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FOPT is of particular interest for cosmology. 

l 能够解释早期宇宙正反物质不对称问题；

l 弱电相变产生的引力波在空间引力波的探测

频段上；

l 也可能影响暗物质的最初产生。

cosFOPTs without bubbles

See review [Morrissey, Ramsey-Musolf, New J. 
Phys. 14, 125003 (2012)]

i.e. Liang, Hu YJ, Cheng, Zhang, Mei, Phys.
Rev. D 105, 022001 (2022)

i.e. Baker, Kopp, Phys. Rev. Lett. 119, 061801 (2017)
Baker, Kopp, Long, Phys. Rev. Lett. 125, 151102 (2020)
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high T
(early universe)

A

Suppose our universe is described by the scalar field Φ

Wow I have my cousin now !
zero T

(today’s universe)Wow I have my cousin now !

l At the critical temperature there exists degenerate vacuum separated by a potential barrier.

Tc

B

our universe

cosFOPTs without bubbles

The sea of the A vacuum
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l At the critical temperature there exists degenerate vacuum separated by a potential barrier.
l The false vacuum would be stable classically, but quantum mechanically metastable
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high T
(early universe)

A

A

Suppose our universe is described by the scalar field Φ

zero T
(today’s universe)

Tc

l At the critical temperature there exists degenerate vacuum separated by a potential barrier.
l The false vacuum would be stable classically, but quantum mechanically metastable.
l Transition to the true vacuum state by tunnelling process occurs through the nucleation of 

bubbles of the true vacuum phase.

Haha, I am 
now the (true) 
vacuum.

Woo, I 
become the 
false vacuum.

Β

Β

Β

Β
Β

Β

B

our universe

A

A

A

cosFOPTs without bubbles



l One step PT -> multi-step PT

l Involving a single field -> Involving multiple fields

l Bubbles only -> Bubbles + else 

This is the standard picture of cosFOPTs that we have well understood 
so far. But the full theory of phase transitions is far more complicated.

Yun JIANG (SYSU) 7cosFOPTs without bubbles

Implemented in 
PhaseTracer 2

Go beyond the standard picture
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high T
(early universe)

A

Suppose our universe is described by the scalar field Φ

zero T
(today’s universe)

TcHaha, I am 
now the (true) 
vacuum.

Woo, I 
become the 
false vacuum.

B

If quantum tunneling probability is not efficient, the phase transition will not happen and the 
universe will be trapped in the false vacuum. This phenomenon is dubbed “vacuum trapping”. 

False vacuum trapping

Biekotter, Heinemeyer, No, Olea, Weiglein, JCAP 03, 031 (2023)

cosFOPTs without bubbles

The sea of the A vacuum

our universe
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Question #1: is the false vacuum trapping problem 
cosmologically acceptable?

cosFOPTs without bubbles
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Question #1: is the false vacuum trapping problem 
cosmologically acceptable?

l induce a catastrophic inflation

l if the true vacuum is the desired phase at T < Tc, (i.e., the EW-
broken minimum accounting for a proper EW symmetry breaking) 

The answer is: it is pretty much dangerous !

cosFOPTs without bubbles

Guth, Weinberg, Nucl. Phys. B 212, 321 (1983).
Hawking, Moss, Stewart, Phys. Rev. D 26, 2681 (1982).

Baum, Carena, Shah, Wagner, Wang, JHEP 03, 055 (2021)
Biekotter, Heinemeyer, No, Olea, Weiglein, JCAP 06, 018 (2021)，
JCAP 03, 031 (2023),
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Question #2 : are there other new approaches to false vacuum 
decay so that the trapped vacuum can be rescued?



False vacuum trapping
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The answer is yes !

l The existence of Topological defects will give 
rise to a rich impact on the dynamics of the 
cosmological phase transition. 

l In this talk we focus on the domain wall, which 
arises from the spontaneous breaking of a 
discrete symmetry. Such discrete symmetries 
occur frequently in many particle physics models. 

Question #2 : are there other new approaches to false vacuum 
decay so that the trapped vacuum can be rescued?

Domain 

Walls

VorticesStrings

Monopoles

Kinks

Textures

Q-balls



Formation of domain walls
Α phase transition consisting of two steps is the minimal realization. 

s+

s-

s0

s0

l The 1st step is responsible for generating domain walls -> require the spontaneous breaking of the Z2 symmetry

Neither of the s± vacuum 
is thermodynamically 
favorable.

1st step

2nd-order PT

13cosFOPTs without bubblesYun JIANG (SYSU)

1



Formation of domain walls
Α phase transition consisting of two steps is the minimal realization. 

s+

s-

s0

s0

1st step

2nd-order PT

14cosFOPTs without bubblesYun JIANG (SYSU)

Introduction: Symmetry, symmetry-breaking, and phase transitions

Topological defects

Phase transitions in weakly coupled gauge theories

Formation of topological defects at phase transitions

Kinks: (1+1)D model

Real scalar field φ(x , t), symmetry φ→ −φ. Lagrangian density:

L = 1
2∂φ · ∂φ− V (φ), V (φ) = 1

4 (λφ
2 − v2)2.

Field eqn.

∂2φ
∂t2

− ∂2φ
∂x2

+ λ(φ2 − v2)φ = 0

! “Kink” solutions φ = v tanh (µx)
(where µ2 = λv2/2)

! Boosted: φ = v tanh (γµ(x − vt))

! Strongly localised energy density

! Energy: EK = 2
3

√

2
λv3

! “classical particle”

Energy density

φ−v +v

1/µx0

x

V

Mark Hindmarsh Defects and phase transitions

Domain walls exist in the transition region 
between two different domains (s± domains) 

2
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FIG. 1. The potential and the associated static domain wall
solution at T = 75 GeV < Tc for the BMP-A. There exists a
barrier between s± vacuum and h vacuum as a feature of the
FOPT.
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where µ
2
h and �h are the parameters fixed by the elec-

troweak scale vEW and the observed Higgs mass mh =
125 GeV [22, 23], and ch, cs are the terms arising from
the thermal masses [24].

For the formation of domain walls, we require the spon-
taneous breaking of the Z2 symmetry in the first step. At
T = Tdw =

p
µ2
s/cs, the minimum of the potential starts

departing from the origin and develops in the s field direc-
tion at s = ±vs(T ), vs(T ) =

p
(µ2

s � csT
2)/�s, leading to

the coexistence of two energetically equivalent domains:
s± domain with (h, s) = (0,±vs). In the transition re-
gion between s± domains, domain walls are generated as
a result of the smooth interpolation of the field configu-
rations. For a static planar domain wall in the x-y plane
at z = z0, the field configurations interpolating between
the s± vacuum are given by [17]

sdw(x, z0, T ) = vs(T ) tanh[(z � z0)/Ldw(T )],

hdw(x, T ) = 0,
(2)

where the thickness of the wall is characterized by
Ldw(T ) =

p
2/(µ2

s � csT
2).

