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Baryon-Baryon scattering dataY N integrated cross sections

100 200 300 400 500 600 700 800 900
plab (MeV/c)

0

100

200

300

σ 
(m

b)
 

Sechi-Zorn et al.
Alexander et al.
Hauptman et al.
Piekenbrock

Λp -> Λp

500 600 700 800
plab (MeV/c)

0

10

20

30

40

50

60

70

σ 
(m

b)
 

Kadyk et al.
Hauptman et al.

Λp -> Λp

Σ+n -> <- Σ0p

100 120 140 160 180
plab (MeV/c)

0

50

100

150

200

250

300

σ 
(m

b)
 

Engelmann et al.

Σ−p -> Λn

NLO13: J.H., S. Petschauer, et al., NPA 915 (2013) 24

NLO19: J.H., U.-G. Meißner, A. Nogga, arXiv:1906.11681

Jülich ’04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

Nijmegen NSC97f: T.A. Rijken et al., PRC 59 (1999) 21

data points included in the fit are represented by filled symbols!

Johann Haidenbauer Hyperon-nucleon interaction
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Johann Haidenbauer Hyperon-nucleon interaction

 J. Haidenbauer, Ulf-G. Meissner, and A. Nogga,  Eur. Phys J. A56, 91 (2020) 
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Baryon-Baryon Interaction
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Discovery of first 𝞚-hypernuclei910 A.K. Wróblewski

formalities he was hurriedly given master’s degree in physics and employed
as an assistant. He then spent two years (1950–1952) first in Liverpool, and
next in Bristol, where he mastered nuclear emulsion technique in Powell’s
laboratory. In 1951, with Owen Lock and Gideon Yekutieli, Danysz claimed
[55] discovery of a new particle (ζ0), which, however, was not confirmed.

Fig. 2. Marian Danysz (right) and Jerzy Pniewski (left), who discovered hypernuclei
in 1952.

Jerzy Pniewski [56] was born in 1913 in Płock, the son of a high-school
teacher, He studied mathematics, and later physics, at Warsaw University.
Pniewski started career in molecular optics, and published two papers in
that field (1938). In the years 1948–1950 he was studying β-spectroscopy
in Liverpool. After return to Warsaw in 1951 he obtained Ph.D. in nuclear
spectroscopy. In 1952 he was persuaded by Danysz to join him in cosmic
ray studies using nuclear emulsions. Thus started everlasting friendship and
collaboration between the two physicists, who had rather different characters
and qualities, but supplemented each other and formed a formidable team.

912 A.K. Wróblewski

contained a bound V 0
1 -particle. The V 0

1 -particle was discovered in 1951 by
Armenteros but no one expected that it could be bound in atomic nucleus
with protons and neutrons . . . .

We treated it as an excited nucleon. Our interpretation made it the third
component of atomic nuclei besides protons and neutrons. . .

We dispatched a short paper2 to the Bulletin of the Polish Academy
of Sciences and then we sent letters to several foreign physicists, including
W.C. Heisenberg, C.F. Powell, and D. Skobeltzyn . . . ”.

Fig. 3. The first observed decay of a hypernucleus. It was produced by a cosmic
ray particle (track p) which interacted with a nucleus in the emulsion at A. The
ejected hyperfragment (track f) was brought to rest at B where it decayed into
three charged particles (from [58]).

Neither Danysz nor Pniewski knew Heisenberg, hence the letter was sent
to Klaus Gottstein, with whom Danysz worked in Bristol. The choice of
Skobeltzyn, a Russian pioneer in cosmic radiation studies, could have been
politically motivated. The political situation in Poland in 1952 was far from
comfortable, so that Danysz and Pniewski were eager to show to the op-
pressive regime their willingness of cooperation with the East. Anyway, the

2 The paper [58] was submitted on October 20, 1952 and appeared in the beginning of
1953.

Danysz and Pniewski discovered the first hypernucleus in Warsaw in September 1952. The 
hypernucleus was created when a high-energy proton interacted with a nucleus in the 
emulsions they were using as a detector, producing a hyperfragment. 
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𝞚 Hypernulcei 

1. Kinematics

The kinematics for several elementary reaction processes
are shown in Fig. 1. As indicated in the figure, the ðK−; π−Þ
reaction can have low, essentially zero momentum transfer to
the produced Λ hypernuclei. This also holds for Σ hyper-
nuclei. Thus the probability is large that Λ and Σ hyperons,

when produced at low momentum transfer, will interact with,
and bind to, the residual spectator nucleus. On the other hand,
reactions such as ðπþ; KþÞ or ðγ; KþÞ have high-momentum
transfer with respect to the nuclear Fermi momentum, pro-
ducing recoil hyperons that have a high probability of
escaping the nucleus. Such reactions are loosely termed
“quasifree” (QF) processes, although the hyperon actually
experiences continuum, final-state interactions (FSI).
Obviously, in the case of higher momentum transfer, cross
sections to bound states are significantly reduced.
Furthermore, a K− strongly interacts with nucleons through

various resonant states. Thus incident kaons in a ðK−; π−Þ
reaction attenuate rapidly in nuclear matter, and the transition
density should peak at the nuclear surface to maximize the
cross section. Combining this with low momentum transfer as
discussed previously, the ðK−; π−Þ reaction most likely
involves an outer shell neutron, simply replacing this neutron
with a Λ having the same single-particle quantum numbers.
On the other hand, energetic πþ and Kþ particles have longer
mean-free paths in nuclear matter and give larger momentum
transfer to the hyperon. Thus they can interact with interior
nucleons and can impart significant angular-momentum trans-
fer. However, such reactions have greater quasifree strength.
After production, a bound hypernucleus generally deexcites

to the state in which all the baryons reside in their lowest
single-particle levels, from which the hypernuclear ground
state then decays via the weak interaction. The energy released
in the nuclear transitions is removed by gamma rays or Auger
neutron emission (see Fig. 2) because the neutron (or proton)
emission threshold can be lower than the Λ emission thresh-
old. Above the Λ threshold, Λ as well as nucleon emission can
occur. It is interesting to note that particle-unstable hyper-
nuclear levels near BΛ ¼ 0 are experimentally observed to
have narrow widths. Nuclear states at comparable excitation

TABLE I. Experimental Λ separation energies BΛ of light hyper-
nuclei from emulsion studies. These are taken from a compilation
(Davis and Pniewski, 1986) of results from Jurič et al. (1973) and
Cantwell et al. (1974), omitting 15

ΛN (Davis, 1991). A reanalysis for
12
ΛC (Dłuzewski et al., 1988) gives 10.80(18) MeV.

Hypernucleus Number of events BΛ % ΔBΛ (MeV)
3
ΛH 204 0.13% 0.05
4
ΛH 155 2.04% 0.04
4
ΛHe 279 2.39% 0.03
5
ΛHe 1784 3.12% 0.02
6
ΛHe 31 4.18% 0.10
7
ΛHe 16 Not averaged
7
ΛLi 226 5.58% 0.03
7
ΛBe 35 5.16% 0.08
8
ΛHe 6 7.16% 0.70
8
ΛLi 787 6.80% 0.03
8
ΛBe 68 6.84% 0.05
9
ΛLi 8 8.50% 0.12
9
ΛBe 222 6.71% 0.04
9
ΛB 4 8.29% 0.18
10
ΛBe 3 9.11% 0.22
10
ΛB 10 8.89% 0.12
11
ΛB 73 10.24% 0.05
12
ΛB 87 11.37% 0.06
12
ΛC 6 10.76% 0.19
13
ΛC 6 11.69% 0.12
14
ΛC 3 12.17% 0.33

FIG. 1. The recoil momentum of the Λ hypernucleus produced
from a 12C target as a function of the incident particle momentum
and angle for several production reactions.
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FIG. 2. A schematic representation of the decays of an excited
hypernucleus, showing, in particular, the decay of highly excited
states by Auger and γ-ray transitions.
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for a data set that includes information up to 208
ΛPb (Hasegawa

et al., 1996). The data used in the construction of Fig. 11 are
given in Table IV. Because the BΛ values in Table IV differ in
several respects from the values given in the original papers
and reviews [see, e.g., Hashimoto and Tamura (2006)], some
explanation is needed.
The most important overall change in the tabulated BΛ

values arises from the fact that the KEK ðπþ; KþÞ data were

all normalized to the emulsion value of 10.76 MeV for 12
ΛC

(Hasegawa et al., 1996). This differs considerably from the
emulsion value of 11.37 MeV for 12

ΛB that is based on a
substantial number of events for the characteristic π− þ 3α
decay mode. It is generally accepted that one should not trust
the emulsion BΛ values for 12

ΛC and beyond because of the
difficulty of uniquely identifying the decaying hypernucleus
and the fact that there are very few events in each case (Davis,
1991). In fact, the best determined BΛ value for 12

ΛC is
0.14(5) MeV based on proton emission from what is inter-
preted as a 0þ with a dominant 11Cðg.s.Þ × p3=2Λ configura-
tion (Davis, 2008). The same analysis gives two 2þ states 0.06
and 0.80 MeV below the 0þ state. These 2þ states should be
populated in the ðπþ; KþÞ spectrum with the upper one
dominant. The unresolved pΛ peak from KEK E336 is
11.00(3) MeV above the ground-state peak (Hashimoto and
Tamura, 2006). Adding 0.14 and 0.23 MeV for the difference
between the 0þ state and the 2þ centroid gives 11.37 MeV, the
same as the BΛ value for 12

ΛB. Taking into account the fact that
different pΛ states are populated in different reactions, one
gets similar values from the ðe; e0KþÞ (Iodice et al., 2007;
Tang et al., 2014) and ðK−

stop; π−Þ (Agnello et al., 2005b)
reactions. Table V shows that adding 0.6 MeV to ðπþ; KþÞ BΛ
values from KEK E336 (Hashimoto and Tamura, 2006) gives
better agreement with the emulsion values. However, for 16

ΛO
there is still a discrepancy with BΛ ¼ 13.76% 0.16 MeV for
16
ΛN (Cusanno et al., 2009).
Hasegawa et al. (1996) stated in Sec. II.F that they applied a

shift to the Kþ momentum to get the 12
ΛC ground-state peak at

BΛ ¼ 10.76 MeV.The relationshipbetweenpK andBΛ is linear
and nearly independent of the target mass. Therefore, the energy
shift applied to 12

ΛC applies elsewhere. The numbers for 28
ΛSi,

139
ΛLa, and

208
ΛPb in Table IVare fromTable 13 of Hashimoto and

Tamura (2006); a reanalysis of the KEK E140a data has been
made and the errors include an estimate for the systematic error
associated with the KEK ðπþ; KþÞ experiments.
Hasegawa et al. (1996) made corrections of 0.15, 0.99, and

1.63 MeV to the extracted BΛ values for 89
ΛY,

139
ΛLa, and

208
ΛPb;

0.15 MeV is the centroid of the 4−=5− πp−1
1=2νg

−1
9=2 ground-state

doublet of 88Y, 0.99MeVis the excitation energy of the centroid
of the ν0h11=2 pickup strength from

139La, and 1.63 MeV is the
excitation energy of the ν0i13=2 hole state in

207Pb.
For 89

ΛY, the left-hand peaks in Table VIII of Hotchi et al.
(2001) are taken [Motoba et al. (2008) argued that the
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FIG. 11. Energy levels of theΛ single-particle major shells in A
ΛZ

hypernuclei as a function of A−2=3. The curves are obtained from
a standard Woods-Saxon potential VWS representing the Λ-
nucleus interaction with depth V0 ¼ −30.05 MeV, radius
R ¼ r0A1=3, where r0 ¼ 1.165 fm, and diffusivity a ¼ 0.6 fm.
Updated from Millener, Dover, and Gal, 1988.

TABLE IV. BΛ values from a variety of sources for Λ single-
particle states.

Hypernucleus sΛ pΛ dΛ fΛ gΛ

ðπþ; KþÞ
208
ΛPb 26.9(8) 22.5(6) 17.4(7) 12.3(6) 7.2(6)

139
ΛLa 25.1(12) 21.0(6) 14.9(6) 8.6(6) 2.1(6)

89
ΛY 23.6(5) 17.7(6) 10.9(6) 3.7(6) −3.8ð10Þ
51
ΛV 21.5(6) 13.4(6) 5.1(6)
28
ΛSi 17.2(2) 7.6(2) −1.0ð5Þ
16
ΛO 13.0(2) 2.5(2)
13
ΛC 12.0(2) 1.1(2)
12
ΛC 11.36(20) 0.36(20)
10
ΛB 8.7(3)

ðe; e0KþÞ
52
ΛV 21.8(3)
16
ΛN 13.76(16) 2.84(18)
12
ΛB 11.52(2) 0.54(4)
10
ΛBe 8.55(13)
7
ΛHe 5.55(15)

Emulsion
13
ΛC 11.69(12) 0.8(3)
12
ΛB 11.37(6)
12
ΛC 0.14(5)
8
ΛLi 6.80(3)
7
ΛBe 5.16(8)

ðK−; π−Þ
40
ΛCa 11.0(5) 1.0(5)
32
ΛS 17.5(5) 8.2(5) −1.0ð5Þ

TABLE V. ðπþ; KþÞ versus emulsion BΛ values for p-shell hyper-
nuclei. The first line contains values fromKEK E336 (Hashimoto and
Tamura, 2006), the second gives emulsion values from Table I, and
the last is ðπþ; KþÞ plus 0.6 MeV. For comparison, Gogami et al.
(2016a) averaged the differences for 7

ΛLi,
9
ΛBe,

10
ΛB, and

13
ΛC to obtain

a shift of 0.54(5) MeV.

7
ΛLi

9
ΛBe

10
ΛB

12
ΛC

13
ΛC

16
ΛO

5.22(8) 5.99(7) 8.10(10) 10.76 11.38(5) 12.42(5)
5.58(3) 6.71(4) 8.89(12) 10.76(19) 11.69(12)
5.82 6.59 8.70 11.36 11.98 13.02

A. Gal, E. V. Hungerford, and D. J. Millener: Strangeness in nuclear physics
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small. However, the ðπþ; KþÞ reaction becomes more effec-
tive in producing states with large lΛ in heavier hypernuclei
due to the increasing spin of the valence neutron orbital
involved in the reaction. Indeed, in Fig. 8, the full spectrum of
nodeless, bound Λ orbitals is clearly evident for the 89

ΛY
hypernucleus (Hotchi et al., 2001). The main part of the cross
section arises from associated production on a g9=2 neutron,
while the origin of possible fine structure in the peaks is open
to interpretation (Motoba et al., 2008). The ΔL ¼ 7 transition
dominating the fΛ peak is well matched in the sense that the
peak of the form factor occurs for q ∼ 345 MeV=c and closely
matches the momentum transfer to the hypernucleus. In
general, ðπþ; KþÞ cross sections are found to be roughly a
factor of 100 below those in the ðK−; π−Þ reactions (different
final states are populated) but, in terms of running time, the
decrease in cross section can be more than compensated by the
increased intensity of pion beams. Because the momentum
transfer is high, the cross section falls rapidly with angle and
the angular distribution is not a good indicator of the angular-
momentum transfer.
In contrast to low momentum kaon induced reactions, the Λ

recoil in the ðπþ; KþÞ reaction has substantial polarization at
finite forward angles. This polarization is due to a combina-
tion of the difference of the near and far side absorption of the
incident pion, and the spin dependence of the elementary
interaction. With the exception that polarization creates
specific spin states in the hypernucleus, polarization in the
ðπþ; KþÞ reaction has not been experimentally used in
spectroscopic studies (e.g., angular correlations), as these
experiments require coincidence measurements at angles
where the production rate is low.
The ðπþ; KþÞ reaction has so far been the most productive

spectroscopic reaction across a wide range of nuclei. However,
targets are large (e.g., several cm2 in area and ≈gm=cm2 thick)
which is a factor in limiting the energy resolution. The choice

of target is a factor in the selectivity of the reaction. As noted
earlier, cross sections are proportional to the neutron pickup
spectroscopic factor in the weak-coupling limit. This means
that ideally one should choose a target with a full shell of a
high-j neutron orbit close to the Fermi surface. At A ∼ 90, this
would mean a 90Zr target but 89Y has the advantage that it is
a monotope; the 88Y core nucleus has a 4− ground state
and a low-lying 5− state (at 232 keV) that are both fed by
g9=2 neutron removal and a small correction must be made
to the extracted BΛ values (Hasegawa et al., 1996).
The ðπþ; KþÞ reaction provides a textbook example of the

single-particle shell structureofhypernuclei,withFig. 8 showing
the prime example. InSec. I.F.6,we collect together theΛ single-
particle energies in terms ofBΛ values extracted from ðπþ; KþÞ,
ðe; e0KþÞ, ðK−; π−Þ, and emulsion studies. Most of the values
come from three ðπþ; KþÞ experiments at KEK, namely, E140a
(Hasegawa et al., 1996) (targets 10B, 12C, 28Si, 89Y, 139La, and
208Pb), E336 (Hashimoto et al., 1998; Hashimoto and Tamura,
2006) (targets 7Li, 9Be, 12C, 13C, and 16O), and E369 (Hotchi
et al., 2001) (targets 12C, 51V, and 89Y).All the targets are largely
asingle isotope,eitherbecause thenatural target isamonotope,or
nearly so, or because an enriched target was used (7Li, 10B, 13C,
and 208Pb). For the heavier targets (51V, 89Y, 139La, and 208Pb),
the aim is to identify peaks due to a series ofΛ orbitals based on
holes in the nodeless f7=2, g9=2, h11=2, and i13=2 neutron shells.
For the odd-mass targets there is fragmentation of the neutron
pickup strength due to the presence of an odd proton, and this
must be accounted for in the analysis. In addition, other filled
neutron orbits can make substantial contributions to the cross
sections as canbe seen fromattempts to analyze thedata for 139ΛLa
and 208

ΛPb in Fig. 27 of Hashimoto and Tamura (2006). We note
that although plane-wave impulse approximation (PWIA) cal-
culations seem to capture the essential physics (Bender, Shyam,
andLenske, 2010),DWIAcalculationsgenerallygive inaddition
reliable estimates for the cross sections of states populated in the
ðπþ; KþÞ reaction (Motoba et al., 1988;Millener, 1990;Motoba,
Itonaga, and Yamamoto, 2010).

