &= \frac{1}{12} X_0 \Big[-6 \left(2H_{0,1,0,1}(w) + 6H_{1,0,0,1}(w) - 3H_{1,0,1,0}(w) - 12\zeta(3)H_1(w) \right) - \pi^2 H_{1,0}(w) \Big] \\ &+ \left(X_0 + 4w \right) \left(-\frac{1}{6} \pi^2 H_{0,-1}(w) - 2H_{0,-1,0,1}(w) \right) \\ &+ \frac{1}{12} \left(18w^3 - 3w^2 + 76w + 15 \right) \pi^2 H_{0,1}(w) - \frac{1}{2} \left(4w^3 - 2w^2 + 4w + 3 \right) H_{0,0,0,1}(w) \\ &+ \frac{1}{2} \left(4w^3 - 2w^2 + 16w + 3 \right) H_{0,0,1,0}(w) + w \left(2w^2 - 7w - 16 \right) H_{0,0,1,1}(w) \\ &- \frac{1}{2} \left(2w^3 - 11w^2 - 28w - 1 \right) H_{0,1,1,0}(w) + \frac{1}{720} \pi^4 \left(42w^3 - 191w^2 - 328w - 11 \right) + g_F(w), \end{split}$$

Top quark decay width up to NNLO

 $\mu \in [mt/2, 2mt]$

NNNLO QCD Corrections to top quark inclusive decay

陈龙斌

Leading-color contribution is significantly dominant(\sim 95%).

 $X_2 = C_F \left[C_F X_F + C_A X_A + \right]$

 $-\frac{1}{2N_c}X_F + \frac{n_h}{2}X_h$

$$e = C_F \left[C_F X_F + C_A X_A + T_R n_l X_l + T_R n_h X_h \right]$$

= $C_F \left[N_c \left(X_A + \frac{X_F}{2} \right) + \frac{n_l}{2} X_l \right]$
 $- \frac{1}{2N_c} X_F + \frac{n_h}{2} X_h \right],$

NNLO X_2

 4×10^4 integrals(IBP) \rightarrow 185 master integrals

DEs for NNNLO 185 UT Basis

For any loop, can the letters of leading color(Large Nc limit) integrals still be {w, w-1}?

Physical Results

Top quark decay width

$$\Gamma_t = \Gamma_0 \left[X_0 + \frac{\alpha_s}{\pi} X_1 + \left(\frac{\alpha_s}{\pi}\right)^2 X_2 + \left(\frac{\alpha_s}{\pi}\right)^3 X_3 \right]$$

$$\begin{aligned} X_3 &= C_F \left[N_c^2 Y_A + \widetilde{Y}_A + \frac{\overline{Y}_A}{N_c^2} + n_l n_h Y_{lh} \right. \\ &+ n_l \left(N_c Y_l + \frac{\widetilde{Y}_l}{N_c} \right) + n_l^2 Y_{l2} \\ &+ n_h \left(N_c Y_h + \frac{\widetilde{Y}_h}{N_c} \right) + n_h^2 Y_{h2} \right]. \end{aligned}$$

Expansion of analytic results:

				(1)	
	$\delta_b^{(i)}$	$\delta^{(i)}_W$	$\delta^{(i)}_{ m EW}$	$\delta^{(i)}_{ m QCD}$	$\Gamma_t \; [\text{GeV}]$
LO	-0.273	-1.544	—	—	1.459
NLO	0.126	0.132	1.683	-8.575	$1.361^{+0.0091}_{-0.0130}$
NNLO	*	0.030	*	-2.070	$1.331^{+0.0055}_{-0.0051}$
$N^{3}LO$	*	0.009	*	-0.667	$1.321^{+0.0025}_{-0.0021}$
				%	

Best fit relation:

 $\Gamma_t(m_t) = 0.027037 \times m_t - 3.34801 \text{ GeV}.$

The dilepton invariant mass spectrum for $b \rightarrow X_u e \overline{\nu}_e$ up to NNNLO

$$\frac{\mathrm{d}\Gamma(b \to X_u e \bar{\nu}_e)}{\mathrm{d}q^2} = \Gamma_b^{(0)} \sum_{i=0}^3 \left(\frac{\alpha_s}{\pi}\right)^i X_i\left(\frac{q^2}{m_b^2}\right).$$

 $\Gamma_{h}^{(0)} = G_{F}^{2} |V_{ub}|^{2} m_{h}^{3} / 96 \pi^{3}.$

The semileptonic decay width of b-quark

$$\Gamma(b \to X_u e \bar{\nu}_e) = \frac{G_F^2 |V_{ub}|^2 m_b^5}{192\pi^3} \left[1 + \sum_{i=1}^{\infty} \left(\frac{\alpha_s}{\pi} \right)^i b_i \right]$$

Scale dependence of the b-quark semi-leptonic decay width normalized by the LO width in the on-shell mass scheme. The solid and dashed lines represent the results in the MSbar and on-shell mass schemes, respectively.

Conclusion

The top quark inclusive decay width have been calculated analytically up to N³LO.

N³LO corrections for top quark decay width is about -0.667%, with $\Gamma_t = 1.321$ GeV, the convergence of perturbation series works well.

We also obtained the N³LO QCD corrections to b quark semileptonic decay, N³LO QCD is important.

Explore analytic differential decay rates and helicity width.

陈龙斌