For the scenario of our interest, at T = Tc < Tdw a new
minimum having the same value of V as the s± vacuum
appears in the h field direction at h = vh(Tc), vh(T ) =p

(µ2
h � chT

2)/�h, indicating a FOPT in the second step.
When the temperature drops below Tc (as illustrated in
Fig. 1), this h vacuum develops into the true vacuum and

TABLE I. Two BMPs admitting the two-step phase transi-
tion with ine�cient nucleation of homogenous bubbles. Tc =r

�ch�sµ2
h+cs�hµ2

s+
p

�h�s(csµ2
h�chµ2

s)
2

�hc2s��sc2h
and the mass squared

of the physical singlet m2
s = �hsv

2
EW � µ2

s. All the dimen-
sional quantities are in the unit of GeV or GeV�1.

BMP �s �hs ms Tdw Tc vs(Tc) vh(Tc) Ldw(Tc)

A 1 0.73 168 186 85 113 186 0.01

B 1 0.86 181 203 56 133 222 0.01

meanwhile, the s± vacuum becomes the false vacuum,
between them there exists a barrier.
Two benchmark points (BMPs) predicting a two-step

phase transition described above are provided in Table I.
Due to the failure to homogeneous bubble nucleation,
neither point can lead to a successful phase transition.
The presence of domain walls during the transition may,
however, alter the result, which we shall demonstrate.3

This is essentially because there is a higher-energy state
(compared to the h vacuum) in the domain wall that
coexists with the s± vacuum.
Numerical simulation of the wall instability. After for-

mation, the domain walls start the evolution, which is
governed by the equations of motions of � = h, s fields,

�̈�r2
�+

@V (h, s)

@�
= 0. (3)

Limited by the dynamical range, we perform the lat-
tice simulation from Tc in a volume much smaller than
the Hubble size, H�1(Tc). The key issue is the initial-
ization of the field configuration. In fact, the size of the
domain walls at Tc depends on the strength of the inter-
actions involving the s-field. Assuming that the relevant
couplings, �s and �hs, of our BMPs are su�ciently weak,
the domain walls will quickly reach the scaling regime and
can be stretched to the curvature radius that is compa-
rable to H

�1(Tc) [25].4 In this case, it is safe to assume
that the domain walls at Tc have good planar symmetry
in the simulation so that they can be described by the
static field solution, Eq. (2). Following [26], we set the
initial profile for the two fields as follows:

s(x, t = 0) = sdw, ṡ(x, t = 0) = 0, (4)

h(x, t = 0) = �h(x, ⌧ref), ḣ(x, t = 0) = �ḣ(x, ⌧ref),(5)

3 For the BMP-A inhomogeneous bubbles seeded by domain walls
can also play the role of catalyzing the phase transition [19]. The
competition with the new mechanism developed in this work will
be clarified later.

4 For the case of strong couplings, it is di�cult to stretch out the
initial wall segments, resulting in the typical curvature radius of
walls at Tc much smaller than H

�1(Tc) [17]. In this situation
using the planar solution to describe the domain walls may not
be viable.

l The 1st step is responsible for generating domain walls -> require the spontaneous breaking of the Z2 symmetry

z

Ldw

1

s s s

z0

(h = 0, s)



Formation of domain walls
Α phase transition consisting of two steps is the minimal realization. 

1st step

s+

s-

s0

s0

2nd step PT 

hv

s+

s-

A new true vacuum (hv vacuum) 
develops, whereas the s± vacuum 
becomes the false vacuum.  

2nd-order PT 1st-order 
PT at Tc

15cosFOPTs without bubblesYun JIANG (SYSU)

l The produced DWs are spontaneously destroyed in the 2nd step ->  escape the DW problem2



l Domain walls can act as impurities to catalyze bubble 
nucleation, thereby enhancing the inhomogeneous tunneling 
to complete the seeded phase transition. 

Question #3: What is the role do domain walls play?

S. Blasi and A. Mariotti, Phys. Rev. Lett. (2022), arXiv:2203.16450 [hep-ph]

Quantum tunneling vs. classical rolling

16cosFOPTs without bubblesYun JIANG (SYSU)



However, this realization is based on the quantum tunneling effect 
and largely relies on the considerable area occupied by the domain 
walls, which is not yet verified in the entire parameter space. 

l Domain walls can act as impurities to catalyze bubble 
nucleation, thereby enhancing the inhomogeneous tunneling 
to complete the seeded phase transition. 

Question #3: What is the role do domain walls play?

S. Blasi and A. Mariotti, Phys. Rev. Lett. (2022), arXiv:2203.16450 [hep-ph]

Quantum tunneling vs. classical rolling
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However, this realization is based on the quantum tunneling effect 
and largely relies on the considerable area occupied by the domain 
walls, which is not yet verified in the entire parameter space. 

hv

s+

s-

l Domain walls can act as impurities to catalyze bubble 
nucleation, thereby enhancing the inhomogeneous tunneling 
to complete the seeded phase transition. 

Question #3: What is the role do domain walls play?

S. Blasi and A. Mariotti, Phys. Rev. Lett. (2022), arXiv:2203.16450 [hep-ph]

l We observe that there exists a higher-energy vacuum state in 
the domain wall, which can be spontaneously destroyed by 
virtue of vacuum fluctuations and classically transform into the 
true vacuum. This is our work and we name it the bubble-free 
FOPT. 

Quantum tunneling vs. classical rolling

18cosFOPTs without bubblesYun JIANG (SYSU)
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FIG. 1. The potential and the associated static domain wall
solution at T = 75 GeV < Tc for the BMP-A. There exists a
barrier between s± vacuum and h vacuum as a feature of the
FOPT.
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where µ
2
h and �h are the parameters fixed by the elec-

troweak scale vEW and the observed Higgs mass mh =
125 GeV [22, 23], and ch, cs are the terms arising from
the thermal masses [24].

For the formation of domain walls, we require the spon-
taneous breaking of the Z2 symmetry in the first step. At
T = Tdw =

p
µ2
s/cs, the minimum of the potential starts

departing from the origin and develops in the s field direc-
tion at s = ±vs(T ), vs(T ) =

p
(µ2

s � csT
2)/�s, leading to

the coexistence of two energetically equivalent domains:
s± domain with (h, s) = (0,±vs). In the transition re-
gion between s± domains, domain walls are generated as
a result of the smooth interpolation of the field configu-
rations. For a static planar domain wall in the x-y plane
at z = z0, the field configurations interpolating between
the s± vacuum are given by [17]

sdw(x, z0, T ) = vs(T ) tanh[(z � z0)/Ldw(T )],

hdw(x, T ) = 0,
(2)

where the thickness of the wall is characterized by
Ldw(T ) =

p
2/(µ2

s � csT
2).

For the scenario of our interest, at T = Tc < Tdw a new
minimum having the same value of V as the s± vacuum
appears in the h field direction at h = vh(Tc), vh(T ) =p

(µ2
h � chT

2)/�h, indicating a FOPT in the second step.
When the temperature drops below Tc (as illustrated in
Fig. 1), this h vacuum develops into the true vacuum and

TABLE I. Two BMPs admitting the two-step phase transi-
tion with ine�cient nucleation of homogenous bubbles. Tc =r

�ch�sµ2
h+cs�hµ2

s+
p

�h�s(csµ2
h�chµ2

s)
2

�hc2s��sc2h
and the mass squared

of the physical singlet m2
s = �hsv

2
EW � µ2

s. All the dimen-
sional quantities are in the unit of GeV or GeV�1.