5. The ðe; e0KþÞ reaction

Traditionally, hypernuclei were produced with secondary
beams of kaons or pions. Because the ðK−; π−Þ reaction is
exothermic, the 3-momentum transfer to the Λ hypernucleus
can be chosen to be small. In the ðK−; π−Þ reaction, the cross
section to substitutional states (i.e., states where the Λ acquires
the same shell quantum numbers as those of the neutron which
it replaces) is relatively large. On the other hand, the ðπþ; KþÞ
reaction has a 3-momentum transfer comparable to the nuclear
Fermi momentum, and the reaction preferentially populates
states with high angular-momentum transfers (Milner et al.,
1985; Bandō and Motoba, 1986). Neither of these two
reactions has significant spin-flip amplitude at forward angles,
and consequently all spectra are dominated by transitions to
non-spin-flip states. Also, aside from early emulsion experi-
ments, mesonic-reaction spectroscopy has generally provided
hypernuclear spectra with energy resolutions ≈2 MeV. This is
due to the intrinsic resolutions of secondary mesonic beam
lines and the target thicknesses required to obtain sufficient
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𝞚𝞚 Hypernulcei 

remarkably close to each other. The shell-model (SM)
estimate for BΛΛ in the nuclear p shell is given simply by

BSM
ΛΛð

A
ΛΛZÞ ¼ 2BΛðA−1ΛZÞ þ hVΛΛiSM; ð51Þ

where hVΛΛiSM is a ΛΛ interaction matrix element identified
withΔBΛΛð 6

ΛΛHeÞ ¼ 0.67% 0.17 MeV. In cluster-model (CM)
calculations (Hiyama et al., 2010), hVΛΛiCM ≡ BΛΛðVΛΛ ≠
0Þ − BΛΛðVΛΛ ¼ 0Þ assumes similar values: 0.54, 0.53, and
056 MeV for 6

ΛΛHe,
10
ΛΛBe, and

11
ΛΛBe, respectively. To apply

Eq. (51), BΛðA−1ΛZÞ is derived from the shell-model calculations
outlined in Sec. II.A.2 on p-shell single-Λ hypernuclei. Apart
from the spin dependence of the ΛN interaction, which is fully
constrained by the γ-ray measurements and their shell-model
analyses, the validity of a uniform shell-model description of
hypernuclei throughout the whole p shell depends on the
constancy of the ΛN spin-independent matrix element V in
the mass range considered. Indeed, excluding 9

ΛBe which
deviates substantially from the other species, a common value
VSM ¼ −1.06% 0.03 MeV can be assigned. In 9

ΛBe, the Λ
hyperon is attached to a somewhat loose α − α structure, but
in 10

ΛΛBe the second Λ is bound with respect a normal 5
ΛHe–α

structure. This suggests an extension of the validity of Eq. (51)
also to 10

ΛΛBe by adding to its right-hand side a correction term
δBSM

ΛΛ due to the normally bound second Λ:

δBSM
ΛΛð

A
ΛΛZÞ ¼ ðA − 6Þ½VðA−1ΛZÞ − VSM'; ð52Þ

whereΛ − Σ contributions≲0.1 MeVweredisregarded.Cluster
models,on theotherhand, are able to treat the 8Becore in termsof
a looseα − α structure, aswell as 9

ΛBeand
10
ΛΛBeasααn andααnn

clusters, respectively, but they encounter difficulties in consis-
tently evaluating spin-dependent ΛN interaction contributions.
Inspection of Table XV shows that the binding energies of

both 10
ΛΛBe and 13

ΛΛB are well reproduced by the shell model,
thereby confirming the interpretations of the corresponding
emulsion events discussed earlier. Of the other ΛΛ hyper-
nuclear candidates, the E373-Hida event (Ahn et al., 2013)
does not fit any reasonable assignment as 11

ΛΛBe or 12
ΛΛBe.

Regarding the species listed in the table as due to E176, they
all correspond to different assignments of the same event, for

which the 13
ΛΛB assignment is statistically preferable (Aoki

et al., 2009).

V. Ξ HYPERNUCLEI

Very little has been established experimentally or phenom-
enologically on the interaction of Ξ hyperons with nuclei.
Dover and Gal (1983), analyzing old emulsion data which
were interpreted as due to Ξ− hypernuclei, obtained an
attractive Ξ-nucleus interaction with a nuclear potential well
depth of −VΞ

0 ¼ 21 − 24 MeV. This range of values agreed
well with the theoretical prediction (Dover and Gal, 1984) for
Ξ in nuclear matter, using the early hard-core model D of the
Nijmegen group (Nagels, Rijken, and de Swart, 1977) to
describe baryon-baryon interactions in a SUð3Þf framework.
However, this is in contrast with the Ξ-nucleus repulsion
obtained using the other hard-core model, model F (Nagels,
Rijken, and de Swart, 1979). Predictions made subsequently
using more detailed G-matrix studies (Yamamoto et al., 1994;
Yamamoto, 1995, 1996) spanned a whole range of Ξ-nucleus
well depths by varying the hard-core radius in these Nijmegen
models. The confidence in the predictive power of model D in
strangeness −2 hypernuclear physics was due, to a large
extent, to its success in yielding the substantial attractive ΛΛ
interaction that was deemed necessary to reproduce the three
known ΛΛ binding energies before 2001. This picture has
changed since then for several reasons.

• Inclusive ðK−; KþÞ spectra taken at KEK and at BNL on
12C (Fukuda et al., 1998; Khaustov et al., 2000a) yield
more moderate values for the attractive Ξ well depth
−VΞ

0 ∼ 15 MeV when fitted near the Ξ−-hypernuclear
threshold.

• The uniquely identified 6
ΛΛHe hypernucleus (Takahashi

et al., 2001) implies a considerably weaker ΛΛ inter-
action than produced by the original version of the
Nijmegen hard-core model D. The Nijmegen soft-core
potentials NSC97 (Stoks and Rijken, 1999) and extended
soft-core potentials ESC04 (Rijken and Yamamoto,
2006b) provide a more realistic framework for the
weaker ΛΛ interaction. The NSC97 potentials slightly
underestimate ΔBΛΛð 6

ΛΛHeÞ, whereas the ESC04 poten-
tials overestimate it, occasionally by about 0.5 MeV,
and the ESC08 potentials only by up to 0.3 MeV
(Yamamoto, Motoba, and Rijken, 2010).

TABLE XV. BΛΛ values (in MeV) from KEK experiments E176 (Aoki et al., 2009) and E373 (Ahn et al., 2013), and as calculated in cluster
models (Hiyama et al., 2002, 2010) and in the shell model (Gal and Millener, 2011). BΛΛð 6

ΛΛHeÞ serves as input in both types of calculations.
The E176 entries offer several assignments to the same single emulsion event observed.

Event A
ΛΛZ B̄ΛðA−1ΛZÞ Bexp

ΛΛ BCM
ΛΛ BSM

ΛΛ

E373-Nagara 6
ΛΛHe 3.12% 0.02 6.91% 0.16 6.91% 0.16 6.91% 0.16

E373-DemYan 10
ΛΛBe 6.71% 0.04 14.94% 0.13 14.74% 0.16 14.97% 0.22a

E176-G2 11
ΛΛBe 8.86% 0.11 17.53% 0.71 18.23% 0.16 18.40% 0.28

E373-Hida 11
ΛΛBe 8.86% 0.11 20.83% 1.27 18.23% 0.16 18.40% 0.28

E373-Hida 12
ΛΛBe 10.02% 0.05 22.48% 1.21 ( ( ( 20.72% 0.20

E176-E2 12
ΛΛB 10.09% 0.05 20.02% 0.78 ( ( ( 20.85% 0.20

E176-E4 13
ΛΛB 11.27% 0.06 23.4% 0.7 ( ( ( 23.21% 0.21

aBSM
ΛΛð

10
ΛΛBeÞ ¼ 2B̄Λð 9ΛBeÞ þ 4½V̄ð 9ΛBeÞ − V̄average' þ hVΛΛiSM; see Eq. (52).
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2.3 ハイパー核・ストレンジネス核物理

ハイパー核の磁気モーメントの測定
具体的な測定方法に関しては検討はされているものの、今のところ確とした答えはない。しかしな
がら、Λ核の磁気モーメントの測定は非常に重要で面白い。5

ΛHe,
9
ΛBe,

13
ΛCなどでは、コア核が磁気

モーメントを持たないので、ΛN -ΣN 混合の影響や媒質効果を受けた (束縛された)Λの磁気モーメン
トが測定できる。

2.3.3.3 高密度核物質の性質は？
S=−1のハイペロンの相互作用
S=−1のハイペロンの相互作用として、中性子が多い環境下でのΛとΣ−の相互作用あるいはポテ
ンシャルの決定が重要となる。Σ−n間相互作用は、これまでの研究で斥力であることはわかってい
るが、もっと定量的な大きさは、前述の Σ+p散乱実験により決定できる。一方、Λのポテンシャル
については、中性子過剰 Λハイパー核の研究、特に、系統的なデータが集まる中で明らかになって
いくと思われる。
S=−2の相互作用とダブルストレンジネス系の研究
S=−2の相互作用の大きさの測定は重要で、特に、ΛΛ間相互作用、Ξ−-原子核ポテンシャル（こ
れは、ΞN(I = 0, 1)の相互作用をその原子核のスピン・アイソスピンで平均化したもの）、さらには
ΞN → ΛΛ （これは Ξ−-原子核ポテンシャルの虚部に相当する）の情報が不可欠である。これらは
J-PARC K1.8ビームラインにおいてダブルストレンジネス系の研究プログラムの様々な実験で測定
される。既に実験提案が認められ近い将来に走るであろう 3つの実験をあげる。
まず第一に、ハイブリッド・エマルション実験 (J-PARC E07)があげられる。これまでダブルス
トレンジネス系の研究で大きな成果を上げてきた手法を更に発展させ、ΛΛ核 (図 2.3.9) をKEK-PS

E373実験の 10倍にあたる 100事象発見し、また、ゲルマニウム検出器 (Hyperball検出器)で Ξ−吸
収に伴うΞ−原子のX線を測定する。さらに、カウンター系による (K−,K+)反応を要求せず、全自
動システムを使って、原子核乾板のスキャニングを行う (general scan) ことにより 1000事象の ΛΛ

核を発見することを目指している。ΛΛ核の核種同定は困難ではあるが、これだけの事象数があれば
10核種程度の同定は期待される。そうなれば、
Λ粒子 2つの束縛エネルギー (BΛΛ)の核種依
存性がわかり、より詳しい ΛΛ相互作用がわ
かる。

ΞN 相互作用については、Ξ−原子X線測
定でレベルシフトを見ることにより、また、
Ξ− 吸収の後にシングル Λ核が 2つ生じるツ
イン・ハイパー核事象の解析によっても、核
表面付近の Ξ−-原子核ポテンシャルが測定で
き、情報が得られる。
他には、ΛΛ核の弱崩壊モードの分岐比の

測定があげられる。通常考えられる非中間子
崩壊モードは、ΛΛ → ΛN であるが、安定な
H粒子は、H → Σ−pのような崩壊をすると
言われているので、ΛΛ → ΣN のようなモー

4
//H

6
//He

10
//Be 11

//Be 12
//Be

13
//B

Z

N

NAGARA MIKAGE
DEMACHIYANAGI (          )

Danysz 
et al.

10
//Be* E176

HIDA

E906

//-Hypernuclear Chart

図 2.3.9: ΛΛ核の核図表。実験で曖昧さなく同定され
ているのは、NAGARAと名付けられた事象 ( 6

ΛΛHe)の
みである。
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「日本の核物理の将来レポート」(in Japanese) (2013)

A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88(2016)035004
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PTEP 2021, 073D02 M. Yoshimoto et al.

Fig. 7. B!− for the !−–14N system of the E373-T1 [42], KISO [25], and IBUKI [26] events, the present
results, theoretical calculations with the WS and Coulomb potential, and theoretical calculations reported in
Refs. [33,34,36].

In case (A), the B!− values of the IRRAWADDY and KINKA events are significantly larger than
that of the 1p state. Thus, these events are attributed to the 1s state, namely the ground-state spin-
doublet (3/2+, 1/2+) of the 15

! C hypernucleus. This is the first observation of the ! hypernuclear 1s
state. The weighted averages of B!− of “IRRAWADDY and the larger KINKA” or “IRRAWADDY
and the smaller KINKA” are obtained to be 6.13 ± 0.25 MeV or 6.46 ± 0.25 MeV, respectively.
The two cases of the IRRAWADDY and KINKA pair have a B!− discrepancy of 1.7 ± 0.8 MeV or
1.3±0.8 MeV, respectively. If the two events correspond to the same member of the 1s spin doublet,
or if the spin–spin splitting is small enough, the discrepancy indicates that the 1s state has a wider
natural width than the 1p state. If the natural width of the 1s state is narrow, IRRAWADDY and
KINKA are assigned to the 1s spin doublet. In this case, B!− of the ground state would be around
6.3 MeV or 8.0 MeV.

In case (B), assuming a wide natural width in the 1p state, the ! hypernuclear transition from the
1p to 1s state is strongly suppressed. Therefore, the IRRAWADDY event and the two cases of the
KINKA event would be in the 1p state. Whichever combination is adopted to the 1p spin doublet,
there must be a 1p state with a central B!− ≥ 4 MeV. A V !

0 value of 20 MeV is obtained for a
B!− of 4 MeV in the 1p state with the imaginary potential depth (W !

0 ) set to 0 MeV as shown in
Fig. 7. As the W !

0 value increases, the V !
0 value increases to keep B!− at 4 MeV. However, the large

V !
0 is inconsistent with the results of the BNL E885 experiment [16], and consequently case (B) is

unlikely. Reference [57] calculated the bound system of the light s-shell ! hypernucleus using the
HAL QCD potential [40]. The decay width corresponding to the ""–!N coupling was estimated,
and then the decay width in the S-wave was obtained to be less than 0.1 MeV with the HAL QCD
and less than 1 MeV with Nijmegen ESC08c. Since the decay width of the P-wave is usually equal
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Fig. 1. A superimposed image from photographs and a schematic drawing of the KISO event.

Fig. 2. Close-up images around each vertex; see Fig. 1 for locations of points and tracks. (a) Points A and B.
From point A, an Auger electron can be seen below track #2. (b) Point C. (c) point D.

Table 1. Range and angle data of related tracks. The ranges and angles for tracks #1 and #2 are discussed in
the text. The total range was measured to be 77.1 ± 0.3 µm from point B to C.

Track Range (µm) theta (deg.) phi (deg.) Comments

#1 8.0 ± 0.3 133.0 ± 3.0 13.2 ± 3.2 Single-hypernucleus
#2 69.1 ± 0.5 40.4 ± 0.9 193.1 ± 1.2 77.1 ± 0.3 µm from B to C
#3 13.3 ± 0.4 102.3 ± 2.3 340.4 ± 1.6
#4 >4990.7 145.0 ± 0.9 85.4 ± 1.3 Out of the emulsion stack
#5 6.7 ± 0.3 49.6 ± 4.2 132.6 ± 4.3 α from 8Be
#6 5.8 ± 0.3 131.0 ± 4.5 318.9 ± 4.7 α from 8Be
#7 2492.0 ± 3.9 43.1 ± 1.3 191.8 ± 1.5
#8 37.3 ± 0.7 131.9 ± 1.3 29.2 ± 1.3

consistent with the decay of the hyperfragment at points B and C, respectively. This event topology
is consistent with an event of at-rest capture of a "− hyperon by a 12C, 14N, or 16O nucleus in the
emulsion, followed by production of twin single-hypernuclei. In the case of "− hyperon capture by
these nuclei, the total A and Z numbers of the hyperfragments do not exceed 17 and 7, respectively.

3/11

Strange nuclear systems cover a broad spectrum of
phenomena. They range from two-body baryon-baryon
interactions, over complex nuclei containing strange bary-
ons, strangeness in hot nuclear systems created in heavy ion
reactions, up to perhaps the inner core of neutron stars.
In contrast to a relatively large amount of information on
S ¼ −1 Λ-hypernuclei, experimental data regarding
S ¼ −2 systems are still scarce. Double-Λ hypernuclei
have represented the preferred method to study the Λ-Λ
interaction, and a pioneering binding energy determination
of 6

ΛΛHe revealed the ΛΛ interaction to be weakly attractive
[1,2]. Only recently, the Ξ−–p interaction was studied by
ALICE [3,4]. From the two-body correlations, the presence
of a strongly attractive interaction was inferred.
In line with single Λ hypernuclei, the study of Ξ

hypernuclei can provides meaningful information on the
ΞN interaction. First ðK−; KþÞ missing-mass spectroscopy
studies were performed by the KEK E224 and BNL E885
collaborations. In both experiments, insufficient energy
resolution prevented the observation of a peak in the bound
state region [5,6]. Assuming a Woods-Saxon type potential,
the BNL E885 experiment estimated the potential depth of
the Ξ to be about 14 MeV which suggests a binding energy
around 4.5 MeV. While an initial J-PARC experiment [7]
measured the missing mass spectrum of the 12CðK−; KþÞ
reaction, a new experiment with a much improved energy
resolution of better than 2 MeV FWHM is now planned at
J-PARC [8].
Several emulsion experiments reported the possibility of

an attractive Ξ-nucleus interaction. A remarkable event
named “KISO” was found by the KEK E373 experiment
[9]. The decay mode of that event was uniquely identified
to be Ξ− þ 14N → 10

ΛBeþ 5
ΛHe. For the binding energy of

the Ξ− hyperon, BΞ− , a value of 3.87% 0.21 MeV or
1.03% 0.18 MeV was deduced, depending whether the
10
ΛBe daughter nucleus is produced in the ground state or
the excited state, respectively [10]. In either scenario, the
bound state of the Ξ−–14N system is expected to be deeper
than the atomic 3D orbit.
The ΞN interaction can also be extracted by measuring

the energy shift and width of x rays from Ξ atoms. Two
experiments involving Ξ-atomic x-ray measurements using
Ge detectors have been proposed at J-PARC [11,12], E07
being the one described in this paper.
A theoretical calculation of the binding energy of the

Ξ−–14N system was presented by Yamaguchi et al. using
the ΞN one-boson-exchange potential called the Ehime
potential [13]. In this model, the coupling constants were
adjusted to reproduce the experimental result of the
Ξ−–12C bound states with BΞ− ∼ 0.6 MeV observed in
the KEK E176 experiment [10,14]. The calculation also
predicted for the Ξ−–11B system a ground state binding
energy, which is in agreement with the excitation energy
spectrum in the BNL E885 experiment. More recently, T. T.
Sun et al. performed a theoretical calculation with the

relativistic-mean-field and Skyrme-Hartree-Fock models
[15]. The preferred interpretation of the KISO event was
an observation of an excited state of the 10

ΛBe. When the ΞN
interaction was adjusted to reproduce the binding energy
for the KISO event assuming the 1p state for an excited
10
ΛBe, the predicted Ξ− removal energy of 15ΞC in the 1s state
was 7.2–9.4 MeV. Very recent Lattice QCD calculations
with almost physical quark masses (mπ ¼ 146 MeV),
provided the ΞN interaction potentials for various S ¼ −2
channels [16]. These lattice results indicated that the
coupling between ΛΛ and ΞN states is weak.
J-PARC E07 is an emulsion-counter hybrid experiment

aiming to identify the decay modes of about 10 events of
S ¼ −2 hypernuclei [12]. The experiment was carried out
using a 1.81 GeV=c K− beam at the K1.8 beam line of the
Hadron Experimental Facility at J-PARC [17,18]. The Ξ−

hyperons produced in the quasifree “p”ðK−; KþÞΞ− reac-
tion in a diamond target of 9.87 g=cm2 thickness were
injected into an emulsion module located downstream
of the target. The emulsion module consisted of two
380-μm-thick sheets and eleven 1-mm-thick sheets with
34.5 × 35.0 cm2 area. The incident Ξ− hyperons were
eventually slowed down and captured at rest in the atomic
orbit of a nucleus in the emulsion material. Ξ hypernuclei or
double-Λ hypernuclei are generated at the capture point
with some probability [19], and the decay tracks of charged
particles are recorded in the emulsion module. In total,
118 emulsion modules were exposed to 1.13 × 1011 K−

particles. About 100 events of S ¼ −2 hypernuclei were
expected to be produced as a result of the 104 Ξ− hyperons
stopped in the emulsion. More details on the experimental
setup can be found in Ref. [20]. The Ξ-atomic x-rays were
also measured by using germanium detectors. Details are
presented in Ref. [21].
A remarkable event forming a twin-Λ hypernuclear

topology was found in the tenth sheet of module #047.
Figure 1 shows a superimposed image and a schematic
drawing of the event. We named the event “IBUKI” [22].

