

Electroweak corrections to double Higgs production at the LHC

Huai-Min Yu

School of Physics, Peking University

January 22nd, 2024

The 27th LHC Mini-Workshop

Based on: arvix: 2311.16963

In cooperation with: Huan-Yu Bi, Li-Hong Huang, Rui-Jun Huang, Yan-Qing Ma

1/16

Introduction to Higgs

- Discovery of Higgs boson(2012,LHC): the last found elementary particle in SM
- Experiments at the ALTAS and CMS: consistent with the results predicted by SM

2/16

Higgs Potential

Problems not clear: shape of Higgs potential, new physics beyond SM...

Plot taken from Moser: Higgs 2023

Higgs potential predicted by other BSM theories.

Higgs trilinear coupling

• Higgs potential is probed through determining the strength of Higgs boson selfinteractions in searches for HH production. ($\lambda^{SM} \approx 1/8$)

$$V(h) = \frac{m_h^2}{2}h^2 + \lambda^{SM}vh^3 + \frac{1}{4}\lambda^{SM}h^4 \implies H$$

• Experiment constraints on Higgs boson self-interactions:

ATLAS: 2007.02873 CMS: 2202. 09617 Jones: LHEP 2023 (2023) 442

- Current: $-1.5 < \lambda_{hhh}^{EX} / \lambda^{SM} < 6.7$ for ATLAS, $-2.3 < \lambda_{hhh}^{EX} / \lambda^{SM} < 9.4$ for CMS.
- Future: a limit of $-0.5 < \lambda_{hhh}^{EX} / \lambda^{SM} < 1.5$ will be achieved.

QCD corrections status

- QCD corrections
 - NLO QCD with full top-quark mass dependence, Borowka et al:1604.06447
 - NLO QCD matched to parton shower, Heinrich et al:1703.09252
 - NLO QCD with soft-gluon resummation, Ferrera et al: 1609.01691
 - NNLO QCD in heavy-top limit (HTL) approximation, Florian et al:1305.5206
 - NNLO in HTL+ NLO with full top-quark mass dependence, Florian et al:2106.14050
 - NNLO QCD in HTL matched to parton shower, Alioli et al: 2212.10489
 - NNNLO QCD in HTL, Chen et al:1909.06808
 - NNNLO in HTL include the top-quark mass effects, Chen et al:1912.13001
 - NNNLO in HTL+ NLO with full top-quark mass dependence + soft-gluon resummation,

• Current theoretical uncertainties: O(1%) Jones: LHEP 2023 (2023) 442

Process	QCD	$\sigma_{th}[pb]$	δ_{th} [%]
HH production via gg fusion	N ³ LO _{HTL} NLO _{QCD}	0.03105	+2.2 -5.0

Ajjath et al:2209.03914

Why EW corrections

- EW corrections
 - $\alpha \sim \mathcal{O}(1\%)$, the biggest uncertainty from theoretical side!
 - Sudakov enhancement, $O(10\% \sim 30\%)$ corrections at high energy region. A Bierweiler et al: 1305.5402
 - NLO EW corrections are crucial, a focal point in 2015, 2017, 2019 and 2021 Les Houches

EW corrections status

- Partial results
 - two-loop box diagrams, Davies et al: 2207.02587
 - top-quark Yukawa corrections, Muhlleitner et al:2207.02524
 - Higgs self-coupling corrections, Borowka et al: 1811.12366
- Most recent work: Davies et al: 2308.01355
 - HTL and the convergent behavior is not good.
 - Neglecting diagrams with massless fermion loops.
 - Only prediction at the matrix element squared level.
- Groups working on this topic: https://indico.ihep.ac.cn/event/18025/
 - See talk by KIT group at Higgs 2023: <u>HTL + partial results</u>
 - See talk by ShanDong University group at Higgs 2023: partial results
 - See talk by Durham University group at Higgs 2023: partial results

Production Rate

Di-Higgs production cross section:

$$\sigma(\text{pp} \rightarrow \text{HH}) = \int dx_1 \, dx_2 f_g(x_1) f_g(x_2) \hat{\sigma}_{gg \rightarrow HH}(\hat{s}, m^2)$$

• Kinematics invariants and mass scales include $m_h, m_t, m_W, m_Z, \hat{s}, \hat{t}$,

- Multiple mass scales, analytic result for $\hat{\sigma}$ is challenging. X
- Monte Carlo integration method can be adopted.

$$\int dx_1 \, dx_2 f_g(x_1) f_g(x_2) d\hat{t} \frac{d\hat{\sigma}}{d\hat{t}}(\hat{s}, \hat{t}) = \sum_{i,j} \Delta_{i,j} \times \frac{d\hat{\sigma}}{dt} (\hat{s}_i, \hat{t}_j)$$

• Lots of numerical results for $d\hat{\sigma}/d\hat{t}$ at different phase space points are required.