BMP �s �hs ms Tdw Tc vs(Tc) vh(Tc) Ldw(Tc)

A 1 0.73 168 186 85 113 186 0.01

B 1 0.86 181 203 56 133 222 0.01

meanwhile, the s± vacuum becomes the false vacuum,
between them there exists a barrier.
Two benchmark points (BMPs) predicting a two-step

phase transition described above are provided in Table I.
Due to the failure to homogeneous bubble nucleation,
neither point can lead to a successful phase transition.
The presence of domain walls during the transition may,
however, alter the result, which we shall demonstrate.3

This is essentially because there is a higher-energy state
(compared to the h vacuum) in the domain wall that
coexists with the s± vacuum.
Numerical simulation of the wall instability. After for-

mation, the domain walls start the evolution, which is
governed by the equations of motions of � = h, s fields,

�̈�r2
�+

@V (h, s)

@�
= 0. (3)

Limited by the dynamical range, we perform the lat-
tice simulation from Tc in a volume much smaller than
the Hubble size, H�1(Tc). The key issue is the initial-
ization of the field configuration. In fact, the size of the
domain walls at Tc depends on the strength of the inter-
actions involving the s-field. Assuming that the relevant
couplings, �s and �hs, of our BMPs are su�ciently weak,
the domain walls will quickly reach the scaling regime and
can be stretched to the curvature radius that is compa-
rable to H

�1(Tc) [25].4 In this case, it is safe to assume
that the domain walls at Tc have good planar symmetry
in the simulation so that they can be described by the
static field solution, Eq. (2). Following [26], we set the
initial profile for the two fields as follows:

s(x, t = 0) = sdw, ṡ(x, t = 0) = 0, (4)

h(x, t = 0) = �h(x, ⌧ref), ḣ(x, t = 0) = �ḣ(x, ⌧ref),(5)

3 For the BMP-A inhomogeneous bubbles seeded by domain walls
can also play the role of catalyzing the phase transition [19]. The
competition with the new mechanism developed in this work will
be clarified later.

4 For the case of strong couplings, it is di�cult to stretch out the
initial wall segments, resulting in the typical curvature radius of
walls at Tc much smaller than H

�1(Tc) [17]. In this situation
using the planar solution to describe the domain walls may not
be viable.

Bubble-free FOPTs: simulation

Yun JIANG (SYSU) cosFOPTs without bubbles

We perform the lattice simulation from Tc in a volume much 
smaller than the Hubble size, H−1 (Tc). 

Initialization of the field configuration (t=0 @ Tc)
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FIG. 1. The potential and the associated static domain wall
solution at T = 75 GeV < Tc for the BMP-A. There exists a
barrier between s± vacuum and h vacuum as a feature of the
FOPT.
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where µ
2
h and �h are the parameters fixed by the elec-

troweak scale vEW and the observed Higgs mass mh =
125 GeV [22, 23], and ch, cs are the terms arising from
the thermal masses [24].

For the formation of domain walls, we require the spon-
taneous breaking of the Z2 symmetry in the first step. At
T = Tdw =

p
µ2
s/cs, the minimum of the potential starts

departing from the origin and develops in the s field direc-
tion at s = ±vs(T ), vs(T ) =

p
(µ2

s � csT
2)/�s, leading to

the coexistence of two energetically equivalent domains:
s± domain with (h, s) = (0,±vs). In the transition re-
gion between s± domains, domain walls are generated as
a result of the smooth interpolation of the field configu-
rations. For a static planar domain wall in the x-y plane
at z = z0, the field configurations interpolating between
the s± vacuum are given by [17]

sdw(x, z0, T ) = vs(T ) tanh[(z � z0)/Ldw(T )],

hdw(x, T ) = 0,
(2)

where the thickness of the wall is characterized by
Ldw(T ) =

p
2/(µ2

s � csT
2).

For the scenario of our interest, at T = Tc < Tdw a new
minimum having the same value of V as the s± vacuum
appears in the h field direction at h = vh(Tc), vh(T ) =p

(µ2
h � chT

2)/�h, indicating a FOPT in the second step.
When the temperature drops below Tc (as illustrated in
Fig. 1), this h vacuum develops into the true vacuum and

TABLE I. Two BMPs admitting the two-step phase transi-
tion with ine�cient nucleation of homogenous bubbles. Tc =r

�ch�sµ2
h+cs�hµ2

s+
p

�h�s(csµ2
h�chµ2

s)
2

�hc2s��sc2h
and the mass squared

of the physical singlet m2
s = �hsv

2
EW � µ2

s. All the dimen-
sional quantities are in the unit of GeV or GeV�1.

BMP �s �hs ms Tdw Tc vs(Tc) vh(Tc) Ldw(Tc)

A 1 0.73 168 186 85 113 186 0.01

B 1 0.86 181 203 56 133 222 0.01

meanwhile, the s± vacuum becomes the false vacuum,
between them there exists a barrier.
Two benchmark points (BMPs) predicting a two-step

phase transition described above are provided in Table I.
Due to the failure to homogeneous bubble nucleation,
neither point can lead to a successful phase transition.
The presence of domain walls during the transition may,
however, alter the result, which we shall demonstrate.3

This is essentially because there is a higher-energy state
(compared to the h vacuum) in the domain wall that
coexists with the s± vacuum.
Numerical simulation of the wall instability. After for-

mation, the domain walls start the evolution, which is
governed by the equations of motions of � = h, s fields,

�̈�r2
�+

@V (h, s)

@�
= 0. (3)

Limited by the dynamical range, we perform the lat-
tice simulation from Tc in a volume much smaller than
the Hubble size, H�1(Tc). The key issue is the initial-
ization of the field configuration. In fact, the size of the
domain walls at Tc depends on the strength of the inter-
actions involving the s-field. Assuming that the relevant
couplings, �s and �hs, of our BMPs are su�ciently weak,
the domain walls will quickly reach the scaling regime and
can be stretched to the curvature radius that is compa-
rable to H

�1(Tc) [25].4 In this case, it is safe to assume
that the domain walls at Tc have good planar symmetry
in the simulation so that they can be described by the
static field solution, Eq. (2). Following [26], we set the
initial profile for the two fields as follows:

s(x, t = 0) = sdw, ṡ(x, t = 0) = 0, (4)

h(x, t = 0) = �h(x, ⌧ref), ḣ(x, t = 0) = �ḣ(x, ⌧ref),(5)

3 For the BMP-A inhomogeneous bubbles seeded by domain walls
can also play the role of catalyzing the phase transition [19]. The
competition with the new mechanism developed in this work will
be clarified later.

4 For the case of strong couplings, it is di�cult to stretch out the
initial wall segments, resulting in the typical curvature radius of
walls at Tc much smaller than H

�1(Tc) [17]. In this situation
using the planar solution to describe the domain walls may not
be viable.
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We perform the lattice simulation from Tc in a volume much 
smaller than the Hubble size, H−1 (Tc). 