#1

#2

#4
#5 #6

#3

#7
#8

#9

A

B

C

10 m

FIG. 1. Superimposed image and schematic drawing of the
IBUKI event.
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1.27! 0.21 MeV. This is the first observation of a twin-Λ
hypernuclei event in which the binding energy was pre-
cisely determined.
In the calculation of Yamaguchi et al. using the Ehime

potential [13], the BΞ− values for the Ξ−–14N system are
5.93 and 1.14 MeV in the nuclear 1s (atomic 1S) and
nuclear 1p (atomic 2P) states, respectively. The bound
states of both the IBUKI and the KISO events are consistent
with the calculation for the 1p state. In the nuclear 1p state
both Coulomb and nuclear forces are at work, resulting in a
binding energy of 0.39 and 0.75 MeV, respectively,
according to this calculation. Thus the result is a
Coulomb-assisted nuclear bound state. The calculated
BΞ− of 15

Ξ C and 12
Ξ Be by T. T. Sun et al. [15] are also

consistent with the experimental data.
From the above considerations, in order to satisfy the

experimental results of KEK E176, BNL E885, the KISO
event, and the IBUKI event, the interpretation of the KISO
event likely results in BΞ− ¼ 1.03! 0.18 MeV. In that
case, the energy level of Ξ− in both KISO and IBUKI
events is considered to be the 1p state, although several
spins are possible. Here, the isospin dependence of the ΞN
interaction (Lane potential) is proportional to 1=A and has a
weak effect. Assuming that the initial state is the same in
both KISO and IBUKI events, the weighted average of the
binding energy of Ξ− in the 1p state is obtained to be
1.13! 0.14 MeV for the Ξ−–14N system. This now gives
the depth of the Ξ− potential for the first time. On the other
hand, in the case of the binding energy of Ξ− in the 1p state
being 3.87! 0.21 MeV in the KISO event, the indicated
width is too wide, despite the large contribution of the
Coulomb potential. Thus, the present result is the first
observation of the Coulomb-assisted bound state for the
Ξ−–14N system. The probabilities of Ξ− hyperon capture
from the s, p, and d orbits for 14N atom were estimated to
be 0.00–0.07%, 0.2–5.7%, and 47.9–75.7%, respectively
[34,35]. Therefore, the observation of a Ξ− capture event in

the p orbit experimentally indicates the ΞN–ΛΛ coupling is
weak, which agrees with the recent study of the lattice QCD
calculations [16].
In summary, the J-PARC E07 experiment observed a

twin-Λ hypernuclei event, named IBUKI. The reaction
process was clearly identified as Ξ− þ 14N → 10

ΛBeþ 5
ΛHe.

The binding energy of the Ξ− þ 14N system was deter-
mined to be 1.27! 0.21 MeV by applying kinematic
fitting. By considering an excited state, the energy level
for 10

ΛBe was interpreted to be the ground state (1−) or the
(2−) spin doublet partner. This is the first observation of
twin-Λ hypernuclei in which the binding energy is pre-
cisely determined. By considering the experimental data
and the theoretical calculations, the energy level of Ξ− is
likely the Coulomb-assisted nuclear 1p state for both the
KISO and IBUKI events. Assuming the same initial state
for both events, a binding energy of 1.13! 0.14 MeV was
obtained as the weighted average. Furthermore, the obser-
vation of a Ξ− capture event in the p orbit indicates that the
ΞN–ΛΛ coupling is weak.
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TABLE V. Ranges and emission angles for vertex C with the
kinematic fitting. The value of χ2=ndf is 6.6=4.

Vertex Track Range [μm] θ [deg] ϕ [deg]

C #7 19.1! 0.2 87.0! 1.0 308.9! 0.9
#8 2146! 71 29.5! 1.5 236.3! 2.2
#9 2194! 28 105.7! 1.0 121.6! 0.8

TABLE VI. Summary of the binding energy of the Ξ− hyperon
measured in the past and present experiments.

Event Target Decay mode BΞ− [MeV]

KISO [9,10] 14N 10
ΛBe

5
ΛHe 3.87! 0.21

14N 10
ΛBe*

5
ΛHe 1.03! 0.18

IBUKI (present data) 14N 10
ΛBe

5
ΛHe 1.27! 0.21
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1.27! 0.21 MeV. This is the first observation of a twin-Λ
hypernuclei event in which the binding energy was pre-
cisely determined.
In the calculation of Yamaguchi et al. using the Ehime

potential [13], the BΞ− values for the Ξ−–14N system are
5.93 and 1.14 MeV in the nuclear 1s (atomic 1S) and
nuclear 1p (atomic 2P) states, respectively. The bound
states of both the IBUKI and the KISO events are consistent
with the calculation for the 1p state. In the nuclear 1p state
both Coulomb and nuclear forces are at work, resulting in a
binding energy of 0.39 and 0.75 MeV, respectively,
according to this calculation. Thus the result is a
Coulomb-assisted nuclear bound state. The calculated
BΞ− of 15

Ξ C and 12
Ξ Be by T. T. Sun et al. [15] are also

consistent with the experimental data.
From the above considerations, in order to satisfy the

experimental results of KEK E176, BNL E885, the KISO
event, and the IBUKI event, the interpretation of the KISO
event likely results in BΞ− ¼ 1.03! 0.18 MeV. In that
case, the energy level of Ξ− in both KISO and IBUKI
events is considered to be the 1p state, although several
spins are possible. Here, the isospin dependence of the ΞN
interaction (Lane potential) is proportional to 1=A and has a
weak effect. Assuming that the initial state is the same in
both KISO and IBUKI events, the weighted average of the
binding energy of Ξ− in the 1p state is obtained to be
1.13! 0.14 MeV for the Ξ−–14N system. This now gives
the depth of the Ξ− potential for the first time. On the other
hand, in the case of the binding energy of Ξ− in the 1p state
being 3.87! 0.21 MeV in the KISO event, the indicated
width is too wide, despite the large contribution of the
Coulomb potential. Thus, the present result is the first
observation of the Coulomb-assisted bound state for the
Ξ−–14N system. The probabilities of Ξ− hyperon capture
from the s, p, and d orbits for 14N atom were estimated to
be 0.00–0.07%, 0.2–5.7%, and 47.9–75.7%, respectively
[34,35]. Therefore, the observation of a Ξ− capture event in

the p orbit experimentally indicates the ΞN–ΛΛ coupling is
weak, which agrees with the recent study of the lattice QCD
calculations [16].
In summary, the J-PARC E07 experiment observed a

twin-Λ hypernuclei event, named IBUKI. The reaction
process was clearly identified as Ξ− þ 14N → 10

ΛBeþ 5
ΛHe.

The binding energy of the Ξ− þ 14N system was deter-
mined to be 1.27! 0.21 MeV by applying kinematic
fitting. By considering an excited state, the energy level
for 10

ΛBe was interpreted to be the ground state (1−) or the
(2−) spin doublet partner. This is the first observation of
twin-Λ hypernuclei in which the binding energy is pre-
cisely determined. By considering the experimental data
and the theoretical calculations, the energy level of Ξ− is
likely the Coulomb-assisted nuclear 1p state for both the
KISO and IBUKI events. Assuming the same initial state
for both events, a binding energy of 1.13! 0.14 MeV was
obtained as the weighted average. Furthermore, the obser-
vation of a Ξ− capture event in the p orbit indicates that the
ΞN–ΛΛ coupling is weak.
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Ξ−

Ξ−

Ξ−

4ρ0 Ξ0 7ρ0

DD97D, WKH VHFRQG DSSHDULQJ K\SHURQ LV WKH     K\SHURQ,
ZKLFK  FDQ  ELQG  ZLWK  WKH  QXFOHRQV  WR  IRUP  WKH       K\SHU-
QXFOHL.  :LWK  WKH  GHQVLW\  LQFUHDVLQJ,  WKH       K\SHURQ  XVX-
DOO\ HPHUJHV DERYH     DQG     DSSHDUV DERYH    .

2ρ0

Λ

7KH  FRUUHVSRQGLQJ  SDUWLFOH  IUDFWLRQV  RI  EDU\RQV  DV  D
IXQFWLRQ RI  EDU\RQ QXPEHU  GHQVLW\  ZLWK  GLIIHUHQW  NL5MF
DQG DD5MF SDUDPHWHU VHWV DUH VKRZQ LQ FLJ. 3 DQG FLJ. 4,
UHVSHFWLYHO\. AW D ORZ-GHQVLW\ UHJLRQ, WKH K\SHURQLF PDWWHU
LV  DOPRVW  FRQVLVWLQJ  RI  QHXWURQV.  7KH  SURWRQ  DQG  HOHFWURQ
IUDFWLRQV UDSLGO\ LQFUHDVH ZLWK GHQVLW\. :KHQ WKH FKHPLFDO
SRWHQWLDO RI WKH HOHFWURQ LV ODUJHU WKDQ WKH IUHH PXRQ PDVV,
WKH  PXRQ ZLOO  DULVH.  AERYH     , WKH  YDULRXV  K\SHURQV  DS-
SHDU LQ WKH K\SHURQLF PDWWHU ZKHQ WKH\ VDWLVI\ WKH FKHPLF-
DO  HTXLOLEULXP  FRQGLWLRQV.  AW  WKH  KLJK-GHQVLW\  UHJLRQ,  WKH
IUDFWLRQV RI YDULRXV SDUWLFOHV DUH VWURQJO\ GHSHQGHQW RQ WKH
NN  DQG NY  LQWHUDFWLRQV. HRZHYHU,  DW  DOO  HYHQWV,  WKH   IUDF-
WLRQV RI     K\SHURQ ZLOO DSSURDFK WKDW RI QHXWURQV. IQ VRPH
FDVHV, LW FDQ H[FHHG WKRVH RI QHXWURQV.

M−R

AIWHU VROYLQJ WKH 7O9 HTXDWLRQ, WKH PDVV-UDGLXV UHOD-
WLRQ RI D VWDWLF QHXWURQ VWDU LV REWDLQHG, ZKHUH WKH ER6V RI
QHXWURQ VWDU PDWWHU LQ WKH SUHYLRXV SDUW DUH XVHG. IQ FLJ. 5,
WKH  PDVV-UDGLXV  (   )  UHODWLRQV  IURP  NL5MF  VHWV  DQG
DD5MF VHWV DUH VKRZQ LQ SDQHO (D) DQG SDQHO (E), UHVSHFW-
LYHO\.  7KH  FRQVWUDLQWV  IURP  WKH  REVHUYDEOHV  RI  PDVVLYH

QHXWURQ  VWDUV,  P65  J1614-2230  DQG  P65  J034+0432  DUH
DOVR VKRZQ DV WKH VKDGHG EDQGV. IQ 2019, WKH NHXWURQ VWDU
IQWHULRU CRPSRVLWLRQ  E[SORUHU  (NICE5)  FROODERUDWLRQ   UH-
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FLJ. 4    (FRORU RQOLQH) PDUWLFOH IUDFWLRQV RI EDU\RQV DV D IXQFWLRQ RI EDU\RQ QXPEHU GHQVLW\ ZLWK GLIIHUHQW DD5MF SDUDPHWHU VHWV.
 

 

7DEOH 5    H\SHURQ WKUHVKROGV FDOFXODWHG ZLWK GLIIHUHQW 5MF
HIIHFWLYH LQWHUDFWLRQV IRU K\SHURQLF PDWWHU.  7KH XQLW  RI
WKH GHQVLW\ LV IPí3.

 

MRGHO 1st ρth    (   ) 2nd ρth    (   ) 3rd ρth    (   ) 4th ρth    (   )

NL3 Λ    (0.2804) Ξ−    (0.6078) Ξ0    (0.9723) Σ−   (1.3545)

BLJASSOH Λ    (0.3310) Σ−    (0.4895) Ξ−    (0.6191) Ξ0    (1.2758)

7M1 Λ    (0.3146) Σ−    (0.9995) Ξ−    (1.0228)

I8F68 Λ    (0.3800) Σ−    (0.5645)

DD-L=1 Λ    (0.3294) Σ−    (0.4034) Ξ−    (0.6106) Ξ0    (1.2935)

DD-ME; Λ    (0.3264) Σ−    (0.3871) Ξ−    (0.5967) Ξ0    (1.2699)

DD-ME2 Λ    (0.3402) Σ−    (0.4244) Ξ−    (0.4895) Ξ0    (1.3237)

DD-ME1 Λ    (0.3466) Σ−    (0.4424) Ξ−    (0.4740) Ξ0    (1.3545)

DD2 Λ    (0.3387) Σ−    (0.4147) Ξ−    (0.5699) Ξ0    (1.3733)

PKDD Λ    (0.3264) Ξ−    (0.4016) Σ−    (0.5126) Ξ0    (1.0759)

7:99 Λ    (0.3696) Σ−    (0.4167) Ξ−    (0.7109) Ξ0    (1.7052)

DD9 Λ    (0.3547) Σ−    (0.4850) Ξ−    (0.7723)

DD97 Λ    (0.4465) Ξ−    (0.4941) Σ−    (0.6220)

DD97D Λ    (0.4465) Ξ−    (0.4963) Σ−    (0.6163)
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DQG DD5MF SDUDPHWHU VHWV DUH VKRZQ LQ FLJ. 3 DQG FLJ. 4,
UHVSHFWLYHO\. AW D ORZ-GHQVLW\ UHJLRQ, WKH K\SHURQLF PDWWHU
LV  DOPRVW  FRQVLVWLQJ  RI  QHXWURQV.  7KH  SURWRQ  DQG  HOHFWURQ
IUDFWLRQV UDSLGO\ LQFUHDVH ZLWK GHQVLW\. :KHQ WKH FKHPLFDO
SRWHQWLDO RI WKH HOHFWURQ LV ODUJHU WKDQ WKH IUHH PXRQ PDVV,
WKH  PXRQ ZLOO  DULVH.  AERYH     , WKH  YDULRXV  K\SHURQV  DS-
SHDU LQ WKH K\SHURQLF PDWWHU ZKHQ WKH\ VDWLVI\ WKH FKHPLF-
DO  HTXLOLEULXP  FRQGLWLRQV.  AW  WKH  KLJK-GHQVLW\  UHJLRQ,  WKH
IUDFWLRQV RI YDULRXV SDUWLFOHV DUH VWURQJO\ GHSHQGHQW RQ WKH
NN  DQG NY  LQWHUDFWLRQV. HRZHYHU,  DW  DOO  HYHQWV,  WKH   IUDF-
WLRQV RI     K\SHURQ ZLOO DSSURDFK WKDW RI QHXWURQV. IQ VRPH
FDVHV, LW FDQ H[FHHG WKRVH RI QHXWURQV.
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AIWHU VROYLQJ WKH 7O9 HTXDWLRQ, WKH PDVV-UDGLXV UHOD-
WLRQ RI D VWDWLF QHXWURQ VWDU LV REWDLQHG, ZKHUH WKH ER6V RI
QHXWURQ VWDU PDWWHU LQ WKH SUHYLRXV SDUW DUH XVHG. IQ FLJ. 5,
WKH  PDVV-UDGLXV  (   )  UHODWLRQV  IURP  NL5MF  VHWV  DQG
DD5MF VHWV DUH VKRZQ LQ SDQHO (D) DQG SDQHO (E), UHVSHFW-
LYHO\.  7KH  FRQVWUDLQWV  IURP  WKH  REVHUYDEOHV  RI  PDVVLYH

QHXWURQ  VWDUV,  P65  J1614-2230  DQG  P65  J034+0432  DUH
DOVR VKRZQ DV WKH VKDGHG EDQGV. IQ 2019, WKH NHXWURQ VWDU
IQWHULRU CRPSRVLWLRQ  E[SORUHU  (NICE5)  FROODERUDWLRQ   UH-
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1.44+0.15
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12.39+1.30
−0.98

2.072+0.006 7
−0.066 M" et al. 13.7+2.6

−1.5

2.08±0.07 M" et al.

1.4 M"

SRUWHG DQ DFFXUDWH PHDVXUHPHQW RI PDVV DQG UDGLXV RI 365
J0030+0451,  VLPXOWDQHRXVO\.  IW  PD\  EH  D  PDVV  RI

  ZLWK D UDGLXV RI      NP>137@ DQG D PDVV
RI      ZLWK  D  UDGLXV  RI       NP>138@  E\  WZR
LQGHSHQGHQW  DQDO\VLV  JURXSV.  5HFHQWO\,  WKH  UDGLXV  RI  WKH
SXOVDU 365 J0740+6620 ZLWK PDVV ZDV UHSRUWHG E\ WZR LQ-
GHSHQGHQW  JURXSV  EDVHG  RQ  1ICE5  DQG  ;-UD\  MXOWL-MLU-
URU  (;MM-1HZWRQ)  REVHUYDWLRQV.  7KH  LQIHUUHG  UDGLXV  RI
WKLV PDVVLYH 16 LV FRQVWUDLQHG WR     NP IRU WKH PDVV

  E\ 5LOH\    
>139@ DQG     NP IRU WKH

PDVV       E\  MLOOHU       DW  68%  FUHGLEOH
OHYHO>16@. 7KHVH FRQVWUDLQWV IURP 1ICE5 DQDO\]HG E\ 5LOH\
eW aO. DUH SORWWHG LQ FLJ. 5. MHDQZKLOH, WKH UDGLXV DW  
H[WUDFWHG IURP G:170817 LV DOVR VKRZQ>18@.