Calculation procedure

- Numerical results for $d\hat{\sigma}/d\hat{t}$ at a phase space point (\hat{s}_i, \hat{t}_j) can be evaluated using following steps:
 - Generate Feynman amplitudes: 8 LO diagrams, 2020 NLO diagrams T. Hahn:0012260

Blade

AMFlow

- Manipulate amplitudes to obtain scalar integrals. CalcLoop
- Reduce scalar integrals to master integrals.
- Calculate master integrals.
- Remove divergence via renormalization

https://gitlab.com/multiloop-pku

multi-loop calculation

ABC trilogy for

Manipulate amplitudes

• Amplitudes for $g(p_1)g(p_2) \rightarrow H(p_3)H(p_4)$:

$$M_{ab} = \delta_{ab} \epsilon_1^{\mu} \epsilon_2^{\nu} M_{\mu\nu}$$

• Decomposition to form factor

$$M_{\mu\nu} = F_1(\hat{s}, \hat{t}, m^2) T_1^{\mu\nu} + F_2(\hat{s}, \hat{t}, m^2) T_2^{\mu\nu}$$

• Decomposition to scalar integrals

 $F_{i}(\hat{s}, \hat{t}, m^{2}) = \sum_{j} C_{i,j}(\hat{s}, \hat{t}, m^{2}) \times \overline{I_{i,j}(\hat{s}, \hat{t}, m^{2})}$ To be calculated, results for $\mathcal{O}(10^{4})$

Reduction to master integrals $I_{i,j,k}(\hat{s}, \hat{t}, m^2) = \sum_{k} P_{i,j,k}(\hat{s}, \hat{t}, m^2) \times \underbrace{M_{i,j,k}(\hat{s}, \hat{t}, m^2)}_{M_{i,j,k}(\hat{s}, \hat{t}, m^2)}$

10/16

Calculate integrals

- Calculate integrals for a phase space point
 - Mass parameters input: $\frac{m_H^2}{m_t^2} = \frac{12}{23}, \frac{m_Z^2}{m_t^2} = \frac{23}{83}, \frac{m_W^2}{m_t^2} = \frac{14}{65}, m_t^2 = 1$
 - Only two dimensional regulator ϵ points ($\epsilon = \pm \frac{1}{1000}$) are required, efficiency enhanced
 - 3000 cpu.h run time
- Calculate integrals for $\mathcal{O}(10^4)$ phase space points
 - 3×10^4 phase space points
 - $O(10^8)$ cpu.h run time with all points calculated by AMFlow
 - Differential equation running method, $\mathcal{O}(10^5)$ cpu.h run time

Total cross sections

• Input parameters

•
$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) m_t = 172.69 \text{ GeV} \ \alpha = 7.512 \times 10^{-3}$$

 $G_{\mu} = 1.166378 \times 10^{-5} \text{ GeV}^{-2}$

- NNPDF3.1 PDF set
- NNPDF31_nlo_ α s_0118 for both LO and NLO calculations
- Renormalization
 - On-shell renormalization for masses and fields
 - G_{μ} -scheme renormalization for electromagnetic coupling A. Denner: 1912.06823
- Results: 1.8×10^4 events
 - observed differences with varying μ are around 20%
 - Correction factor [-4.6%, -4.3%] for different μ , $\mathcal{O}(0.1\%)$ EW corrections beyond NLO
 - <u>-4%</u> NLO EW corrections

μ	$M_{HH}/2$	$\sqrt{p_T^2 + m_H^2}$	m_H
LO	19.96(6)	21.11(7)	25.09(8)
NLO nt	19.12(6)	20.21(6)	23.94(8)
\mathcal{K} -factor	0.958(1)	0.957(1)	0.954(1)

y differntial distribution

• The differential K factor can get a controllable error with far fewer events

 $\sigma^{\rm NLO} = \mathbf{K} \times \sigma^{\rm LO}$

- K uses 1.8×10^4 events for σ and additional 400 events for each bin
- σ^{LO} uses 3×10^5 events
- Up to NLO, $K \approx 0.96$

p_T differntial distribution

-10% NLO corrections in the tail

M_{HH} differntial distribution

- +15% NLO corrections at the beginning of spectrum
- -10% corrections in the tail, similar to p_T differential distribution
- Sudakov enhancement

Summary

- Higgs trilinear coupling is important
- Differential equation running method is efficient
- NLO EW corrections to total cross sections is about -4%
- -4% NLO EW corrections to rapidity distribution
- +15% NLO corrections at the beginning of spectrum for the M_{HH} , Sudakov effect was observed for both p_T and M_{HH} distribution
- The uncertainties from N²LO EW corrections are overall about O(0.1%), sufficient precision from current QCD corrections and NLO EW corrections for measurements at HL-LHC

Thanks for your attention!