Initialization of the field configuration (t=0 @ Tc)

l Assuming that the relevant couplings are sufficiently weak, 
the domain walls will quickly reach the scaling regime and 
can be stretched to the curvature radius that is 
comparable to H−1 (Tc). 
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FIG. 1. The potential and the associated static domain wall
solution at T = 75 GeV < Tc for the BMP-A. There exists a
barrier between s± vacuum and h vacuum as a feature of the
FOPT.
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where µ
2
h and �h are the parameters fixed by the elec-

troweak scale vEW and the observed Higgs mass mh =
125 GeV [22, 23], and ch, cs are the terms arising from
the thermal masses [24].

For the formation of domain walls, we require the spon-
taneous breaking of the Z2 symmetry in the first step. At
T = Tdw =

p
µ2
s/cs, the minimum of the potential starts

departing from the origin and develops in the s field direc-
tion at s = ±vs(T ), vs(T ) =

p
(µ2

s � csT
2)/�s, leading to

the coexistence of two energetically equivalent domains:
s± domain with (h, s) = (0,±vs). In the transition re-
gion between s± domains, domain walls are generated as
a result of the smooth interpolation of the field configu-
rations. For a static planar domain wall in the x-y plane
at z = z0, the field configurations interpolating between
the s± vacuum are given by [17]

sdw(x, z0, T ) = vs(T ) tanh[(z � z0)/Ldw(T )],

hdw(x, T ) = 0,
(2)

where the thickness of the wall is characterized by
Ldw(T ) =

p
2/(µ2

s � csT
2).

For the scenario of our interest, at T = Tc < Tdw a new
minimum having the same value of V as the s± vacuum
appears in the h field direction at h = vh(Tc), vh(T ) =p

(µ2
h � chT

2)/�h, indicating a FOPT in the second step.
When the temperature drops below Tc (as illustrated in
Fig. 1), this h vacuum develops into the true vacuum and

TABLE I. Two BMPs admitting the two-step phase transi-
tion with ine�cient nucleation of homogenous bubbles. Tc =r
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�hc2s��sc2h
and the mass squared

of the physical singlet m2
s = �hsv

2
EW � µ2

s. All the dimen-
sional quantities are in the unit of GeV or GeV�1.

BMP �s �hs ms Tdw Tc vs(Tc) vh(Tc) Ldw(Tc)

A 1 0.73 168 186 85 113 186 0.01

B 1 0.86 181 203 56 133 222 0.01

meanwhile, the s± vacuum becomes the false vacuum,
between them there exists a barrier.
Two benchmark points (BMPs) predicting a two-step

phase transition described above are provided in Table I.
Due to the failure to homogeneous bubble nucleation,
neither point can lead to a successful phase transition.
The presence of domain walls during the transition may,
however, alter the result, which we shall demonstrate.3

This is essentially because there is a higher-energy state
(compared to the h vacuum) in the domain wall that
coexists with the s± vacuum.
Numerical simulation of the wall instability. After for-

mation, the domain walls start the evolution, which is
governed by the equations of motions of � = h, s fields,

�̈�r2
�+

@V (h, s)

@�
= 0. (3)

Limited by the dynamical range, we perform the lat-
tice simulation from Tc in a volume much smaller than
the Hubble size, H�1(Tc). The key issue is the initial-
ization of the field configuration. In fact, the size of the
domain walls at Tc depends on the strength of the inter-
actions involving the s-field. Assuming that the relevant
couplings, �s and �hs, of our BMPs are su�ciently weak,
the domain walls will quickly reach the scaling regime and
can be stretched to the curvature radius that is compa-
rable to H

�1(Tc) [25].4 In this case, it is safe to assume
that the domain walls at Tc have good planar symmetry
in the simulation so that they can be described by the
static field solution, Eq. (2). Following [26], we set the
initial profile for the two fields as follows:

s(x, t = 0) = sdw, ṡ(x, t = 0) = 0, (4)

h(x, t = 0) = �h(x, ⌧ref), ḣ(x, t = 0) = �ḣ(x, ⌧ref),(5)

3 For the BMP-A inhomogeneous bubbles seeded by domain walls
can also play the role of catalyzing the phase transition [19]. The
competition with the new mechanism developed in this work will
be clarified later.

4 For the case of strong couplings, it is di�cult to stretch out the
initial wall segments, resulting in the typical curvature radius of
walls at Tc much smaller than H

�1(Tc) [17]. In this situation
using the planar solution to describe the domain walls may not
be viable.

H−1

l We introduce inhomogeneous perturbations that originate 
from the vacuum fluctuation. 
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FIG. 1. The potential and the associated static domain wall
solution at T = 75 GeV < Tc for the BMP-A. There exists a
barrier between s± vacuum and h vacuum as a feature of the
FOPT.
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where µ
2
h and �h are the parameters fixed by the elec-

troweak scale vEW and the observed Higgs mass mh =
125 GeV [22, 23], and ch, cs are the terms arising from
the thermal masses [24].

For the formation of domain walls, we require the spon-
taneous breaking of the Z2 symmetry in the first step. At
T = Tdw =

p
µ2
s/cs, the minimum of the potential starts

departing from the origin and develops in the s field direc-
tion at s = ±vs(T ), vs(T ) =

p
(µ2

s � csT
2)/�s, leading to

the coexistence of two energetically equivalent domains:
s± domain with (h, s) = (0,±vs). In the transition re-
gion between s± domains, domain walls are generated as
a result of the smooth interpolation of the field configu-
rations. For a static planar domain wall in the x-y plane
at z = z0, the field configurations interpolating between
the s± vacuum are given by [17]

sdw(x, z0, T ) = vs(T ) tanh[(z � z0)/Ldw(T )],

hdw(x, T ) = 0,
(2)

where the thickness of the wall is characterized by
Ldw(T ) =

p
2/(µ2

s � csT
2).

For the scenario of our interest, at T = Tc < Tdw a new
minimum having the same value of V as the s± vacuum
appears in the h field direction at h = vh(Tc), vh(T ) =p

(µ2
h � chT

2)/�h, indicating a FOPT in the second step.
When the temperature drops below Tc (as illustrated in
Fig. 1), this h vacuum develops into the true vacuum and

TABLE I. Two BMPs admitting the two-step phase transi-
tion with ine�cient nucleation of homogenous bubbles. Tc =r

�ch�sµ2
h+cs�hµ2

s+
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�h�s(csµ2
h�chµ2

s)
2

�hc2s��sc2h
and the mass squared

of the physical singlet m2
s = �hsv

2
EW � µ2

s. All the dimen-
sional quantities are in the unit of GeV or GeV�1.