2.77 M"

1.4 M"

1.4 M"

L = 110.6
L = 118.3

APRQJ DOO SDUDPHWHU VHW XVHG, 1L3 SUHGLFWV WKH KHDY-
LHVW QHXWURQ VWDU PDVV (   ) GXH WR LWV KDUG ER6, ZKLOH
WKH  FRUUHVSRQGLQJ  UDGLXV  DW       GRHV  QRW  VDWLVI\  WKH
PHDVXUHPHQWV  IURP  G:170817  DQG  1ICE5.  IW  FDQ  EH
IRXQG WKDW WKH UDGLL DW      IURP 1L3 DQG 7M1 VHWV DUH
PXFK ODUJHU WKDQ WKRVH IURP RWKHU 5MF VHWV. 7KLV LV FDXVHG
E\  WKHLU  ODUJH  VORSH  RI  V\PPHWU\  HQHUJ\,      MH9
IURP 7M1 DQG     MH9 IURP 1L3. IQ RXU SUHYLRXV
ZRUNV>140í141@,  WKH  H[WHQGHG  7M1  DQG  I8F68  SDUDPHWHU

L

L 1.4 M"

L

L
208Pb

208Pb
L

2 M" 1.4 M"

2.5 M" 1.4 M"

VHWV, ZKLFK FDQ JHQHUDWH GLIIHUHQW     DQG NHHS WKH LVRVFDODU
SURSHUWLHV  RI  QXFOHDU  PDQ\-ERG\  V\VWHPV,  ZHUH  DSSOLHG  WR
V\VWHPDWLFDOO\  VWXG\  WKH  V\PPHWU\  HQHUJ\  HIIHFW  RQ  WKH
QHXWURQ  VWDU.  :H  IRXQG  WKDW  WKHUH  LV  D  VWURQJ  FRUUHODWLRQ
EHWZHHQ WKH     DQG WKH UDGLXV RI WKH QHXWURQ VWDU DW    ,
ZKLOH  LWV  LQIOXHQFH  RQ  WKH  PD[LPXP  PDVV  RI  WKH  QHXWURQ
VWDU  LV  YHU\  VPDOO.  FXUWKHUPRUH,  WKH  WLGDO  GHIRUPDELOLW\,
ZKLFK  LV  UHODWHG  WR  WKH  UDGLXV  RI  QHXWURQ  DOVR  SURYLGHV  WKH
FRQVWUDLQWV  WR     . FURP  WKH  SUHVHQW  DVWURSK\VLFDO   REVHUY-
DEOHV, WKH VORSH RI V\PPHWU\ HQHUJ\ VKRXOG EH OHVV WKDQ 80
MH9.  2Q  WKH  RWKHU  KDQG,       LV  DOVR  UHODWHG  WR  WKH  QHXWURQ
VNLQ RI WKH QHXWURQ-ULFK QXFOHL, VXFK DV    . HRZHYHU, UH-
FHQW H[SHULPHQWDO GDWD DERXW WKH QHXWURQ VNLQ RI     IURP
35E;II  SUHIHUV  WKH  ODUJHU     

>142í144@.  7KLV  FRQWUDGLFWLRQ
VKRXOG EH GLVFXVVHG LQ GHWDLO LQ WKH IXWXUH. 7KH VRIWHU ER6V
IURP I8F68,  DD9,  DD97,  DQG  DD97D FDQQRW  JHQHUDWH
WKH      QHXWURQ VWDUV  DQG WKH  UDGLL  DW       IURP WKHP
DUH VPDOOHU FRPSDUHG WR WKH RWKHU VHWV. BLJASSOH, DD-L=1,
DQG  DD-ME;  VHWV  FDQ  SURGXFH  WKH  QHXWURQ  VWDU  KHDYLHU
WKDQ     ,  ZKRVH  UDGLL  DW       DOVR  DFFRUGV  ZLWK  WKH
FRQVWUDLQWV IURP JUDYLWDWLRQDO ZDYH DQG 1ICE5. 7KHUHIRUH,
ZH  FDQQRW  H[FOXGH  WKH  SRVVLELOLW\  RI  WKH  VHFRQGDU\  LQ
G:190814 DV D QHXWURQ VWDU>145@.  FRU WKH PDVVLYH QHXWURQ
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FLJ. 5    (FRORU RQOLQH) 7KH QHXWURQ DQG K\SHURQLF VWDU PDVVHV DV IXQFWLRQV RI UDGLXV IRU 1L5MF DQG DD5MF VHWV. CRQVWUDLQWV IURP
DVWURQRPLFDO REVHUYDEOHV IRU WKH PDVVLYH QHXWURQ VWDU, 1ICE5, DQG G:170817 DUH DOVR VKRZQ. 3DQHOV (D) DQG SDQHO (E) IRU WKH
QHXWURQV VWDU PDWWHU IURP WKH 1L5MF DQG DD5MF PRGHOV, UHVSHFWLYHO\. 3DQHOV (F) DQG SDQHO (G) IRU WKH K\SHURQLF VWDU PDW-
WHU IURP WKH 1L5MF DQG DD5MF PRGHOV, UHVSHFWLYHO\.

 

  ㅜ 2 期 H8A1G KDL[XDQ eW aO:  IQYHVWLJDWLRQ RQ WKH H\SHURQLF 6WDU LQ 5HODWLYLVWLF MHDQ-ILHOG MRGHO ā 145 ā  

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Nucl. Phys. Rev. 39(2022)35
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|S|=2 sector: p-Ξ- interaction and first test of LQCD

• Observation of the strong interaction beyond Coulomb
• Agreement with lattice calculations confirmed in pp and p-Pb colliding systems
• At finite density HAL QCD potentials predict in PNM a slightly repulsive UΞ ~+6 MeV(*) →

stiffening of the EoS

16
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Hyperon-nucleon femtoscopy 
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Theoretical nuclear structure methods 

✓ ab initio methods

     H. Nemura, Y. Akaishi, and Y. Suzuki, Phys. Rev. Lett. 89(2002)142504

      E. Hiyama and T. Yamada, Prog. Part. Nucl. Phys. 63(2009)339 

      D. Lonardoni, S. Gandolfi, and F. Pederiva, Phys. Rev. C 87(2013)041303(R)

      R. Wirth, et al. Phys. Rev. Lett. 113(2014)192502


✓Shell model

   D. J. Millener, Nucl. Phys. A 881(2012)298


✓Skyrme Hartree-Fock model

     M. Rayet, Ann. Phys. (NY) 102(1976)226     

      X. R. Zhou, et al. Phys. Rev. C 76(2007)034312 

      H.-J. Schulze and T. Rijken, Phys. Rev. C 88(2013)024322 

      Y. Zhang, H. Sagawa, and E. Hiyama Phys. Rev. C 103(2021)034321    


✓ Covariant density functional theory  

     H. Shen, F. Yang, and H. Toki, Prog. Theor. Phys. 115(2006)325 
      R. L. Xu, C. Wu, and Z. Z. Ren, J. Phys. G 39(2012)085107 
      T. T. Sun, et al., Phys. Rev. C 94(2016)064319  
      S. Y. Ding, Z. Qian, B. Y. Sun, and W. H. Long, Phys. Rev.C 106(2022)054311 
      Y. T. Rong, P. W. Zhao, and S. G. Zhou, Phys. Lett, B, 807(2020)135533
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Europe muon collaboration effect 

• Goal was a measurement of the lepton-nucleon 
cross section at high Q2

• To achieve statistical precision in a 
reasonable amount of time, an iron target 
was used, on the assumption that 

meaning

Discovery of the EMC effect
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�6 pn energy electron facilities (on scale of 10 GeV) have provided the highest precision at large x
(> 0.3). See figure 1 for data on iron and copper targets. The low-to-moderate x regions show
interesting shadowing and anti-shadowing behaviors, while the suppression of the per-
nucleon cross section for 0.3<x<0.7 is the hallmark of the EMC effect. For x>0.7
effects from the Fermi motion of the nucleons in the nucleus begin to dominate, which causes
the rapid rise in the cross-section ratio in this region.

The most comprehensive data sets with high precision at large x come from SLAC E139
[17] and JLab E03-103 [20]. The SLAC experiment measured the EMC effect for a wide
range of nuclei, from 4He to Au with good precision up to x≈0.8. One of the outcomes of
E139 was an investigation of the detailed nuclear dependence of the EMC effect. It was found
that the nuclear dependence of the EMC effect at x =0.6 is consistent with both a
logarithmic A dependence or a linear dependence on average nuclear density (often para-
metrized as an A1/3 dependence).

The SLAC and early high energy measurements showed a number of global properties of
the EMC effect:

• The shape of the EMC effect (shadowing, anti-shadowing, and EMC regions at small,
moderate, and large x, respectively) is universal and observed in all nuclei.

• The EMC effect displays little Q2 dependence over the full x range.
• At small x and large x, the EMC effect grows with A, while there is little apparent A
dependence in the anti-shadowing region.

Since the first observation of the EMC effect, many theoretical models have been proposed
and can be subdivided into two categories. One includes only ‘traditional’ nuclear physics
effects, using convolution models with binding effects, detailed models of the nucleon
momentum distribution, or pion-exchange contributions. The other category invokes more
exotic explanations such as re-scaling of quark distributions in the nuclear environment,
contributions of six or nine quark bags, or modification of the internal structure of the
nucleons such as ‘nucleon swelling’ or suppression of point-like nucleon configurations.
Several reviews give an overview of models of the EMC effect [11, 12, 14, 21, 22].

Figure 1. EMC effect for iron (BCDMS collaboration [16] and SLAC E139 [17]) and
copper (EMC collaboration [18]). Figure from [19].

J. Phys. G: Nucl. Part. Phys. 46 (2019) 093001 Topical Review

4

I. C. Cloet, et al. J. Phys. G 46(2018)093001
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Electron-Ion Collider
U.S. Department of Energy Selects Brookhaven National 
Laboratory to Host Major New Nuclear Physics Facility
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Relativistic many-body theories from quark level

✓ baryons are not point particles!


✓ baryon properties change in medium!


✓ quark-gluon plasma!

 ........
Hadron model many-body method

Self-consistently

𝛔,𝛚,𝛒
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✓ Quark meson coupling (QMC) model

     K. Tsushima, et al. Nucl. Phys. A 630(1998)691 

✓ Friedberg-Lee model

     J. S. Liang and H. Shen, Phys. Rev. C88 (2013) 035208

     ……

✓Quark mean field (QMF) model

    H. Toki, U. Meyer, A. Faessler, and R. Brockmann, Phys. Rev. C 58 (1998) 3749 
    H. Shen, H. Toki, Nucl. Phys. A 707 (2002) 469      
   

Many-body methods from quark model
1.1. QUANTUM CHROMODYNAMICS AND PHENOMENOLOGICAL MODELS

The macroscopic average of the energy-momentum tensor given by Eq.(1.8), for a perfect
fluid (in co-moving coordinates) in a static and spherically symmetric space-time, it is diagonal
and can be written as:

hTµ⌫i =

0

BB@

E 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

1

CCA (1.10)

being E the total energy density and P is the total pressure of the system. These two expres-
sions, for an ideal gas made of quarks u, d and s, can be written as

E =
X

f=u,d,s

Ef +Bbag, P =
X

f=u,d,s

Pf � Bbag, (1.11)

Ef = ⌦f + µfNf + TSf , Pf = �⌦f (1.12)

where the sum is extended through the quarks flavor number; the terms Ef and Pf correspond
to the kinetic contributions of quarks to the energy density and pressure given by ⌦f , µf , Nf ,
T , Sf , which are: the thermodynamical grand potential, the chemical potential, the particle
density, temperature and entropy respectively; this is illustrated in Fig.(1.1).

Figure 1.1: Recreative illustration of how it is realized the color confinement in the MIT Bag
Model for systems with high densities.

Despite its simplicity, it is a model widely used in the description of the SQM at high den-
sities, which takes account of confinement and asymptotic freedom, which is essential for stars.
Among its main deficiencies are: not being a dynamical model as the masses of quarks must
be fixed in advance, like as well as Bbag. It also violates the chiral symmetry and confinement
are described in terms of Bbag as a free parameter [28, 29].

10
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Outline 
1 Introduction 

2 The quark mean field model 

3 The strangeness with QMF model 

4 The summary and perspective
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Quark level

• Constituent quark in Dirac equation
[�i↵ ·r+ �m⇤

i + �U(r)]qi(r) = "⇤i qi(r)

where, the effective quark mass is
m⇤

i = mi + gi��

"⇤i = "i � gi! � gi⇢⇢⌧3

and effective single particle energy is

• Confinement potential

U(r) =
1

2
(1 + �0)(ar2 + V0)

• Center-of-mass corrections

hB|
3X

i=1

�0(i){1
3
�(i) ·

3X

j=1

~pj +
1

2
(1 + �0(i))[U(ri)� U(⇢i)]}|Bi

X. Xing, J.H., and H. Shen, Phys. Rev. C 94 (2016) 044308
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Quark level

• Pionic self-energy correction

quarks, respectively. τ3q is the third component of isospin matrix, and mq is the bare quark

mass. Now we can define the following quantities for later convenience,

ε′q = ε∗q − V0/2, (3)

m′
q = m∗

q + V0/2,

where the effective single quark energy is given by, ε∗q = εq − gqωω − τ3qgqρρ and the effective

quark mass by m∗
q = mq − gqσσ [18]. We also introduce λq and r0q as

λq = ε′q +m′
q, (4)

r0q = (aλq)
− 1

4 .

The nucleon mass in nuclear medium can be expressed as the binding energy of three quarks

named as zeroth-order term, after solving the Dirac equation (2), formally

E∗0
N =

∑

q

ε∗q . (5)

The quarks are simply confined in a two-body confinement potential. Three corrections

will be taken into account in the zeroth-order nucleon mass in nuclear medium, including the

center-of-mass correction εc.m., the pion correction δMπ
N , and the gluon correction (∆EN)g.

The pion correction is generated by the chiral symmetry of QCD theory and the gluon

correction by the short-range exchange interaction of quarks. The center-of-mass correction

can be obtained [34] from

εc.m. = 〈N |Hc.m.|N〉, (6)

where Hc.m. is the center of mass Hamiltonian density and |N〉 is the nucleon state. When

the nucleon wave function is constructed by the quark wave functions, the center-of-mass

correction comes out as

εc.m. =
77ε′q + 31m′

q

3(3ε′q +m′
q)

2r20q
. (7)

In order to restore the chiral symmetry in nucleon, an elementary pion field is introduced

in the present model. Pion contribution is zero in first-order perturbation theory due to

its pseudovector properties. Therefore, we should treat it with second-order perturbation

theory. Then, the pionic self-energy correction on nucleon mass becomes,

δMπ
B = −

∑

k

∑

B′

V †BB′

j V BB′

j

wk
, (8)

5
• Gluon correction

where
∑

k
≡

∑

j

∫

d3k/(2π)3, wk = (k2 +m2
π)

1/2 is the pion energy, and V BB′

j represents the

baryon pion absorption vertex function in the point-pion approximation. Then it can be

simplified as

δMπ
N = −

171

25
Iπf

2
NNπ, (9)

where,

Iπ =
1

πm2
π

∫ ∞

0

dk
k4u2(k)

w2
k

, (10)

with the axial vector nucleon form factor,

u(k) =

[

1−
3

2

k2

λq(5ε′q + 7m′
q)

]

e−
1

4
r2
0qk

2

(11)

and fNNπ can be obtained from the Goldberg-Triemann relation by using the axial-vector

coupling-constant value gA in this model. The one-gluon exchange contribution to the mass

is separated into two parts as

(∆EB)g = (∆EB)
E
g + (∆EB)

M
g , (12)

where (∆EB)Eg is the color-electric contribution

(∆EB)
E
g =

1

8π

∑

i,j

8
∑

a=1

∫

d3rid3rj
|%ri − %rj |

〈B|J0a
i (%ri)J

0a
j (%rj)|B〉, (13)

and (∆EB)Mg the color-magnetic contribution

(∆EB)
M
g = −

1

8π

∑

i,j

8
∑

a=1

∫

d3rid3rj
|%ri − %rj |

〈B| %Ja
i (%ri) · %Ja

j (%rj)|B〉. (14)

Here

Jµa
i (x) = gcψ̄q(x)γ

µλaiψq(x) (15)

is the quark color current density, where λai are the usual Gell-Mann SU(3) matrices and

αc = g2c/4π. Then Eqs. (13) and (14) can be written as

(∆EN )
E
g = αc(buuI

E
uu + busI

E
us + bssI

E
ss), (16)

and

(∆EN )
M
g = αc(auuI

M
uu + ausI

M
us + assI

M
ss ), (17)
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Color-magnetic 

Quark color current density
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• Baryon mass

The detailed forms of color-electric and color-magnetic contributions can be found in Ref.

[55]. Finally, taking the above all energy corrections independently, the mass of baryon in

nuclear medium becomes

M∗
B = E∗0

B − εc.m. + δMπ
B + (∆EB)

E
g + (∆EB)

M
g . (22)

Next we would like to connect such a baryon in the medium with nuclear objects, such

as Λ and Ξ0 hypernuclei. A single hypernucleus is treated as a system of many nucleons

and one hyperon which interact through exchanging of σ, ω, and ρ mesons. The QMF

Lagrangian, after the mean-field approximation is applied, can be written as [37–41],

LQMF = ψ̄

[

iγµ∂
µ −M∗

N − gωωγ
0 − gρρτ3γ

0 − e
(1− τ3)

2
Aγ0

]

ψ (23)

+ψ̄H

[

iγµ∂
µ −M∗

H − gHω ωγ
0 +

fH
ω

2MH
σ0i∂iω

]

ψH

−
1

2
("σ)2 −

1

2
m2

σσ
2 −

1

3
g2σ

3 −
1

4
g3σ

4

+
1

2
("ω)2 +

1

2
m2

ωω
2 +

1

4
c3ω

4

+
1

2
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where H denotes Λ or Ξ0 hyperon and the effective masses of baryons, M∗
N and M∗

H are

generated from quark model, Eq. (22). These effective baryon masses are actually related

with scalar mesons in RMF model. Furthermore, we should emphasize that the nonlinear

terms of σ and ω are included additionally in present work comparing with the Lagrangian of

MQMC model [54, 55], since these terms can largely improve the descriptions on properties of

finite nuclei system as shown in our previous work [56]. The tensor coupling between ω meson

and baryons, fH
ω

2MH
σ0i∂iω, can keep providing small spin-orbit splittings of hypernuclei [21,

57].

The equations of motion of baryons and mesons will be obtained via using the Euler-

Lagrange equation. Dirac equations for nucleons and hyperons have the following form:

[

iγµ∂
µ −M∗

N − gωωγ
0 − gρρτ3γ

0 − e
(1− τ3)

2
Aγ0

]

ψ = 0, (24)

[

iγµ∂
µ −M∗

H − gHω ωγ
0 +

fH
ω

2MH
σ0i∂iω

]

ψH = 0.

8
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• Strangeness QMF Lagrangian

The detailed forms of color-electric and color-magnetic contributions can be found in Ref.

[55]. Finally, taking the above all energy corrections independently, the mass of baryon in

nuclear medium becomes

M∗
B = E∗0

B − εc.m. + δMπ
B + (∆EB)

E
g + (∆EB)

M
g . (22)

Next we would like to connect such a baryon in the medium with nuclear objects, such

as Λ and Ξ0 hypernuclei. A single hypernucleus is treated as a system of many nucleons

and one hyperon which interact through exchanging of σ, ω, and ρ mesons. The QMF

Lagrangian, after the mean-field approximation is applied, can be written as [37–41],

LQMF = ψ̄

[

iγµ∂
µ −M∗

N − gωωγ
0 − gρρτ3γ

0 − e
(1− τ3)

2
Aγ0

]

ψ (23)

+ψ̄H

[

iγµ∂
µ −M∗

H − gHω ωγ
0 +

fH
ω

2MH
σ0i∂iω

]

ψH

−
1
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1

2
m2
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2 −

1

3
g2σ

3 −
1

4
g3σ

4

+
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2
("ω)2 +

1

2
m2

ωω
2 +

1

4
c3ω

4

+
1

2
("ρ)2 +

1

2
m2

ρρ
2 +

1

2
("A)2,

where H denotes Λ or Ξ0 hyperon and the effective masses of baryons, M∗
N and M∗

H are

generated from quark model, Eq. (22). These effective baryon masses are actually related

with scalar mesons in RMF model. Furthermore, we should emphasize that the nonlinear

terms of σ and ω are included additionally in present work comparing with the Lagrangian of

MQMC model [54, 55], since these terms can largely improve the descriptions on properties of

finite nuclei system as shown in our previous work [56]. The tensor coupling between ω meson

and baryons, fH
ω

2MH
σ0i∂iω, can keep providing small spin-orbit splittings of hypernuclei [21,

57].

The equations of motion of baryons and mesons will be obtained via using the Euler-

Lagrange equation. Dirac equations for nucleons and hyperons have the following form:

[

iγµ∂
µ −M∗

N − gωωγ
0 − gρρτ3γ

0 − e
(1− τ3)

2
Aγ0

]

ψ = 0, (24)

[

iγµ∂
µ −M∗

H − gHω ωγ
0 +

fH
ω

2MH
σ0i∂iω

]

ψH = 0.
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• Dirac equations for baryons

The detailed forms of color-electric and color-magnetic contributions can be found in Ref.

[55]. Finally, taking the above all energy corrections independently, the mass of baryon in

nuclear medium becomes

M∗
B = E∗0

B − εc.m. + δMπ
B + (∆EB)

E
g + (∆EB)

M
g . (22)

Next we would like to connect such a baryon in the medium with nuclear objects, such

as Λ and Ξ0 hypernuclei. A single hypernucleus is treated as a system of many nucleons

and one hyperon which interact through exchanging of σ, ω, and ρ mesons. The QMF

Lagrangian, after the mean-field approximation is applied, can be written as [37–41],

LQMF = ψ̄

[

iγµ∂
µ −M∗

N − gωωγ
0 − gρρτ3γ

0 − e
(1− τ3)

2
Aγ0

]

ψ (23)

+ψ̄H

[

iγµ∂
µ −M∗

H − gHω ωγ
0 +

fH
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2MH
σ0i∂iω

]
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−
1

2
("σ)2 −
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2
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2 −

1
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3 −
1

4
g3σ

4

+
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2
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2 +

1

4
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+
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where H denotes Λ or Ξ0 hyperon and the effective masses of baryons, M∗
N and M∗

H are

generated from quark model, Eq. (22). These effective baryon masses are actually related

with scalar mesons in RMF model. Furthermore, we should emphasize that the nonlinear

terms of σ and ω are included additionally in present work comparing with the Lagrangian of

MQMC model [54, 55], since these terms can largely improve the descriptions on properties of

finite nuclei system as shown in our previous work [56]. The tensor coupling between ω meson

and baryons, fH
ω

2MH
σ0i∂iω, can keep providing small spin-orbit splittings of hypernuclei [21,

57].

The equations of motion of baryons and mesons will be obtained via using the Euler-

Lagrange equation. Dirac equations for nucleons and hyperons have the following form:

[

iγµ∂
µ −M∗

N − gωωγ
0 − gρρτ3γ

0 − e
(1− τ3)

2
Aγ0

]

ψ = 0, (24)

[

iγµ∂
µ −M∗

H − gHω ωγ
0 +

fH
ω

2MH
σ0i∂iω

]

ψH = 0.
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• Equations of motion for mesonsThe equations of motion for mesons are given by

∆σ −m2
σσ − g2σ

2 − g3σ
3 =

∂M∗
N

∂σ
〈ψ̄ψ〉+

∂M∗
H

∂σ
〈ψ̄HψH〉, (25)

∆ω −m2
ωω − c3ω

3 = −gω〈ψ̄γ0ψ〉 − gHω 〈ψ̄Hγ
0ψH〉+

fH
ω

2MH
∂i〈ψ̄Hσ

0iψH〉,

∆ρ−m2
ρρ = −gρ〈ψ̄τ3γ0ψ〉,

∆A = −e〈ψ̄
(1− τ3)

2
γ0ψ〉.

Here, the coupling constants between ω, ρ mesons and nucleons, gω and gρ, are generated

from quark counting rules, gω = 3gqω and gρ = gqρ, while the ones between ω mesons and

hyperons, gHω and fH
ω will be determined by the properties of hypernuclei and strange nuclear

matter at nuclear saturation density. Above equations of motion of baryons and mesons

can be solved self-consistently with numerical method. From the single-particle energies of

nucleons and hyperon, the total energy of whole hypernucleus can be obtained with mean

field approximation.

The gradient terms will be removed in these equations of motion for the strange nuclear

matter including Λ, Σ, and Ξ hyperons, where energy density and pressure are generated

from the energy-momentum tensor related with QMF Lagrangian. In neutron stars, there

are not only baryons but also leptons, such as, electrons and muons. Whole system will

make electric neutrality and β equilibrium. In such case, the equation of state (EOS)

of neutron star matter can be solved and taken into Tolman-Oppenheimer-Volkoff (TOV)

equation [58, 59] to get properties of neutron stars. The detailed formulas can be found in

our previous work about strangeness QMF model on neutron star [41].

III. RESULTS AND DISCUSSION

A. Properties of baryons

Firstly, the strengths of quark confinement potentials for u, d and s quarks should be

determined. In present framework, there are two free parameters aq and Vq in the confine-

ment potential for each flavor quark. The differences of properties between u quark and d

quark are very small, therefore, they will be considered as the identical. For s quark, SU(3)

symmetry is broken, where as and Vs are distinguished from au and Vu. In QMF model,

the quarks are regarded as the constituent ones, whose masses are around 300 MeV for u, d

9
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FIG. 1. The effective nucleon masses M∗
N as a function of the

quark mass correction δmq for quark masses mq = 250 MeV (dotted
curve), mq = 300 MeV (dashed curve), and mq = 350 MeV (solid
curve).

simplified as

δMπ
N = −171

25
Iπf 2

NNπ , (9)

where

Iπ = 1
πm2

π

∫ ∞

0
dk

k4u2(k)
w2

k

, (10)

with the axial-vector nucleon form factor

u(k) =
[

1 − 3
2

k2

λq(5ε′
q + 7m′

q)

]

e− 1
4 r2

0qk2
, (11)

and fNNπ can be obtained from the Goldberg-Triemann
relation by using the axial-vector coupling-constant value gA

in this model. The one-gluon exchange contribution to the
mass is separated into two parts as

(%EB)g = (%EB)Eg + (%EB)Mg , (12)

where (%EB)Eg is the color-electric contribution

(%EB)Eg = 1
8π

∑

i,j

8∑

a=1

∫
d3rid

3rj

|%ri − %rj |
〈B|J 0a

i (%ri)J 0a
j (%rj )|B〉,

(13)

and (%EB)Mg the color-magnetic contribution

(%EB)Mg = − 1
8π

∑

i,j

8∑

a=1

∫
d3rid

3rj

|%ri − %rj |
〈B| %J a

i (%ri) · %J a
j (%rj )|B〉.

(14)

Here

J
µa
i (x) = gcψ̄q(x)γ µλa

i ψq(x) (15)

is the quark color current density, where λa
i are the usual

Gell-Mann SU(3) matrices and αc = g2
c /4π . Then Eqs. (13)

and (14) can be written as

(%EN )Eg = αc

(
buuI

E
uu + busI

E
us + bssI

E
ss

)
, (16)

and

(%EN )Mg = αc

(
auuI

M
uu + ausI

M
us + assI

M
ss

)
, (17)

where aij and bij are the numerical coefficients depending on
each baryon and the quantities IE

ij and IM
ij are given in the

following equations:

IE
ij = 16

3
√

π

1
Rij

[

1 − αi + αj

R2
ij

+ 3αiαj

R4
ij

]

,

IM
ij = 256

9
√

π

1
R3

ij

1
(3ε

′
i + m

′
i)

1
(3ε

′
j + m

′
j )

,

(18)

with

R2
ij = 3

[
1

(ε ′
i

2 − m
′
i

2)
+ 1

(ε ′
j

2 − m
′
j

2)

]

,

αi = 1
(ε ′

i + m
′
i)(3ε

′
i + m

′
i)

.

(19)

Finally, taking the above pion and gluon corrections, the mass
of the nucleon in the nuclear medium becomes

M∗
N = E∗0

N − εc.m. + δMπ
N + (%EN )Eg + (%EN )Mg .

(20)

Until now, we have constructed the nucleon at quark level
with confinement potential and the pion and gluon corrections.
Next, we would like to connect such a nucleon in the nuclear
medium with nuclear objects, such as nuclear matter and a
finite nuclei system. A good bridge is the relativistic mean
field (RMF) model at hadron level, which was developed based
on the one-boson exchange potential between two nucleons.

TABLE I. The parameters for quarks and hadrons are listed. The first parameter set corresponding to mq = 250 MeV is named QMF-NK1,
the second for mq = 300 MeV is named QMF-NK2, and the third for mq = 350 MeV is named QMF-NK3.

mq gq
σ gω gρ g2 g3 c3 a V0

(MeV) (fm−1) (fm−3) (MeV)

250 5.15871 11.54726 3.79601 −3.52737 −78.52006 305.00240 0.57945 −24.28660
300 5.09346 12.30084 4.04190 −3.42813 −57.68387 249.05654 0.53430 −62.25719
350 5.01631 12.83898 4.10772 −3.29969 −39.87981 221.68240 0.49560 −102.04158
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FIG. 2. The contributions of confinement potential, pion correc-
tion, and gluon correction to the effective nucleon mass M∗

N as a
function of the quark mass correction δmq at quark mass mq = 350
MeV. MQ, Mπ , and MG represent the confinement contribution, pion
correction, and gluon correction, respectively.

The effective nucleon mass from the quark model will be
inserted to the RMF Lagrangian. The nucleon and meson
fields will be solved self-consistently, and then the properties
of the nuclear many-body system will be obtained. We would
like to use a more complicated Lagrangian and compare with
the MQMC model [34]. The MQMC parameter sets without
nonlinear terms of σ and ω mesons can provide very good
saturation properties of nuclear matter, but for the description
of finite nuclei they cannot give results of binding energies
and charge radii consistent with the experimental data. For
example, with mq = 300 MeV in the MQMC model, the total
energy difference of 208Pb between theoretical calculation and
experimental data is about 80 MeV. Meanwhile, in the MQMC
model, the effective nucleon mass at saturation density is a
little bit larger than the empirical data, which will generate
a small spin-orbit splitting comparing with the experimental
observation. Therefore, we should introduce the nonlinear
terms of σ and ω mesons at the nucleon level. At the
same time, in this work, we just consider the σ , ω, and
ρ meson exchange in the QMF Lagrangian [18], which is

given as

LQMF = ψ̄

[
iγµ∂µ − M∗

N − gωωγ 0 − gρρτ3γ
0

− e
(1 − τ3)

2
Aγ 0

]
ψ

− 1
2

(∇σ )2 − 1
2
m2

σ σ 2 − 1
3
g2σ

3 − 1
4
g3σ

4

+ 1
2

(∇ω)2 + 1
2
m2

ωω2 + 1
4
c3ω

4

+ 1
2

(∇ρ)2 + 1
2
m2

ρρ
2 + 1

2
($A)2, (21)

where M∗
N is the effective nucleon mass obtained from the

quark model, and the coupling constants of ω and ρ mesons
with the nucleon can be related to the quark part as gω =
3g

q
ω and gρ = g

q
ρ according to the quark counting rules. A is

the electromagnetic field for the Coulomb interaction between
protons. In this Lagrangian, we already consider the static
approximation for the mesons so that their time components
are neglected. The spatial part of the ω meson disappears for
time reversal symmetry.

From this Lagrangian, the equations of motion of nucleons
and mesons will be generated by the Euler-Lagrangian
equation,

[
iγµ∂µ − M∗

N − gωω(r)γ 0 − gρρ(r)τ3γ
0

− e
(1 − τ3)

2
A(r)γ 0

]
ψ = 0,

*σ (r) − m2
σ σ (r) − g2σ

2(r) − g3σ
3(r) = ∂M∗

N

∂σ
〈ψ̄ψ〉,

*ω(r) − m2
ωω(r) − c3ω

3(r) = −gω〈ψ̄γ 0ψ〉,
*ρ(r) − m2

ρρ(r) = −gρ〈ψ̄τ3γ
0ψ〉,

*A(r) = −e〈ψ̄ (1 − τ3)
2

γ 0ψ〉, (22)

where ∂M∗
N

∂σ
comes from the quark model and is different from

the gσ in RMF model. Here we restrict our consideration to
spherically symmetric nuclei and r is the radial coordinate
of the nuclear center. These equations of motion can be
solved self-consistently in a numerical program. From the

TABLE II. The binding energies per nucleon E/A and the rms charge radii Rc with QMF-NK1, QMF-NK2, and QMF-NK3 parameter
sets, compared with the results in the previous QMF model without pion and gluon corrections, and experimental values.

Model E/A (MeV) Rc (fm)
40Ca 48Ca 90Zr 208Pb 40Ca 48Ca 90Zr 208Pb

QMF-NK1 8.62 8.61 8.65 7.92 3.43 3.47 4.26 5.49
QMF-NK2 8.61 8.61 8.67 7.91 3.44 3.47 4.26 5.50
QMF-NK3 8.59 8.63 8.68 7.90 3.44 3.46 4.26 5.50
QMF [18] 8.35 8.43 8.54 7.73 3.44 3.46 4.27 5.53
Expt. 8.55 8.67 8.71 7.87 3.45 3.45 4.26 5.50
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FIG. 1. The effective nucleon masses M∗
N as a function of the

quark mass correction δmq for quark masses mq = 250 MeV (dotted
curve), mq = 300 MeV (dashed curve), and mq = 350 MeV (solid
curve).

simplified as

δMπ
N = −171

25
Iπf 2

NNπ , (9)

where

Iπ = 1
πm2

π

∫ ∞

0
dk

k4u2(k)
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k

, (10)

with the axial-vector nucleon form factor

u(k) =
[

1 − 3
2

k2

λq(5ε′
q + 7m′

q)

]

e− 1
4 r2

0qk2
, (11)

and fNNπ can be obtained from the Goldberg-Triemann
relation by using the axial-vector coupling-constant value gA

in this model. The one-gluon exchange contribution to the
mass is separated into two parts as

(%EB)g = (%EB)Eg + (%EB)Mg , (12)

where (%EB)Eg is the color-electric contribution

(%EB)Eg = 1
8π

∑

i,j

8∑

a=1

∫
d3rid

3rj

|%ri − %rj |
〈B|J 0a

i (%ri)J 0a
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and (%EB)Mg the color-magnetic contribution

(%EB)Mg = − 1
8π

∑
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∫
d3rid
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i (%ri) · %J a
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(14)

Here

J
µa
i (x) = gcψ̄q(x)γ µλa

i ψq(x) (15)

is the quark color current density, where λa
i are the usual

Gell-Mann SU(3) matrices and αc = g2
c /4π . Then Eqs. (13)

and (14) can be written as

(%EN )Eg = αc

(
buuI

E
uu + busI

E
us + bssI

E
ss

)
, (16)

and

(%EN )Mg = αc

(
auuI

M
uu + ausI

M
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M
ss

)
, (17)

where aij and bij are the numerical coefficients depending on
each baryon and the quantities IE

ij and IM
ij are given in the

following equations:

IE
ij = 16
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√
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1
Rij

[
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ij
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,
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√
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ij
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′
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(3ε

′
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,
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with

R2
ij = 3

[
1

(ε ′
i

2 − m
′
i

2)
+ 1

(ε ′
j

2 − m
′
j

2)

]

,

αi = 1
(ε ′

i + m
′
i)(3ε

′
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(19)

Finally, taking the above pion and gluon corrections, the mass
of the nucleon in the nuclear medium becomes

M∗
N = E∗0

N − εc.m. + δMπ
N + (%EN )Eg + (%EN )Mg .

(20)

Until now, we have constructed the nucleon at quark level
with confinement potential and the pion and gluon corrections.
Next, we would like to connect such a nucleon in the nuclear
medium with nuclear objects, such as nuclear matter and a
finite nuclei system. A good bridge is the relativistic mean
field (RMF) model at hadron level, which was developed based
on the one-boson exchange potential between two nucleons.

TABLE I. The parameters for quarks and hadrons are listed. The first parameter set corresponding to mq = 250 MeV is named QMF-NK1,
the second for mq = 300 MeV is named QMF-NK2, and the third for mq = 350 MeV is named QMF-NK3.

mq gq
σ gω gρ g2 g3 c3 a V0

(MeV) (fm−1) (fm−3) (MeV)

250 5.15871 11.54726 3.79601 −3.52737 −78.52006 305.00240 0.57945 −24.28660
300 5.09346 12.30084 4.04190 −3.42813 −57.68387 249.05654 0.53430 −62.25719
350 5.01631 12.83898 4.10772 −3.29969 −39.87981 221.68240 0.49560 −102.04158

044308-3
U(r) =

1

2
(1 + �0)(ar2 + V0)



Jinniu Hu13/04/2024 25

The properties of nuclei

mq gqσ gω gρ g2 g3 c3 a V0

(MeV) (fm−1) (fm−3) (MeV)

250 5.15871 11.54726 3.79601 -3.52737 -78.52006 305.00240 0.57945 -24.28660

300 5.09346 12.30084 4.04190 -3.42813 -57.68387 249.05654 0.53430 -62.25719

350 5.01631 12.83898 4.10772 -3.29969 -39.87981 221.68240 0.49560 -102.04158

TABLE I: The parameters in quark and hadron are listed. The first parameter set corresponding

to mq = 250 MeV is named as QMF-NK1, the second mq = 300 MeV named QMF-NK2, and the

third mq = 350 MeV named QMF-NK3.