BMP �s �hs ms Tdw Tc vs(Tc) vh(Tc) Ldw(Tc)

A 1 0.73 168 186 85 113 186 0.01

B 1 0.86 181 203 56 133 222 0.01

meanwhile, the s± vacuum becomes the false vacuum,
between them there exists a barrier.
Two benchmark points (BMPs) predicting a two-step

phase transition described above are provided in Table I.
Due to the failure to homogeneous bubble nucleation,
neither point can lead to a successful phase transition.
The presence of domain walls during the transition may,
however, alter the result, which we shall demonstrate.3

This is essentially because there is a higher-energy state
(compared to the h vacuum) in the domain wall that
coexists with the s± vacuum.
Numerical simulation of the wall instability. After for-

mation, the domain walls start the evolution, which is
governed by the equations of motions of � = h, s fields,

�̈�r2
�+

@V (h, s)

@�
= 0. (3)

Limited by the dynamical range, we perform the lat-
tice simulation from Tc in a volume much smaller than
the Hubble size, H�1(Tc). The key issue is the initial-
ization of the field configuration. In fact, the size of the
domain walls at Tc depends on the strength of the inter-
actions involving the s-field. Assuming that the relevant
couplings, �s and �hs, of our BMPs are su�ciently weak,
the domain walls will quickly reach the scaling regime and
can be stretched to the curvature radius that is compa-
rable to H

�1(Tc) [25].4 In this case, it is safe to assume
that the domain walls at Tc have good planar symmetry
in the simulation so that they can be described by the
static field solution, Eq. (2). Following [26], we set the
initial profile for the two fields as follows:

s(x, t = 0) = sdw, ṡ(x, t = 0) = 0, (4)

h(x, t = 0) = �h(x, ⌧ref), ḣ(x, t = 0) = �ḣ(x, ⌧ref),(5)

3 For the BMP-A inhomogeneous bubbles seeded by domain walls
can also play the role of catalyzing the phase transition [19]. The
competition with the new mechanism developed in this work will
be clarified later.

4 For the case of strong couplings, it is di�cult to stretch out the
initial wall segments, resulting in the typical curvature radius of
walls at Tc much smaller than H

�1(Tc) [17]. In this situation
using the planar solution to describe the domain walls may not
be viable.
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FIG. 2. Dynamical evolution of a planar wall existing in space
between the s+ (red region) and s� (blue region) domains in
the presence of an inhomogeneous fluctuation. The simulation
is performed at T = 75 GeV < Tc. We present the configura-
tions for the s (upper panel) and h (lower panel) fields in the
x-z plane at tvh(Tc) = 0, 20, 40, 54 (from left to right).

where �h and �ḣ are uncorrelated and spatially inhomo-
geneous perturbations that originate from the vacuum
fluctuation on the h field.5 In the quantum vacuum
state, at any instant ⌧ , the Fourier-transformed modes
�h̃k do not have well-defined values but each compo-
nent has a probability distribution [27].6 Since �h̃k, for
a given k, follows the dynamics of a harmonic oscillator
(c.f. Eq. (21)), in the vacuum sate it obeys the stochastic
Gaussian distribution [27],

P
⇣
�h̃k(⌧)

⌘
=

1p
2⇡�2

k

exp

0

B@�

����h̃k(⌧)
���
2

2�2
k

1

CA , (6)

where the variance of the probability distribution �
2
k,

where k ⌘ |k|, is independent of the direction of k and is
given by the equal-time correlation function
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leading to �
2
k = (2!k)�1 in the flat metric.

We set up a pair of domain walls at z0 = ±L/4,
so the separation of the nearby domain walls is R =
L/2. Following the description given in Appendix B (see
also [26]), we initialize the field configurations, Eq. (5)
and perform the lattice simulation where the Crank-
Nicholson leapfrog algorithm [28] is utilized for gener-
ating the time evolution of the dynamical fields. All the
simulations are terminated by tend/R = 1 during which
the interference e↵ect from the nearby domain wall does
not arise and the temperature change is also negligible. A
striking example using the BMP-A is provided by Fig. 2.
Until at tvh(Tc) = 20 (second column), the h field in

5 We neglect the perturbation of s field as it contributes to the
high-order corrections to Eq. (3).

6 In fact, the vacuum state can be expanded in terms of states in
which they do have well-defined values, and the probability of
finding a given set of values is the modulus-squared of |�h̃k|2 in
the expansion. According to quantum field theory, the squared
vacuum fluctuation �

2
k corresponds to the expectation value of

�h�h on the vacuum, h�h�hi = (2⇡)�3
R
d
3
k|�h̃2

k|.

FIG. 3. Time evolution of a pair of planar walls centered at
z0 = ±100/vh(Tc) with a spatially homogeneous fluctuation
� = 5 ⇥ 10�3 at T > Tres, T ' Tres, T < Tres (from top to
bottom). The h and s field configurations are shown in the
left and right columns, respectively. The negative z axis is
omitted due to symmetric configuration.

the wall region (z = z0) starts shifting towards the value
h = vh of the h vacuum but the domain wall remains
stable until the s-field configuration spreads out. About
tvh(Tc) = 40 (third column) the domain wall destabilizes
and quickly turns into the domain trench, which subse-
quently grows wider, making the entire volume eventually
transition to the h vacuum state. Therefore, our numer-
ical results clearly demonstrate that the inhomogeneous
vacuum fluctuations can cause the instability of the do-
main wall and the production of the domain trench to
complete the FOPT without bubble nucleation.

Methods of evaluating the rescue temperature. While
the inhomogeneous fluctuations can be implemented in
the simulations, we are unable to evaluate from which
temperature the domain wall becomes the domain trench.
To circumvent this trouble, we consider the homogeneous
(spatial-independent) fluctuations �h ⌘ � and neglect
the e↵ect of �ḣ in the simulation. In Fig. 3 we present the
time evolution of the field configurations at three distinct
temperatures below Tc. For instance, at T ' Tc (upper
panel) we see that only the h field exhibits a small os-
cillation around h = 0, but the s field has no significant
change, so the domain wall is stable at this time. On the
contrary, at T ⌧ Tc (lower panel) the h field in the wall
region will quickly move to h = vh and meanwhile, the s

field will tend to zero.
By finely adjusting T in between them, we find a crit-

ical temperature at which a stable configuration can be
achieved in the h field. This is exactly the case cor-
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The domain wall destabilizes and quickly turns into the domain trench, which will subsequently grow 
wider and eat the domains of the false vacuum (s± vacuum), making the entire volume eventually 
transition to the true vacuum (h vacuum) state. 

cosFOPTs without bubbles

We set up a pair of domain walls at z0 = ±L/4.
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Bubble-free FOPTs: Tres calculation

cosFOPTs without bubbles

While the inhomogeneous fluctuations can be implemented in 
the simulations, we are unable to evaluate from which 
temperature the domain wall becomes the domain trench. 

Define this critical temperature as the rescue temperature, Tres. 
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FIG. 2. Dynamical evolution of a planar wall existing in space
between the s+ (red region) and s� (blue region) domains in
the presence of an inhomogeneous fluctuation. The simulation
is performed at T = 75 GeV < Tc. We present the configura-
tions for the s (upper panel) and h (lower panel) fields in the
x-z plane at tvh(Tc) = 0, 20, 40, 54 (from left to right).

where �h and �ḣ are uncorrelated and spatially inhomo-
geneous perturbations that originate from the vacuum
fluctuation on the h field.5 In the quantum vacuum
state, at any instant ⌧ , the Fourier-transformed modes
�h̃k do not have well-defined values but each compo-
nent has a probability distribution [27].6 Since �h̃k, for
a given k, follows the dynamics of a harmonic oscillator
(c.f. Eq. (21)), in the vacuum sate it obeys the stochastic
Gaussian distribution [27],
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We set up a pair of domain walls at z0 = ±L/4,
so the separation of the nearby domain walls is R =
L/2. Following the description given in Appendix B (see
also [26]), we initialize the field configurations, Eq. (5)
and perform the lattice simulation where the Crank-
Nicholson leapfrog algorithm [28] is utilized for gener-
ating the time evolution of the dynamical fields. All the
simulations are terminated by tend/R = 1 during which
the interference e↵ect from the nearby domain wall does
not arise and the temperature change is also negligible. A
striking example using the BMP-A is provided by Fig. 2.
Until at tvh(Tc) = 20 (second column), the h field in

5 We neglect the perturbation of s field as it contributes to the
high-order corrections to Eq. (3).

6 In fact, the vacuum state can be expanded in terms of states in
which they do have well-defined values, and the probability of
finding a given set of values is the modulus-squared of |�h̃k|2 in
the expansion. According to quantum field theory, the squared
vacuum fluctuation �
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FIG. 3. Time evolution of a pair of planar walls centered at
z0 = ±100/vh(Tc) with a spatially homogeneous fluctuation
� = 5 ⇥ 10�3 at T > Tres, T ' Tres, T < Tres (from top to
bottom). The h and s field configurations are shown in the
left and right columns, respectively. The negative z axis is
omitted due to symmetric configuration.

the wall region (z = z0) starts shifting towards the value
h = vh of the h vacuum but the domain wall remains
stable until the s-field configuration spreads out. About
tvh(Tc) = 40 (third column) the domain wall destabilizes
and quickly turns into the domain trench, which subse-
quently grows wider, making the entire volume eventually
transition to the h vacuum state. Therefore, our numer-
ical results clearly demonstrate that the inhomogeneous
vacuum fluctuations can cause the instability of the do-
main wall and the production of the domain trench to
complete the FOPT without bubble nucleation.

Methods of evaluating the rescue temperature. While
the inhomogeneous fluctuations can be implemented in
the simulations, we are unable to evaluate from which
temperature the domain wall becomes the domain trench.
To circumvent this trouble, we consider the homogeneous
(spatial-independent) fluctuations �h ⌘ � and neglect
the e↵ect of �ḣ in the simulation. In Fig. 3 we present the
time evolution of the field configurations at three distinct
temperatures below Tc. For instance, at T ' Tc (upper
panel) we see that only the h field exhibits a small os-
cillation around h = 0, but the s field has no significant
change, so the domain wall is stable at this time. On the
contrary, at T ⌧ Tc (lower panel) the h field in the wall
region will quickly move to h = vh and meanwhile, the s

field will tend to zero.
By finely adjusting T in between them, we find a crit-

ical temperature at which a stable configuration can be
achieved in the h field. This is exactly the case cor-
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Bubble-free FOPTs: Tres calculation

cosFOPTs without bubbles

While the inhomogeneous fluctuations can be implemented in 
the simulations, we are unable to evaluate from which 
temperature the domain wall becomes the domain trench. 

Define this critical temperature as the rescue temperature, Tres. 
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FIG. 2. Dynamical evolution of a planar wall existing in space
between the s+ (red region) and s� (blue region) domains in
the presence of an inhomogeneous fluctuation. The simulation
is performed at T = 75 GeV < Tc. We present the configura-
tions for the s (upper panel) and h (lower panel) fields in the
x-z plane at tvh(Tc) = 0, 20, 40, 54 (from left to right).

where �h and �ḣ are uncorrelated and spatially inhomo-
geneous perturbations that originate from the vacuum
fluctuation on the h field.5 In the quantum vacuum
state, at any instant ⌧ , the Fourier-transformed modes
�h̃k do not have well-defined values but each compo-
nent has a probability distribution [27].6 Since �h̃k, for
a given k, follows the dynamics of a harmonic oscillator
(c.f. Eq. (21)), in the vacuum sate it obeys the stochastic
Gaussian distribution [27],
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where the variance of the probability distribution �
2
k,

where k ⌘ |k|, is independent of the direction of k and is
given by the equal-time correlation function
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leading to �
2
k = (2!k)�1 in the flat metric.

We set up a pair of domain walls at z0 = ±L/4,
so the separation of the nearby domain walls is R =
L/2. Following the description given in Appendix B (see
also [26]), we initialize the field configurations, Eq. (5)
and perform the lattice simulation where the Crank-
Nicholson leapfrog algorithm [28] is utilized for gener-
ating the time evolution of the dynamical fields. All the
simulations are terminated by tend/R = 1 during which
the interference e↵ect from the nearby domain wall does
not arise and the temperature change is also negligible. A
striking example using the BMP-A is provided by Fig. 2.
Until at tvh(Tc) = 20 (second column), the h field in

5 We neglect the perturbation of s field as it contributes to the
high-order corrections to Eq. (3).

6 In fact, the vacuum state can be expanded in terms of states in
which they do have well-defined values, and the probability of
finding a given set of values is the modulus-squared of |�h̃k|2 in
the expansion. According to quantum field theory, the squared
vacuum fluctuation �

2
k corresponds to the expectation value of

�h�h on the vacuum, h�h�hi = (2⇡)�3
R
d
3
k|�h̃2

k|.
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FIG. 3. Time evolution of a pair of planar walls centered at
z0 = ±100/vh(Tc) with a spatially homogeneous fluctuation
� = 5 ⇥ 10�3 at T > Tres, T ' Tres, T < Tres (from top to
bottom). The h and s field configurations are shown in the
left and right columns, respectively. The negative z axis is
omitted due to symmetric configuration.

the wall region (z = z0) starts shifting towards the value
h = vh of the h vacuum but the domain wall remains
stable until the s-field configuration spreads out. About
tvh(Tc) = 40 (third column) the domain wall destabilizes
and quickly turns into the domain trench, which subse-
quently grows wider, making the entire volume eventually
transition to the h vacuum state. Therefore, our numer-
ical results clearly demonstrate that the inhomogeneous
vacuum fluctuations can cause the instability of the do-
main wall and the production of the domain trench to
complete the FOPT without bubble nucleation.

Methods of evaluating the rescue temperature. While
the inhomogeneous fluctuations can be implemented in
the simulations, we are unable to evaluate from which
temperature the domain wall becomes the domain trench.
To circumvent this trouble, we consider the homogeneous
(spatial-independent) fluctuations �h ⌘ � and neglect
the e↵ect of �ḣ in the simulation. In Fig. 3 we present the
time evolution of the field configurations at three distinct
temperatures below Tc. For instance, at T ' Tc (upper
panel) we see that only the h field exhibits a small os-
cillation around h = 0, but the s field has no significant
change, so the domain wall is stable at this time. On the
contrary, at T ⌧ Tc (lower panel) the h field in the wall
region will quickly move to h = vh and meanwhile, the s

field will tend to zero.
By finely adjusting T in between them, we find a crit-

ical temperature at which a stable configuration can be
achieved in the h field. This is exactly the case cor-

Tc

Tres
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Bubble-free FOPTs: Tres calculation

cosFOPTs without bubbles

In addition to the lattice simulation, Tres can be alternatively estimated from the view of energy 
conservation. 