In Table II, the results of theoretical calculation for the binding energies per nucleon

E/A and the charge radii Rc for four spherically symmetric nuclei, 40Ca, 48Ca, 90Zr, and

208Pb by QMF-NK1, QMF-NK2, and QMF-NK3 are compared with the experimental data.

We can find that the results from the QMF-NK3 are closest to the experimental values

compared to the other two parameter sets. It demonstrates that the heavier quark mass

is more acceptable for the nuclear many-body system. The calculation without the pion

and gluon correction by Shen and Toki [18] is also compared and the present results are

largely improved. Therefore, it is necessary to include the contributions of pion and gluon

to describe the finite nuclei system properly.

Model E/A (MeV) Rc(fm)

40Ca 48Ca 90Zr 208Pb 40Ca 48Ca 90Zr 208Pb

QMF-NK1 8.62 8.61 8.65 7.92 3.43 3.47 4.26 5.49

QMF-NK2 8.61 8.61 8.67 7.91 3.44 3.47 4.26 5.50

QMF-NK3 8.59 8.63 8.68 7.90 3.44 3.46 4.26 5.50

QMF[18] 8.35 8.43 8.54 7.73 3.44 3.46 4.27 5.53

Expt. 8.55 8.67 8.71 7.87 3.45 3.45 4.26 5.50

TABLE II: The binding energies per nucleon E/A and the rms charge radii Rc with QMF-NK1,

QMF-NK2, and QMF-NK3 parameter sets, compared with the results in previous QMF model

without pion and gluon corrections, and experimental values.

In Table III, we also compare the spin-orbit splittings of 40Ca and 208Pb for QMF-NK1,
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TABLE III. The spin-orbit splittings of 40Ca and 208Pb for QMF-NK1, QMF-NK2, and QMF-NK3, compared with the experimental data.
All quantities are in MeV.

Model 40Ca 208Pb

Proton Neutron Proton Neutron
(1d5/2–1d3/2) (1d5/2–1d3/2) (1g9/2–1g7/2) (2f7/2–2f5/2)

QMF-NK1 −3.7 −3.7 −2.4 −1.5
QMF-NK2 −4.5 −4.5 −2.8 −1.7
QMF-NK3 −5.1 −5.1 −3.2 −1.9
Expt. −7.2 −6.3 −4.0 −1.8

single-particle energies of the nucleons, the total energy of
whole nucleus can be obtained with the mean field method.

Infinite nuclear matter, which does not really exist in
universe, is very helpful for us to understand the basic physics
of the nuclear many-body system. It has the translational
invariance in an infinite system, which removes the partial
part on coordinate space. Its Lagrangian density and equations
of motion will be written as

LQMF = ψ̄(iγµ∂µ − M∗
N − gωωγ 0 − gρρτ3γ

0)ψ

− 1
2m2

σ σ 2 − 1
3g2σ

3 − 1
4g3σ

4

+ 1
2m2

ωω2 + 1
4c3ω

4 + 1
2m2

ρρ
2, (23)

and

(iγ µ∂µ − M∗
N − gωωγ 0 − gρρτ3γ

0)ψ = 0,

m2
σ σ + g2σ

2 + g3σ
3 = −∂M∗

N

∂σ
〈ψ̄ψ〉,

m2
ωω + c3ω

3 = gω〈ψ̄γ 0ψ〉,
m2

ρρ = gρ〈ψ̄τ3γ
0ψ〉.

(24)

From this Lagrangian and these equations of motion of nucleon
and mesons, the energy density and pressure can be generated

by the energy-momentum tensor [36],

EQMF =
∑

i=n,p

1
π2

∫ ki
F

0

√
k2 + M∗k2dk

+ 1
2
m2

σ σ 2 − 1
3
g2σ

3 + 1
4
g3σ

4

+ 1
2
m2

ωω2 + 3
4
c3ω

4 + 1
2
m2

ρρ
2 (25)

and

PQMF = 1
3π2

∑

i=n,p

∫ ki
F

0

k4

√
k2 + M∗

dk

− 1
2
m2

σ σ 2 + 1
3
g2σ

3 − 1
4
g3σ

4

+ 1
2
m2

ωω2 + 1
4
c3ω

4 + 1
2
m2

ρρ
2. (26)

III. RESULTS AND DISCUSSIONS

The parameters of the confinement potential (a,V0) are
determined by the experimental data of nucleon mass MN =
939 MeV and charge radius 〈r2

N 〉1/2 = 0.87 fm in free space.
Then we calculate the effective mass M∗

N in the nuclear
medium as a function of the quark mass correction δmq , which
is defined as δmq = mq − m∗

q = g
q
σ σ .

FIG. 3. The charge density distributions of 40Ca (a) and 208Pb (b) for QMF-NK1, QMF-NK2, and QMF-NK3 compared with the experimental
data.
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The properties of nuclear matter
in QMF-NK1, QMF-NK2, and QMF-NK3 are almost the same, which is consistent with

the empirical saturation properties of nuclear matter. The symmetry energies and effective

masses perform obviously difference for these three parameter sets, which are caused by the

coupling constants of ρ meson and quark masses.

Model ρ0 E/A K0 J M∗
N/MN L0 K0

sym Kasy Q0 Kτ

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

QMF-NK1 0.154 -16.3 323 30.6 0.70 84.8 -28.8 -537.6 495.4 -667.7

QMF-NK2 0.152 -16.3 328 32.9 0.66 93.7 -23.5 -585.7 221.0 -648.8

QMF-NK3 0.150 -16.3 322 33.6 0.64 97.3 -12.0 -595.8 263.0 -675.3

TABLE IV: Saturation properties of nuclear matter in the QMF-NK1, QMF-NK2, and QMF-NK3.

In Fig. 5, we plot nuclear matter binding energy as a function of density in the three

parameter sets for symmetric nuclear matter and pure neutron matter. At low densities,

the equations of state (EOSs) for different sets are identical. With the density increasing,

the EOS becomes softer for lower quark mass.

(a) (b)

FIG. 5: EOSs of symmetric nuclear matter and pure neutron matter in QMF-NK1, QMF-NK2,

and QMF-NK3 for (a) yp = 0.5 and (b) yp = 0.0.

The neutron star as a natural laboratory is a very good object to check the nuclear

theoretical model. We would like to calculate the properties of neutron star with QMF

model and show the mass-radius relations for the neutron stars in Fig. 6. The maximum
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SQMF parameters 
The strength of quark confinement potential

quarks. To discuss the influences of quark mass, three groups about u, d quark masses are

chosen as 250, 300 and 350 MeV. The corresponding au and Vu are fixed by the mass and

radius of free nucleon, which were already given in our previous work [56], whereas the mass

and two coefficients, as and Vs in s quark confinement potential are obtained by fitting the

free masses of Λ,Σ0 and Ξ0 hyperons [60] by least-squares method.

These parameters are listed in Table II. For convenience, the first parameter set (mu =

250 MeV) in Table II is named as set A, the second (mu = 300 MeV) as set B and the third

(mu = 350 MeV) as set C. Here, we should emphasize that in the work of Mishra et al. [55],

each baryon corresponds to one Vq value, while in present work, the confinement potentials

of s quark are adopted as uniform strength in Λ,Σ and Ξ hyperons. The differences of their

masses are generated by the pion and gluon corrections.

TABLE II: The potential parameters (aq, Vq) obtained for the quark massmu = 250 MeV,ms = 330

MeV, the quark mass mu = 300 MeV, ms = 380 MeV, and the quark mass mu = 350 MeV,

ms = 430 MeV.

mu (MeV) Vu (MeV) au (fm−3) ms (MeV) Vs (MeV) as (fm−3)

set A 250 −24.286601 0.579450 330 101.78180 0.097317

set B 300 −62.257187 0.534296 380 54.548210 0.087243

set C 350 −102.041575 0.495596 430 6.802695 0.079534

In Table III, the masses of three charge neutrality hyperons (Λ, Σ0, and Ξ0) in free space

with set A, set B, and set C are compared with the latest experimental data [60], respectively.

The contributions from center-of-mass, pionic, and gluonic corrections to the hyperon masses

in free space are also shown. Under the constraint of s quark mass, whose value should be

larger than the ones of u, d quarks, the hyperon masses in theoretical calculation do not

reproduce the experimental observables [60] from the particle data group completely. There

are several MeV differences between the theoretical prediction and experimental data. The

1% errors are not able to influence the further calculations and discussions.

The behaviors of one baryon in nuclear medium will be influenced by the surrounding

particles, therefore, its effective mass M∗
B is able to change with density increasing. In QMF

model, medium effect is included via effective quark mass generated by σ meson. Finally, the

effective baryon masses are the functions of quark mass corrections δmq = mq −m∗
q = gqσσ.

10

The coupling constants between meson and baryons

first parameter set (mu = 250 MeV) in Table IV as QMF-NK1S, the second one (mu = 300

MeV) as QMF-NK2S, and the third one (mu = 350 MeV) as QMF-NK3S.

TABLE IV: The parameters for quarks and hadrons are listed. The first parameter set correspond-

ing to mu = 250 MeV is named QMF-NK1S, the second for mu = 300 MeV named QMF-NK2S,

and the third for mu = 350 MeV named QMF-NK3S.

Model mu guσ gω gΛω gΞω gρ g2 g3 c3

(MeV) (fm−1)

QMF-NK1S 250 5.15871 11.54726 0.8258gω 0.4965gω 3.79601 −3.52737 −78.52006 305.00240

QMF-NK2S 300 5.09346 12.30084 0.8134gω 0.4800gω 4.04190 −3.42813 −57.68387 249.05654

QMF-NK3S 350 5.01631 12.83898 0.8040gω 0.4681gω 4.10772 −3.29969 −39.87981 221.68240

The ratios of gHω /gω for Λ and Ξ hyperons in QMF-NK1S, QMF-NK2S, and QMF-NK3S

did not satisfy the suggestions from simple quark counting rules as 2/3 and 1/3 used in our

previous work [40, 41]. It is because that the cubic term of σ meson and biquadratic term of

ω term are included in present framework, which generate larger values of guσ and gω. The

corresponding gHω become larger to provide more repulsive vector potential.

In Fig. 2, the energy levels given by theoretical calculation for Λ hyperon in three single

Λ hypernuclei, 40
ΛCa,

89
ΛY, and 208

ΛPb, within QMF-NK1S, QMF-NK2S, and QMF-NK3S

parameter sets are compared with the experimental data [61]. Here, we should make a

statement that the single Λ binding energies listed in recent reviews article [61] are not

same as the well-known data summarized by Hashimoto and Tamura [62], since they revised

these data with latest experimental information of light hypernuclei in the past few years.

The results from our previous QMF calculation without pion and gluon corrections [40] are

also given for comparison. We can find that the energy level of 1d state in 40
ΛCa are largely

improved in present model compared with that from the QMF model without pion and

gluon corrections. In 89
ΛY and 208

ΛPb, all energy levels are polished up in present calculations

to accord with experiment data better. Generally speaking, the Λ energy levels as a whole

in QMF-NK3S set are larger than the ones in QMF-NK1S. It is related to the coupling

constants without strangeness degree of freedom. For example, the binding energy of 208Pb

from QMF-NK3 is smaller than that from QMF-NK1 as shown in Ref. [56].

Encouraged by the good agreements of Λ hypernuclei data in our present model, we start

13
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FIG. 1. The effective masses of three hyperons (!, ", and #) with
different parameter sets [set A (solid curve), set B (dashed curve), and
set C (dotted curve)] as functions of the u quark mass correction.

(TOV) equation [57,58] to get properties of neutron stars. The
detailed formulas can be found in our previous work about the
QMF model of neutron stars [41].

III. RESULTS AND DISCUSSION

A. Properties of baryons

Firstly, the strengths of quark confinement potentials for u,
d, and s quarks should be determined. In present work, there
are two free parameters, aq and Vq , in the confinement potential
for each flavor quark. The differences of properties between u
and d quarks are very small, therefore they are treat equally in
this work. For the s quark, SU(3) symmetry is broken, where
as and Vs are distinguished from au and Vu. In the QMF model,
the quarks are regarded as the constituent ones, whose masses
are around 300 MeV for u and d quarks. In recent lattice
QCD calculations [59,60], the value of the constituent quark
mass was suggested to be around 250–350 MeV. To discuss
the influences of quark mass, we take the masses of u and d
quarks to be 250, 300, and 350 MeV in three parameter sets.
The corresponding au and Vu are fixed by the mass and radius
of the free nucleon, which were already given in our previous
work [56]. The s quark mass and two coefficients, as and Vs ,
in the s quark confinement potential are obtained by fitting
the free masses of !, "0, and #0 hyperons [61] through the
least-squares method.

These parameters are listed in Table II. For convenience,
the first parameter set (mu = 250 MeV) in Table II is named
as set A, the second (mu = 300 MeV) as set B, and the third

(mu = 350 MeV) as set C. Here, we should emphasize that in
the work of Mishra et al. [55], each baryon corresponds to one
Vq value, while in present work the confinement potentials of
the s quark are adopted as having uniform strength in !, ",
and # hyperons. The differences of their masses are generated
by the pion and gluon corrections.

In Table III, the masses of three charge neutrality hyperons
(!, "0, and #0) in free space with set A, set B, and set C are
compared with the latest experimental data [61], respectively.
The contributions from center-of-mass, pionic, and gluonic
corrections to the hyperon masses in free space are also shown.
Under the constraint of the s quark mass, whose value should
be larger than those of u and d quarks, the hyperon masses
in theoretical calculations do not reproduce the experimental
observables [61] from the Particle Data Group completely.
There are several-MeV differences between the theoretical
prediction and experimental data. The 1% errors are not able
to influence the further calculations and discussions.

The behaviors of one baryon in nuclear medium will be
influenced by the surrounding particles, therefore its effective
mass M∗

B is able to change with increasing density. In
the QMF model, the medium effect is included via the effective
quark mass generated by the σ meson. Finally, the effective
baryon masses are the functions of quark mass corrections
δmq = mq − m∗

q = g
q
σ σ . The σ meson did not contain the

strangeness flavor, so that the coupling constant between the
s quark and σ meson is zero, i.e., gs

σ = gs
ω = 0. All effective

masses of baryons are only affected by the u and d quarks. In
Fig. 1, the effective masses of three hyperons (!, ", and #)
for different parameter sets (set A, set B, and set C) are given
as functions of u quark mass correction.

In free space (δmu = 0), their effective masses actually
correspond to the masses of free hyperons. With δmu in-
creasing, the effective hyperon masses will be reduced in
terms of the effect of surrounding baryons. At small quark
mass correction, the effective masses are almost the same for
different parameter sets. With the quark mass correction δmu

increasing, the differences among sets A, B, and C becomes
obvious for ! and " hyperons. Since there is only one u quark
component in the # hyperon, the influences from different
parameter sets are very small.

B. Properties of hypernuclei

Once the relation between the effective baryon masses and
quark mass corrections is obtained, the next step is to determine
the coupling constants between quarks and mesons: gu

σ , gω, g!
ω ,

g#
ω , f H

ω , gρ , and the parameters in nonlinear terms of σ and ω
mesons, g2, g3, and c3. In this work, the meson masses are taken

TABLE IV. The parameters for quarks and hadrons are listed. The first parameter set corresponding to mu = 250 MeV is named QMF-NK1S,
the second for mu = 300 MeV is named QMF-NK2S, and the third for mu = 350 MeV is named QMF-NK3S.

Model mu gu
σ gω g!

ω g#
ω gρ g2 g3 c3

(MeV) (fm−1)

QMF-NK1S 250 5.158 71 11.547 26 0.8258gω 0.4965gω 3.796 01 −3.527 37 −78.520 06 305.002 40
QMF-NK2S 300 5.093 46 12.300 84 0.8134gω 0.4800gω 4.041 90 −3.428 13 −57.683 87 249.056 54
QMF-NK3S 350 5.016 31 12.838 98 0.8040gω 0.4681gω 4.107 72 −3.299 69 −39.879 81 221.68240
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TABLE II. The potential parameters (aq,Vq ) obtained for the quark masses mu = 250 MeV, ms = 330 MeV, the quark masses mu =
300 MeV, ms = 380 MeV, and the quark masses mu = 350 MeV, ms = 430 MeV.

mu (MeV) Vu (MeV) au (fm−3) ms (MeV) Vs (MeV) as (fm−3)

set A 250 −24.286 601 0.579 450 330 101.781 80 0.097 317
set B 300 −62.257 187 0.534 296 380 54.548 210 0.087 243
set C 350 −102.041 575 0.495 596 430 6.802 695 0.079 534

− 1
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g2σ

3 − 1
4
g3σ
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+ 1
2
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ωω2 + 1
4
c3ω

4 + 1
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("ρ)2 + 1
2
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2 + 1

2
("A)2,

(23)

where H denotes $ or %0 hyperon and the effective masses
of baryons, M∗

N and M∗
H , are generated from the quark

model, Eq. (22). These effective baryon masses are actually
related to scalar mesons in the RMF model. Furthermore, we
should emphasize that the nonlinear terms of σ and ω are
included additionally in the present work, compared with the
Lagrangian of the MQMC model [54,55], since these terms can
largely improve the descriptions of properties of finite nuclei,
as shown in our previous work [56]. The tensor coupling
between the ω meson and baryons, f H

ω

2MH
σ 0i∂iω, can improve

the description of small spin-orbit splittings of hypernuclei
[20,21].

The equations of motion of baryons and mesons are ob-
tained by using the Euler-Lagrange equation. Dirac equations
for nucleons and hyperons have the following form:

[
iγµ∂µ − M∗

N − gωωγ 0 − gρρτ3γ
0 − e

(1 − τ3)
2

Aγ 0
]
ψ = 0,

[
iγµ∂µ − M∗

H − gH
ω ωγ 0 + f H

ω

2MH

σ 0i∂iω

]
ψH = 0.

(24)

The equations of motion for mesons are given by

*σ − m2
σ σ − g2σ

2 − g3σ
3 = ∂M∗

N

∂σ
〈ψ̄ψ〉 + ∂M∗

H

∂σ
〈ψ̄HψH 〉,

*ω − m2
ωω − c3ω

3 = −gω〈ψ̄γ 0ψ〉 − gH
ω 〈ψ̄Hγ 0ψH 〉

+ f H
ω

2MH

∂i〈ψ̄H σ 0iψH 〉,

*ρ − m2
ρρ = −gρ〈ψ̄τ3γ

0ψ〉,

*A = −e〈ψ̄ (1 − τ3)
2

γ 0ψ〉. (25)

Here, the coupling constants between ω,ρ mesons and nu-
cleons, gω and gρ , are generated from quark counting rules,
gω = 3g

q
ω and gρ = g

q
ρ , while those between ω mesons and

hyperons, gH
ω and f H

ω , will be determined by the properties of
hypernuclei and strange nuclear matter at nuclear saturation
density. The above equations of motion of baryons and mesons
can be solved self-consistently with numerical methods. From
the single-particle energies of nucleons and hyperon, the total
energy of whole hypernucleus can be obtained with the mean
field approximation.

In strange nuclear matter including $, +, and % hyperons,
the gradient terms in the equations of motion of mesons would
disappear. The energy density and pressure are generated from
the energy-momentum tensor related to the QMF Lagrangian.
In neutron stars, there are not only baryons but also leptons,
such as electrons and muons. The neutron star matter satisfies
electric neutrality and β equilibrium. In such case, the EOS
can be solved and taken into the Tolman-Oppenheimer-Volkoff

TABLE III. The masses of three hyperons ($, +0, and %0) in free space from set A, set B, and set C, compared with the experimental
data and the contributions of center-of-mass, pionic, and gluonic corrections to the hyperon masses respectively (the units of all quantities are
MeV).

Baryon E0
B εc.m. δMπ

B (*EB )g MTheor.
B M

Expt.
B

$ 1446.340 231.975 −65.172 −24.390 1124.803 1115.683 ± 0.006
set A +0 1446.340 231.975 −36.207 10.515 1188.673 1192.642 ± 0.024

%0 1504.254 175.047 −16.293 −1.289 1311.625 1314.86 ± 0.20

$ 1433.489 220.692 −69.277 −18.313 1125.207 1115.683 ± 0.006
set B +0 1433.489 220.692 −38.487 13.753 1188.063 1192.642 ± 0.024

%0 1491.611 165.564 −17.319 2.979 1311.707 1314.86 ± 0.20

$ 1421.908 210.233 −72.829 −13.170 1125.676 1115.683 ± 0.006
set C +0 1421.908 210.233 −40.461 16.203 1187.417 1192.642 ± 0.024

%0 1480.703 157.102 −18.207 6.377 1311.771 1314.86 ± 0.20
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FIG. 2. The results of theoretical calculation for energy levels of ! hyperon for 40
! Ca, 89

! Y, and 208
! Pb by QMF-NK1S, QMF-NK2S, and

QMF-NK3S, compared with the experimental data and the results in the previous QMF model without pion and gluon effects.

as mσ = 550 MeV, mω = 783 MeV, and mρ = 763 MeV. gu
σ ,

gω, gρ , g2, g3, and c3 for the normal nuclei have been obtained
by fitting the properties of finite nuclei [56].

In the present calculation, we adopt the quark model value
of the tensor coupling between ω and hyperons [20,21],
f H

ω = −gH
ω , which is important to produce small spin-orbit

spitting of hypernuclei. Only the coupling constants between ω
and hyperons need to conform. They will be determined via the
magnitudes of single hyperon potentials at nuclear saturation
density in nuclear matter. The single ! and % potentials
in nuclear matter are fixed as U! = −30 MeV and U% =
−12 MeV at nuclear saturation density respectively, following
the existing experimental data about ! and % hypernuclei.
Based on these choices, the single ! and % potentials in Pb
hypernuclei are also calculated to check the validity of gH

ω .
Finally, we obtain three parameter sets about vector coupling
constants corresponding to u quark masses mu = 250 MeV,
mu = 300 MeV, and mu = 350 MeV, and these parameter
sets are listed Table IV. For convenience, we name the first
parameter set (mu = 250 MeV) in Table IV as QMF-NK1S,
the second one (mu = 300 MeV) as QMF-NK2S, and the third
one (mu = 350 MeV) as QMF-NK3S.

The ratios of gH
ω /gω for ! and % hyperons in QMF-NK1S,

QMF-NK2S, and QMF-NK3S do not satisfy the suggestions

from simple quark counting rules as 2/3 and 1/3 used in our
previous work [40,41]. This is because the cubic term of the σ
meson and the biquadratic term of ω term are included in the
present work, which generate larger values of gu

σ and gω. The
corresponding gH

ω becomes larger to provide a more repulsive
vector potential.

In Fig. 2, the energy levels given by theoretical calculation
for the ! hyperon in three single-! hypernuclei, 40

! Ca, 89
! Y,

and 208
! Pb, within QMF-NK1S, QMF-NK2S, and QMF-NK3S

parameter sets, are compared with the experimental data [62].
Here, we should make a statement that the single-! binding
energies listed in a recent review article [62] are not the same
as the well-known data summarized by Hashimoto and Tamura
[63], since they revised these data with the latest experimental
information on light hypernuclei from the past few years.
The results from our previous QMF calculation without pion
and gluon corrections [40] are also given for comparison. We
find that the energy levels of the 1d state in 40

! Ca are largely
improved in the present model compared with those from the
QMF model without pion and gluon corrections. In 89

! Y and
208
! Pb, all energy levels are refined in the present calculations
to accord better with experimental data. Generally speaking,
the ! energy levels as a whole in QMF-NK3S set are larger
than those in QMF-NK1S. This is related to the coupling

FIG. 3. The results of theoretical calculation for energy levels of %0 hyperon for 40
%0 Ca, 89

%0 Y, and 208
%0 Pb by QMF-NK1S, QMF-NK2S, and

QMF-NK3S, compared with the results in our previous QMF model without pion and gluon corrections.
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TABLE V. Energy levels (in MeV) of hyperons for 40
Y Ca, 89

Y Y, and 208
Y Pb by QMF-NK3S in the present model, compared with the experimental

data.

40
! Ca (Expt.) 40

! Ca 40
" Ca 89

! Y (Expt.) 89
! Y 89

" Y 208
! Pb (Expt.) 208

! Pb 208
" Pb

1s1/2 −18.7 ± 1.1 −17.76 −5.22 −23.6 ± 0.5 −22.64 −7.54 −26.9 ± 0.8 −25.86 −9.41
1p3/2 −9.99 −1.32 −16.53 −4.11 −21.95 −6.99
1p1/2 −11.0 ± 0.5 −9.78 −1.29 −17.7 ± 0.6 −16.41 −4.08 −22.5 ± 0.6 −21.90 −6.98
1d5/2 −2.42 −9.88 −0.60 −17.27 −4.18
1d3/2 −1.0 ± 0.5 −2.15 −10.9 ± 0.6 −9.65 −0.56 −17.4 ± 0.7 −17.16 −4.15
1f7/2 −3.19 −12.10 −1.19
1f5/2 −3.7 ± 0.6 −2.89 −12.3 ± 0.6 −11.92 −1.16
1g9/2 −6.66
1g7/2 −7.2 ± 0.6 −6.40

constants without strangeness degree of freedom. For example,
the binding energy of 208Pb from QMF-NK3 is smaller than
that from QMF-NK1, as shown in Ref. [56].

Encouraged by the good agreements of ! hypernuclei data
in our present model, we start to calculate the energy levels of
"0 hypernuclei in the same framework, to serve as a reference
for future experiments. The single-particle energy levels of "0

for 40
"0 Ca, 89

"0 Y,and 208
"0 Pb are collected in Fig. 3. We can find

that the results obtained from present model are deeper than
that from the QMF model without pion and gluon corrections.

Single-! and single-"0 energies of these hypernuclei
within the QMF-NK3S set and the corresponding experimental
data are listed in detail in Table V. The differences of single-!
binding energies in theory and experiment are less than 5%
of the experimental values. The spin-orbit splittings of these
single-! hypernuclei are usually less than 0.3 MeV, since
the tensor couplings between vector meson and hyperons
are included in this work. The small spin-orbit splittings are
in accord with the available experiment data. For single-"0

hypernuclei, the high angular momentum states do not exist,
compared with the corresponding single-! hypernuclei, due
to small value of the single-" potential at nuclear saturation
density. In this case, the deepest bound state of "0 exists in
208
"0 Pb, at about −9.5 MeV.

In Fig. 4, we plot the scalar potential U!
S and vector

potential U!
V for the 1s1/2 ! state in 40

! Ca, 89
! Y, and 208

! Pb.
We find that the scalar potential from the σ meson almost has
the same magnitude as the repulsive vector potential from the
ω meson. They will cancel with each other and finally generate
a total attractive force, whose center part is around 23–30 MeV
in 40

! Ca, 89
! Y, and 208

! Pb. The larger u quark mass will provide
more attractive scalar and repulsive vector potentials, which
is related to the smaller effective ! mass and larger vector
coupling constant in the QMF-NK3S parameter set.

Similarly, the scalar and vector potentials of the single-"0

hypernuclei 1s1/2 "0 state are given in Fig. 5. They are just
about 50% in ! hypernuclei. The scalar and vector potentials
finally produce attractive potentials at the center part of "0

hypernuclei, whose values are about 7–12 MeV in 40
"0 Ca, 89

"0 Y,
and 208

"0 Pb.
In Fig. 6, the binding energies of single-! hypernuclei

are systematically calculated from 16
! O to 208

! Pb within the
QMF-NK3S parameter set at different spin-orbit states and
are compared with the experimental data [62]. It can be found

that the experiment observables are reproduced very well
in the QMF model, including pion and gluon corrections.
If pion and gluon corrections are not included [40], the !
binding energies at s and p spin-orbit states are in accord
with experimental data; however, there were few-MeV differ-
ences of ! binding energies between theoretical results and
experimental values above d spin-orbit states. It is conclusive

FIG. 4. The scalar and vector potentials, U!
S and U!

V , for the
1s1/2 ! state in 40

! Ca, 89
! Y, and 208

! Pb by QMF-NK1S, QMF-NK2S,
and QMF-NK3S.
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FIG. 5. The scalar and vector potentials, U!0

S and U!0

V , for the
1s1/2 !0 state in 40

!0 Ca, 89
!0 Y, and 208

!0 Pb by QMF-NK1S, QMF-NK2S,
and QMF-NK3S.

FIG. 6. Systematic calculations of the binding energies of "

hypernuclei with the QMF-NK3S parameter set compared with the
experimental data.

FIG. 7. Pressures of β equilibrated matter as functions of the
energy density, for QMF-NK1S, QMF-NK2S, and QMF-NK3S
parameter sets.

that the QMF model including the pion and gluon corrections
can improve the description of " hypernuclei from the
quark level.

C. Properties of neutron stars

Once the properties of single " and !0 hypernuclei
are determined by the QMF model with pion and gluon
corrections, strange nuclear matter and neutron stars can be
studied in the present framework. For neutron star matter,
all baryons and leptons stay in a charge neutrality and β
equilibrium environment. Furthermore, $ hyperons also have
the probability to appear in neutron star matter, although
there is no evidence of existing of single-$ hypernuclei from
experiments to date. To make the present discussion simpler,
the coupling constant between the ω meson and $ hyperon
is taken to be same value as g"

ω . Furthermore, the ρ meson
may play an important role in neutron star matter, whose
coupling constants related to hyperons are chosen as gH

ρ = gρ .
After solving the corresponding equations, the energy density
and pressure of neutron star matter can be obtained as shown
in Fig. 7 within QMF-NK1S, QMF-NK2S, and QMF-NK3S
sets. At low energy density, the pressures of three parameter
sets are almost identical, since the behaviors of neutron star
matter at low density are decided by the properties of finite
nuclei; meanwhile, the hyperons do not appear due to their
larger chemical potentials. With energy density increasing,
the pressure of QMF-NK1S becomes a little bit different
from those of QMF-NK2S and QMF-NK3S for hyperon
appearance.

Besides the relation between energy density and pressure,
the fractions of leptons and baryons in neutron star matter
as functions of total baryon density are also given in Fig. 8
with different parameter sets. The direct Urca processes will
happen above the densities ρB = 0.287, 0.244, and 0.229 fm−3

in QMF-NK1S, QMF-NK2S, and QMF-NK3S, respectively,
which are higher than the case without pion and gluon
corrections, ρB = 0.21 fm−3. This satisfies the constraint of
astrophysical observations, where the cooling process does
not occur at too low proton density. Furthermore, both "

054310-8
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The binding energies of 𝚲 hypernuclei

FIG. 6: Systematic calculations of the binding energies of Λ hypernuclei with QMF-NK3S param-

eter set compared with the experimental data.

will play an important role in neutron star matter, whose coupling constants related with

hyperons are chosen as gHρ = gρ. After solving the corresponding equations, the energy

density and pressure of neutron star matter can be obtained as shown in Fig. 7 within

QMF-NK1S, QMF-NK2S, and QMF-NK3S sets. At low energy density, the pressures of

three parameter sets are almost identical, since the behaviors of neutron star matter at low

density are decided by the properties of finite nuclei, meanwhile, the hyperons do not appear

due to their larger chemical potentials. With energy density increasing, the pressure of QMF-

NK1S becomes a little bit of difference from the ones of QMF-NK2S and QMF-NK3S for

hyperons appearance.

Besides the relation between energy density and pressure, the fractions of leptons and

baryons in neutron star matter as functions of total baryon density are also given in Fig.

8 with different parameter sets. The direct Urca processes will happen above the densities

ρB = 0.287, 0.244 and 0.229 fm−3 at QMF-NK1S, QMF-NK2S, and QMF-NK3S, respec-

tively, which are higher than the case without pion and gluon corrections, ρB = 0.21 fm−3.

It satisfies the constraint of astrophysical observations, where the cooling process does not

occur at too low proton density. Furthermore, both of Λ and Ξ− hyperons appear around

two times saturation density. Ξ0 hyperons exist above ρB = 0.9 fm−3. At high density,

18

Exp. Data:A. Gal, E. V. Hungerford and D. J. Millener, Rev. Mod. Phys. 88(2016)035004

X. Xing, J.H., and H. Shen, Phys. Rev. C 95 (2017) 054310 
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The KISO event (𝚵-+14N) of 𝚵- hypernuclei

are between 1.08 to 1.21 MeV in QMF-NK3S to QMF-NK1S sets, respectively. Meanwhile,

in the analysis of Nakazawa et al. on KISO event, if the Ξ− hyperon occupies 1s state, its

binding energy is 4.38±0.25 MeV. Moreover, the value will become as 1.11±0.25 MeV at 1p

state. It is found that our calculations are in accordance with the constraint of 1p state in

KISO event. Therefore, 15
Ξ−C in this event is more likely to be 14N+Ξ−(1p) system in terms

of the predictions of our theoretical framework, which is consistent with the conclusion taken

by Sun et al. [11] using RMF model.

To further check the usability of QMF modelon the aspect of Ξ− hypernuclei, the BΞ−

of 12
Ξ−Be in our results are compared with other few-body calculations also [24], where the

magnitudes of BΞ− were about 3.0− 5.5 MeV. In present calculation, they are about 3.49−

3.78 MeV and 4.11−4.35 MeV, corresponding to be with and without ρmeson contributions,

respectively. These differences of ρ meson effect are due to the isospin asymmetry in the

core of 12
Ξ−Be (Z = 5, N = 6).

It should be noted that in RMF calculation, when the Ξ− hyperon binding energy of

1p state was obtained as 1.1 MeV, the corresponding value of 1s state is about 9.4 MeV.

This difference is much larger than the case in QMF model, where BΞ−(1s)− BΞ−(1p) are

just around 4.6 MeV. Furthermore, the BΞ−(1s) in QMF model are merely larger 30% than

the experimental data. Actually, these results are strongly dependent on the single ΞN

potentials at nuclear saturation density. Through above discussion, it is demonstrated that

UΞN is taken as 12 MeV at nuclear saturation density is reasonable.

TABLE I: The binding energies (in MeV) of 12
Ξ−Be and 15

Ξ−C for different orbit states of Ξ− hyperons

in QMF-NK1, QMF-NK2, and QMF-NK3 parameter sets.

15
Ξ−C(1s) 15

Ξ−C(1p) 12
Ξ−Be(1s)

QMF-NK1S(gρΞ = gρN ) 5.82 1.21 3.78

QMF-NK2S(gρΞ = gρN ) 5.69 1.14 3.59

QMF-NK3S(gρΞ = gρN ) 5.61 1.08 3.49

QMF-NK1S(gρΞ = 0) 5.80 1.21 4.35

QMF-NK2S(gρΞ = 0) 5.65 1.14 4.20

QMF-NK3S(gρΞ = 0) 5.58 1.08 4.11

Expt. or empirical data 4.38 ± 0.25 1.11± 0.25 3.0− 5.5

10

K. Nakazawa et al., Prog. Theor. Exp. Phys. 2015, 033D02 (2015) 

T.T.Sun, E.Hiyama, H.Sagawa, H.J.Schulze, J. Meng, Phys. Rev. C 94, 064319 (2016)  
J. Margueron, E. Khan, F. Gulminelli, Phys. Rev. C 96, 054317 (2017).
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In an emulsion-counter hybrid experiment performed at J-PARC, a Ξ− absorption event was observed
which decayed into twin single-Λ hypernuclei. Kinematic calculations enabled a unique identification of
the reaction process as Ξ− þ 14N → 10

ΛBeþ 5
ΛHe. For the binding energy of the Ξ− hyperon in the Ξ−−14N

system a value of 1.27" 0.21 MeV was deduced. The energy level of Ξ− is likely a nuclear 1p state which
indicates a weak ΞN–ΛΛ coupling.
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FIG. 1. Systematic calculations of the binding energies of !−

hypernuclei within (a) QMF-NK2S and (b) QMF-NK2S′ parameter
sets from 12

!− Be to 208
!− Tl.

The contribution of the ρ meson in the single-!− hy-
pernuclei is treated carefully, in particular, for the pure
isospin-zero core, where the ρ meson is merely brought by
the !− hyperon. However, there is only one !− hyperon in
a single-!− hypernucleus, where the effect of the ρ meson
is spurious in the Hartree approximation and is removed.
Following the scheme in Refs. [10,14], this spurious contribu-
tion is obtained by comparing the calculations at gρN = 0
and gρN = gρ! = 0. The final result will be produced by
subtracting the spurious contributions in the full self-consistent
calculations.