Ignoring the kinetic energy associated with the 
domain wall (based on the observation), 

l the energy per area deposited into the 
domain wall, relative to the initial stable 
wall

l the wall tension characterized by the 
gradient energy 

Therefore, Tres is the highest temperature T 

satisfying

4

FIG. 4. The value of h̃wall
max(T ) changes in T starting from Tc

in the presence of homogeneous fluctuations. The black line
shows the ratio vh(T )/vh(Tc), which equals to one at T = Tc.
From its intersection with the other lines, we can determine
Tres under di↵erent values of �.

responding to the middle panel. We define this criti-
cal temperature as the rescue temperature, Tres. This
may lead to the implication whether the transition is
successful or not strongly depends on the behavior of h
field evolution. Motivated by this observation, we cap-
ture the highest value of the h field at z = z0 starting
from Tc. The result normalizing to the value of vh(Tc),
h̃
wall
max(T ) ⌘ hmax(z0, T )/vh(Tc) under di↵erent values of

� is shown in Fig. 4. Treating � as a free parameter,
in this analysis we are most interested in how small �
is enough to destabilize the domain wall and complete
a bubble-free phase transition. It is clearly seen from
Fig. 4 that a good convergence has reached at � = 10�2,
and thus � = 5 ⇥ 10�3 used in Fig. 3 is an optimized
choice that comprises both e�ciency and accuracy of the
computation. Numerically we identify Tres as the highest
temperature at which hmax(z0, T ) ' vh(T ) is satisfied, so
Tres ' 71.8 GeV for the BMP-A.

In addition to the lattice simulation, Tres can be al-
ternatively estimated from the view of energy conserva-
tion. Based on the above analysis, when the domain wall
just becomes unstable, the s-field configuration is well
described by the field solution, Eq. (2), and the kinetic
energy associated with the domain wall is negligible. Let
hr(z) be the h field configuration of the domain wall,
then the energy per area deposited into the domain wall,
relative to the initial stable wall, is

�V (hr, T ) =

Z ⇣
V (0, sdw, T )� V (hr, sdw, T )

⌘
dz, (8)

here the z integral is performed within the wall region in
the vicinity of z = z0. At T . Tc, �V is usually insu�-
cient to overcome the wall tension that is characterized
by the gradient energy in the unit area associated with
the domain wall,

�g(hr, T ) =

Z
1

2
(@zhr)

2
dz. (9)

FIG. 5. For the BMP-A (cyan) and BMP-B (grey), we gener-
ate a bunch of the g̃ (↵, T ) curves with the descending value
of T from Tc to zero (from bottom to top). BMP-A has a
solution for Tres indicated in dark line.

This results in an oscillatory state in the h field. As T

decreases, a larger amount of �V will be deposited into
the domain wall. If �V exceeds �g, this would make
possible the destruction of the domain wall. Therefore,
we define Tres as the highest temperature T that satisfies

g(hr, T ) = 0 for T < Tc, (10)

where the function g is given by

g(hr, T ) = �V (hr, T )� �g(hr, T ). (11)

To find Tres using Eq. (10), the field profile, hr(z) at
T ' Tres must be known. Observe from Fig. 3, at Tres

the h field configuration appears steady and can be ap-
proximately described by a Gaussian wave-packet7,

hr(z) = Avhe
� (z�z0)2

(↵Ldw)2 , (12)

where ↵ and A are the dimensionless parameters describ-
ing the width and the amplitude of the wave-packet, re-
spectively. Observing from Fig. 3, A is roughly of the
order of �. Therefore, for the optimal value of � we
adopt, the h

4 term in Eq. (1) is vanishingly small and
can be well dropped. Under this assumption, it is con-
venient to define a reduced g̃ that is irrelevant to the
per-factor A,

g̃ (↵, T ) = g(hr, T )/A
2
. (13)

We present in Fig. 5 the result of g̃ function for the
two BMPs. For each point, we generate a bunch of the
g̃ (↵, T ) curves at T starting from Tc. It turns out that
the g̃ (↵, T ) function is not invariant with respect to ↵

but, as expected, its amplitude gradually increases over
the entire range of ↵ as T decreases. This leads to the
practical hint that Tres, if existing, corresponds to the
temperature at which the function g̃ has exactly one zero
root. Therefore, BMP-A has a solution for Tres because

7 It is equivalent to the lowest Kaluza-Klein state for the h field
that was adopted in [19].
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Bubble-free FOPTs: Tres calculation

T decreases

Tres = 68.6 GeV (analytical)

cosFOPTs without bubbles

In addition to the lattice simulation, Tres can be alternatively estimated from the view of energy 
conservation. 
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responding to the middle panel. We define this criti-
cal temperature as the rescue temperature, Tres. This
may lead to the implication whether the transition is
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in this analysis we are most interested in how small �
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a bubble-free phase transition. It is clearly seen from
Fig. 4 that a good convergence has reached at � = 10�2,
and thus � = 5 ⇥ 10�3 used in Fig. 3 is an optimized
choice that comprises both e�ciency and accuracy of the
computation. Numerically we identify Tres as the highest
temperature at which hmax(z0, T ) ' vh(T ) is satisfied, so
Tres ' 71.8 GeV for the BMP-A.
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described by the field solution, Eq. (2), and the kinetic
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then the energy per area deposited into the domain wall,
relative to the initial stable wall, is
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decreases, a larger amount of �V will be deposited into
the domain wall. If �V exceeds �g, this would make
possible the destruction of the domain wall. Therefore,
we define Tres as the highest temperature T that satisfies

g(hr, T ) = 0 for T < Tc, (10)

where the function g is given by

g(hr, T ) = �V (hr, T )� �g(hr, T ). (11)

To find Tres using Eq. (10), the field profile, hr(z) at
T ' Tres must be known. Observe from Fig. 3, at Tres

the h field configuration appears steady and can be ap-
proximately described by a Gaussian wave-packet7,
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where ↵ and A are the dimensionless parameters describ-
ing the width and the amplitude of the wave-packet, re-
spectively. Observing from Fig. 3, A is roughly of the
order of �. Therefore, for the optimal value of � we
adopt, the h

4 term in Eq. (1) is vanishingly small and
can be well dropped. Under this assumption, it is con-
venient to define a reduced g̃ that is irrelevant to the
per-factor A,

g̃ (↵, T ) = g(hr, T )/A
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We present in Fig. 5 the result of g̃ function for the
two BMPs. For each point, we generate a bunch of the
g̃ (↵, T ) curves at T starting from Tc. It turns out that
the g̃ (↵, T ) function is not invariant with respect to ↵

but, as expected, its amplitude gradually increases over
the entire range of ↵ as T decreases. This leads to the
practical hint that Tres, if existing, corresponds to the
temperature at which the function g̃ has exactly one zero
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and thus � = 5 ⇥ 10�3 used in Fig. 3 is an optimized
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the domain wall. If �V exceeds �g, this would make
possible the destruction of the domain wall. Therefore,
we define Tres as the highest temperature T that satisfies

g(hr, T ) = 0 for T < Tc, (10)

where the function g is given by

g(hr, T ) = �V (hr, T )� �g(hr, T ). (11)

To find Tres using Eq. (10), the field profile, hr(z) at
T ' Tres must be known. Observe from Fig. 3, at Tres

the h field configuration appears steady and can be ap-
proximately described by a Gaussian wave-packet7,

hr(z) = Avhe
� (z�z0)2

(↵Ldw)2 , (12)

where ↵ and A are the dimensionless parameters describ-
ing the width and the amplitude of the wave-packet, re-
spectively. Observing from Fig. 3, A is roughly of the
order of �. Therefore, for the optimal value of � we
adopt, the h

4 term in Eq. (1) is vanishingly small and
can be well dropped. Under this assumption, it is con-
venient to define a reduced g̃ that is irrelevant to the
per-factor A,

g̃ (↵, T ) = g(hr, T )/A
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We present in Fig. 5 the result of g̃ function for the
two BMPs. For each point, we generate a bunch of the
g̃ (↵, T ) curves at T starting from Tc. It turns out that
the g̃ (↵, T ) function is not invariant with respect to ↵

but, as expected, its amplitude gradually increases over
the entire range of ↵ as T decreases. This leads to the
practical hint that Tres, if existing, corresponds to the
temperature at which the function g̃ has exactly one zero
root. Therefore, BMP-A has a solution for Tres because

7 It is equivalent to the lowest Kaluza-Klein state for the h field
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It is equivalent to the lowest Kaluza-Klein state.
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g (hr, T ) = �V (hr, T )� �g (hr, T )

To find Tres using, the field profile, hr(z) at T ≃ Tres 
must be known, which can be described by a 
Gaussian wave-packet 

Ignoring the kinetic energy associated with the 
domain wall (based on the observation), 
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Red: phase transition proceeds with nucleating DW-
seeded bubbles (seeded PT)

Gray: phase transition is unsuccessful

An application: the Z2-odd singlet model (no mixing)
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The significant change due to our work occurs in the cyan
and blue regions, where the transition proceeds only with 
the production of domain trenches from domain walls 
(bubble-free PT), opening up the new viable parameter 
region. Outside the backslashed region this mechanism can 
complete the transition before the onset of nucleation. 

cosFOPTs without bubbles



100 101 102 103
10-6

10-5

10-4

10-3

10-2

10-1

kR*

1

(H
*
R

*
Ω
va
c)
2

dΩ
G
W

dl
n
(k
)

Nb=64,ϵ=0.03
Nb=64,ϵ=0.01
Nb=32,ϵ=0.03
Nb=32,ϵ=0.01
Nb=64
Nb=32

k-1.2

w/ wall network

no wall network

l Receive the significant contribution 
from the wall networks: double-pear 
structure is completely buried, which 
is very different from the one sourced 
by the bubbles only.

l No good semi-analytic model, 
envelope approximation is too 
realistic

Produced GWs

27

We have generated the power spectrum of the GWs from bubble-seeded domain wall network.  5

FIG. 5. Time evolution of the scalar field φ with a biased
term ϵ = 0.01. The slices include the entire process until
the domain walls completely collapse in the simulation box.
The time slices from left to right are sequentially denoted
t/R∗ = 0.5, 1, 1.5, 2, 3.4.

produced GWs] [30]. The results of the normalized area
A/V and and the normalized energy density ρi/ρvac are
presented in Fig. 6. We observe that the area in both
cases maximizes around t/R∗ ≃ 0.8 at which bubble col-
lision is roughly complete, with only a slight suppression
for asymmetric potential. [It should be stressed that nei-
ther wall networks enter into the scaling regime where
...]. The main difference occurs in the process of network
decay. With the bias term, although very small, the area
of the wall network decreases exponentially in time. Typ-
ically, around t/R∗ ≃ 3 the wall network decays away.
In contrast, the wall networks of the symmetric potential
(ϵ = 0) is rather long-lived.

In the course of PT the potential energy ρV released
from the PT converts to the kinetic energy ρK and the
gradient energy ρD of the scalar field, making them in-
crease as time goes, the latter one maximizes at t/R∗ ≃
0.7 which indicates the scalar fields distributed in the
overlapping regions of the bubbles intensively oscillate
following the initial collision. In either case each compo-
nent of the energy density tends to be stable when the
domain wall shrinks due to the curvature radius, with a
small difference in ρV . This happens until t/R∗ ≃ 5 in
the symmetric potential and occurs earlier at t/R∗ ≃ 3
in the asymmetric potential. [Although most of the vol-
ume of the simulations is in the true minimum by, there
is still a lot of kinetic, gradient and even potential en-
ergy in the fields. The phase transition is, more or less,
complete.] This means that the domain walls’ formation
and the wall’s decay can play an important role in the
sources of the gravitational waves.

[As expected ρD remains approximately constant af-
ter the PT completes. Consequently, the wall networks
present continue to source gravitational waves, and in
Fig. ?? the amplitude of the gravitational waves from
the lattice simulation continues to grow after the PT
has completed. at the time the scalar kinetic energy has
reached its final value.]

In order to understand variety of bubble configurations
leading to the formation of wall network, we also per-
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FIG. 6. Time evolution of the area and the energy compo-
nents of the domain wall networks. The energy density of
scalar field for our simulations run with Nb = 64, L∆x = 500.
In our simulations, the energy conservation violation is less
than 2.5%.

form the simulations initialized with two different values
of bubble number Nb = 32, 64. Fig. 6 also shows the de-
pendence of the lifetimes of wall networks on the initial
bubble number. With the fewer bubbles initially nucle-
ated, the mean separation distance between bubbles R∗
will increase. This usually take longer time for bubbles to
collide and percolate, therefore delaying the formation of
wall network while accelerating the decay process [does
it make sense?].

[Notice that the uncertainty is rather large and results
from the where the area of the domain wall and the life-
time of the wall network.]

THE POWER SPECTRUM OF THE PRODUCED
GRAVITATIONAL WAVES

In the mechanism discussed above, GW source is the
anisotropic stress-tensor coming from both colliding bub-
bles and collapsing wall network,

Tij(t,x) = ∂iφ∂jφ− gij

[
1

2
gρσ∂ρφ∂σφ− V (φ)

]
. (5)
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n The presence of domain walls, although no incontrovertible evidence found in 
our universe to date, can greatly enrich the ways phase transitions are completed. 

n The inhomogeneous vacuum fluctuations can cause the instability of the do-
main wall and the production of the domain trench to complete the FOPT 
without bubble nucleation. This bubble-free mechanism constitutes a competing
way against with quantum tunneling in completing the FOPT, opening up the 
new viable parameter space of the phase transition models.

n In the bubble-free FOPT, the collision between domain trenches can generate 
GWs, which may have a different power spectrum from those from the traditional 
FOPT. If it is true, this would allow us to determine how the phase transition is 
accomplished through GW detection.

cosFOPTs without bubbles