In Fig. 1, the !− binding energies of a single-!− hypernu-
clei are calculated systematically from 12

!−Be to 208
!− Tl at s,p,

and d orbits with QMF-NK2S [Fig. 1(a)] and QMF − NK2S′

[Fig. 1(b)] parameter sets. The results that are obtained from
other interactions are found to be very similar. Since the !−

hyperon contains one negative charge, the actual chemical
symbols for the !− hypernuclei do not correspond to those for
the elements of the core. For instance, the 208

!− Tl denotes the
!− + 207Pb system. To show the role of the ρ meson in the
!− hypernuclei more clearly, results without the ρ! coupling
case gρ! = 0 are given as dashed lines to compare with the

results obtained by a proper treatment, which are plotted as
solid curves.

The attractive contribution of the Coulomb field in the !−

hyperon causes the binding energies of the !− hypernuclei
to be much larger than those of the !0 hypernuclei. In
our previous work, it was demonstrated that the !0 binding
energy was approximately 9.5 MeV for 208

!0 Pb at the 1s state
[21]. However, it is 31.86 MeV for 208

!− Tl with a QMF-NK2S
parameter set with gρ! = 0. When the ρ meson is considered,
the single-!− binding energy of the 208

!− Tl is 26.86 MeV at
the 1s state using the QMF-NK2S parameter set. This is
comparable to the single-# binding energy of the 208

# Pb,
i.e., 25.95 MeV. This result suggests that the # and !−

hyperons may simultaneously appear in the core region of
neutron stars. This conclusion was confirmed in our previous
calculations concerning neutron star with hyperons. In the
high-density regions of a neutron stars, the fraction of the !−

hyperon is even larger than that of the # hyperon. With the
reduction of the !− hypernuclei masses, the binding energies
of the !− hyperon rapidly decrease. This energy drops off to
approximately 4 MeV for the 12

!−Be.
The contribution of the ρ meson is repulsive for the !−

hypernuclei with a neutron-rich core, which is obtained by
comparing the binding energies of the !− hyperons in the
gρ! = 0 and gρ! = gω! cases. This repulsive effect is mainly
generated by the difference between neutrons and protons.
This energy is shifted by 5.00 MeV for 208

!− Tl in the QMF-
NK2S. For those !− hypernuclei with Z = N cores (41

!−K
and 17

!−N), the ρ meson plays a negligible role, where the
binding energies of !− hyperons in gρ! = 0 and gρ! = gω!

cases are almost identical after the spurious ρ-coupling effect
is removed. In the Fig. 1(b), the results are shown for the
QMF − NK2S′ interaction, where the U

(N)
! = −9.0 MeV at

nuclear saturation density is chosen. The binding energy of
the 208

!− Tl at the 1s state is reduced by approximately 3.0 MeV
compared to that of the QMF-NK2S, which is consistent with
the decrement of the single ! potential at nuclear saturation
density. For the light !− hypernuclei, these reductions are
smaller.

Currently, only three events were observed for the !−

hypernuclei in accelerators. Recently, the 15
!−C were confirmed

by Nakazawa et al. as a KISO event [7]. However, it is very
difficult to determine the accuracy of the binding energy due
to the unknown details of 10

# Be, which is produced from the
decay of 15

!−C. Therefore, we attempt to discuss the 15
!−C in

detail in the present framework to benefit the analysis of the
KISO event.

The binding energies of the !− hyperon of the 15
!−C and

12
!−Be are listed on the basis of six parameter sets as previously
mentioned in Table I and compared to the probable experimen-
tal data. In the QMF-NK1S′ to QMF-NK3S′ interactions, the
B!− of the 1s state is located at 4.24–4.45 MeV for 15

!−C when
all the mesons are considered. These will decrease slightly in
the case of the removal of the ρ meson as gρ! = 0. The ρ
meson contribution is very weak in 15

!−C because its core was
composed of Z = N = 7. The similar situation arises in the
1p state, whose binding energies are almost the same with
and without ρ meson. They are between 0.75–0.84 MeV in
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FIG. 2. The potentials from various fields in 15
!− C within QMF-

NK2S and QMF-NK2S′. The dot-dashed ones are from the spurious
contributions of ρ meson and dashed curves for its real effects. Dotted
lines represent Coulomb field. The dash-dot-dotted curves denote the
potentials from σ and ω mesons. The potentials from all mesons are
given as solid curves, where Vall = Vσ + Vω + Vρ + VA.

eases up at 2.0 fm in RMF model [14]. The mean fields in the
QMF model are shallower but wider, while they are deeper but
narrower in the RMF model. This is the reason why the two
different models can provide similar binding energies for the
1s states, while those of 1p states are completely different.

In Fig. 3, the mean-field potentials for 12
!−Be are plotted

within the QMF-NK2S [Fig. 3(a)] and QMF-NK2S′ [Fig. 3(b)]
parameter sets. The Woods-Saxon (WS) potential adopted in
the analysis by Nakazawa et al is also given for comparison.
It can be seen that the contribution of the ρ meson in 12

!−Be is
larger than that in 15

!−C, since the core of 15
!−C (N = Z = 7)

is almost pure isospin zero. The total mean-field potential
from QMF-NK2S has a similar depth as the one from the
empirical WS potential. Therefore, we obtain the B!− (1s) of
12
!−Be as being 3.59 MeV, which is consistent with the result
from WS potential. Conversely, the fields from QMF-NK2S′

are smaller than those from QMF-NK2S and WS potential.
The shape of the mean-field potential from QMF model is also

FIG. 3. The potentials from various fields in 12
!− Be within QMF-

NK2S and QMF-NK2S′. The WS potential used in the analysis of
Nakazawa et al. [7] is also plotted for comparison as long dashed
curves.

different from the one obtained from the RMF theory as shown
in Ref. [14]. At long-range distance, our potentials are deeper
than the WS potential. Actually, this mean-field potential is
very close to that from the SL3 interaction as calculated using
the SHF model in Ref. [14], which is shallower at short distance
but deeper at long range compared to the WS potential. The
B!− (1s) − B!− (1p) from the SL3 interaction is also smaller
than the results from other interactions in Ref. [14], which is
in accordance with our conclusions.

IV. CONCLUSION

The properties of the !− hypernuclei were investigated
in the framework of QMF model, where the baryons were
regarded as a combination of three constituent quarks. The
baryons are confined by the central harmonics oscillator
potentials. At the hadron level, the baryons interact with each
other by exchanging various mesons between quarks in the
different baryons. In this paper, two types of !N interac-
tions were chosen U

(N)
! = −12 MeV and U

(N)
! = −9 MeV.

The available NN interactions, QMF-NK1, QMF-NK2, and
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calculations, while for the isospin operator of the ! hyperon,
τ!,3 = ±1 for !0 and !−, respectively.

In this paper, the !− hypernuclei are treated as spherical
cases approximately and the spatial components of vector
meson vanish in the time-reversal symmetry. There are only
time components of the ω,ρ, and A fields in Lagrangian. For
the convenient presentation later on, we will use the symbols,
ω,ρ, and A, instead of ω0,ρ0, and A0.

The equations of motion about the nucleon, ! hyperon and
mesons can be obtained within the Euler-Lagrange equations.
However, these equations of motion for quantum fields cannot
be exactly solved. The mean-field approximation and no-sea
approximation will be employed in considering the mesons
as classical fields in QMF model. Then, the Dirac equations
for the nucleons and the ! hyperon can be expressed as
below,

[
iγµ∂µ − M∗

N − gωNωγ 0 − gρNρτN,3γ
0 − e

(1 + τN,3)
2

Aγ 0
]
ψ = 0,

[
iγµ∂µ − M∗

! − gω!ωγ 0 + fω!

2M!

σ 0i∂iω − gρ!ρτ!,3γ
0 − e

(τ!,3 − 1)
2

Aγ 0
]
ψ! = 0 (3)

and the equations of motion for mesons are given by

− )σ + m2
σ σ + g2σ

2 + g3σ
3 = −∂M∗

N

∂σ
〈ψ̄NψN 〉 − ∂M∗

!

∂σ
〈ψ̄!ψ!〉,

−)ω + m2
ωω + c3ω

3 = gωN 〈ψ̄Nγ 0ψN 〉 + gω!〈ψ̄!γ 0ψ!〉 − fω!

2M!

∂i〈ψ̄!σ 0iψ!〉,

−)ρ + m2
ρρ = gρN 〈ψ̄NτN,3γ

0ψN 〉 + gρ!〈ψ̄!τ!,3γ
0ψ!〉,

−)A = e

〈
ψ̄N

(1 + τN,3)
2

γ 0ψN

〉
+ e

〈
ψ̄!

(τ!,3 − 1)
2

γ 0ψ!

〉
. (4)

These coupling equations are solved self-consistently for !−

hypernuclei with numerical methods, when a hypernucleus
is regarded as a core of finite nuclei plus one !− hyperon.
If the core is an open shell nuclei, the pairing effect will be
taken into account by employing BCS theory. The center of
mass correction for hypernucleus in this paper is dealt with the
microscopic method as [26],

Ec.m.
〈*| %P 2

c.m.|*〉
2Mtotal

, (5)

where * is the total wave function of the entire system. Mtotal

is the total mass of the hypernucleus and %Pc.m. is the total
momentum operator.

III. RESULTS AND DISCUSSION

In the QMF model, the coupling strengths between the σ
meson and the baryons are determined by the effective baryon
masses generated from the confinement potentials of the
three quarks. Three constituent quark masses (mq = 250,300,
and 350 MeV) were chosen to consider the quark mass
dependence of the baryons. Three corresponding parameter
sets (QMF-NK1, QMF-NK2, and QMF-NK3) at the hadron
levels that were related to the coupling constants between
the vector mesons and baryons, were obtained by fitting the
ground-state properties of several double-magic nuclei, i.e.,
40Ca,48Ca,90Zr, and 208Pb [20]. These parameter sets produced
excellent descriptions of the finite nuclei and nuclear matter.

The strangeness degree of freedom was then included to
study the single-+,!0 hypernuclei, and the neutron star with
hyperons [21]. The coupling constants between the ω meson

and the +,! baryons were provided by the empirical values
of the single-+ and ! potentials at the nuclear saturation
density due to the insufficiency of the experimental data for
the hypernuclei. The single-+ potential was considered to be
U

(N)
+ = −30.0 MeV, which reproduced the experimental data

concerning the binding energies of the single-+ hypernuclei
very well. For the ! system, the U

(N)
! = −12.0 MeV was

used at the nuclear saturation density. Finally, these coupling
constants were termed QMF-NK1S, QMF-NK2S, and QMF-
NK3S parameter sets. In these cases, the maximum masses of
the neutron stars with hyperons approached to 2.1M&, which
satisfied the constraints of recent astronomical observations in
massive neutron stars [22–24]. Furthermore, it was found that
the + and !− hyperons simultaneously appeared in the core
region of the neutron stars.

In the present paper, we concentrate on studying the
properties of the !− hypernuclei, in particular about their
!− binding energies. To discuss the influence of different
!N interactions on the !− hypernuclei, an additional three
coupling constants between the ω meson and the ! hyperon
were fixed to generate the U

(N)
! = −9.0 MeV at saturation

density, which were termed as QMF-NK1S′, QMF-NK2S′, and
QMF-NK3S′, respectively. The ρ meson should be considered
due to the isospin character of the ! hyperon. However,
the coupling constant to the ! hyperon cannot be easily
determined by the single-! potential at nuclear matter. The
SU(3) symmetry is employed to generate, gρ! = gω!. In
addition, the spin-orbit splittings of hypernuclei were found to
be smaller than the ones in finite nuclei. The tensor coupling
terms between the ω and the ! hyperon are considered as,
fω! = −0.4gω! [10,14].
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calculations, while for the isospin operator of the ! hyperon,
τ!,3 = ±1 for !0 and !−, respectively.

In this paper, the !− hypernuclei are treated as spherical
cases approximately and the spatial components of vector
meson vanish in the time-reversal symmetry. There are only
time components of the ω,ρ, and A fields in Lagrangian. For
the convenient presentation later on, we will use the symbols,
ω,ρ, and A, instead of ω0,ρ0, and A0.

The equations of motion about the nucleon, ! hyperon and
mesons can be obtained within the Euler-Lagrange equations.
However, these equations of motion for quantum fields cannot
be exactly solved. The mean-field approximation and no-sea
approximation will be employed in considering the mesons
as classical fields in QMF model. Then, the Dirac equations
for the nucleons and the ! hyperon can be expressed as
below,

[
iγµ∂µ − M∗

N − gωNωγ 0 − gρNρτN,3γ
0 − e

(1 + τN,3)
2

Aγ 0
]
ψ = 0,

[
iγµ∂µ − M∗

! − gω!ωγ 0 + fω!

2M!

σ 0i∂iω − gρ!ρτ!,3γ
0 − e

(τ!,3 − 1)
2

Aγ 0
]
ψ! = 0 (3)

and the equations of motion for mesons are given by

− )σ + m2
σ σ + g2σ

2 + g3σ
3 = −∂M∗

N

∂σ
〈ψ̄NψN 〉 − ∂M∗

!

∂σ
〈ψ̄!ψ!〉,

−)ω + m2
ωω + c3ω
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2M!

∂i〈ψ̄!σ 0iψ!〉,
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ρρ = gρN 〈ψ̄NτN,3γ

0ψN 〉 + gρ!〈ψ̄!τ!,3γ
0ψ!〉,

−)A = e

〈
ψ̄N

(1 + τN,3)
2

γ 0ψN

〉
+ e

〈
ψ̄!

(τ!,3 − 1)
2

γ 0ψ!

〉
. (4)

These coupling equations are solved self-consistently for !−

hypernuclei with numerical methods, when a hypernucleus
is regarded as a core of finite nuclei plus one !− hyperon.
If the core is an open shell nuclei, the pairing effect will be
taken into account by employing BCS theory. The center of
mass correction for hypernucleus in this paper is dealt with the
microscopic method as [26],

Ec.m.
〈*| %P 2

c.m.|*〉
2Mtotal

, (5)

where * is the total wave function of the entire system. Mtotal

is the total mass of the hypernucleus and %Pc.m. is the total
momentum operator.

III. RESULTS AND DISCUSSION

In the QMF model, the coupling strengths between the σ
meson and the baryons are determined by the effective baryon
masses generated from the confinement potentials of the
three quarks. Three constituent quark masses (mq = 250,300,
and 350 MeV) were chosen to consider the quark mass
dependence of the baryons. Three corresponding parameter
sets (QMF-NK1, QMF-NK2, and QMF-NK3) at the hadron
levels that were related to the coupling constants between
the vector mesons and baryons, were obtained by fitting the
ground-state properties of several double-magic nuclei, i.e.,
40Ca,48Ca,90Zr, and 208Pb [20]. These parameter sets produced
excellent descriptions of the finite nuclei and nuclear matter.

The strangeness degree of freedom was then included to
study the single-+,!0 hypernuclei, and the neutron star with
hyperons [21]. The coupling constants between the ω meson

and the +,! baryons were provided by the empirical values
of the single-+ and ! potentials at the nuclear saturation
density due to the insufficiency of the experimental data for
the hypernuclei. The single-+ potential was considered to be
U

(N)
+ = −30.0 MeV, which reproduced the experimental data

concerning the binding energies of the single-+ hypernuclei
very well. For the ! system, the U

(N)
! = −12.0 MeV was

used at the nuclear saturation density. Finally, these coupling
constants were termed QMF-NK1S, QMF-NK2S, and QMF-
NK3S parameter sets. In these cases, the maximum masses of
the neutron stars with hyperons approached to 2.1M&, which
satisfied the constraints of recent astronomical observations in
massive neutron stars [22–24]. Furthermore, it was found that
the + and !− hyperons simultaneously appeared in the core
region of the neutron stars.

In the present paper, we concentrate on studying the
properties of the !− hypernuclei, in particular about their
!− binding energies. To discuss the influence of different
!N interactions on the !− hypernuclei, an additional three
coupling constants between the ω meson and the ! hyperon
were fixed to generate the U

(N)
! = −9.0 MeV at saturation

density, which were termed as QMF-NK1S′, QMF-NK2S′, and
QMF-NK3S′, respectively. The ρ meson should be considered
due to the isospin character of the ! hyperon. However,
the coupling constant to the ! hyperon cannot be easily
determined by the single-! potential at nuclear matter. The
SU(3) symmetry is employed to generate, gρ! = gω!. In
addition, the spin-orbit splittings of hypernuclei were found to
be smaller than the ones in finite nuclei. The tensor coupling
terms between the ω and the ! hyperon are considered as,
fω! = −0.4gω! [10,14].
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The conflation values of 1p 𝚵- hyperon in 𝚵-+14N system 

pendent experiments, which measure the same physical quantity, B⌅�(1p), a mathematical

method named conflation will be used [34, 35]. All observables of ⌅� binding energy from

the above events are assumed to satisfy the normal distributions,

f(x) =
1

�i

p
2⇡

exp


�(x�mi)2

2�2
i

�
, (5)

where mi is the mean value, and the �i represents the standard deviation. It can be proved

that the best linear unbiased estimation for many independent observations with normal

distributions is still a normal distribution in conflation method with

mt =
nX

i

mi�
�2
i

 
nX

i

��2
i

!�1

, (6)

�t =

 
nX

i

��2
i

!�1/2

.

FIG. 1: The normal distributions of ⌅� binding energy at 1p state, B⌅�(1p) of 15
⌅�C in 14-03-35,

KISO, IBUKI, and T011 events and their conflation distribution.

In Fig. 1, the probabilities of B⌅� at 1p state in 15
⌅�C from 14-03-35, KISO, IBUKI, and

T011 events are shown, when the observables from KEK E176, E373, and J-PARC E07

were considered as the normal distributions. Their conflating distribution is given as the

shadow region. It can be found that the conflating mean value is close to the means of

four independent experiments with a smaller variance, which indicates a better accuracy

since the total valid measurements are increasing compared to the single experimental data.
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Therefore, the ⌅� binding energy at 1p state in 15
⌅�C can be well determined as B⌅� =

1.14± 0.11 MeV within present conflation method.

Once the values of B⌅�(1p) were constrained, the only free parameter in the QMF model

for ⌅� hypernuclei, g!⌅ will be fixed. The other coupling constants between mesons and

baryons and the strengths of confinement potentials have been determined by the ground-

state properties of finite nuclei and free baryon masses, in our previous works [31, 32].

Furthermore to investigate the influences of quark masses, these parameter were separated

into three sets, i.e., QMF-NK1, QMF-NK2, and QMF-NK3, where the constituent quark

masses were adopted as mu = 250, ms = 330 MeV; mu = 300, ms = 380 MeV; mu =

350, ms = 430 MeV, respectively for u and s quarks. Based on these parameter sets, the

g!⌅/g!N can be generated by the 1p binding energy of 15
⌅�C, B⌅� = 1.14 ± 0.11 MeV. We

choose its two boundary values, �1.03 MeV and �1.25 MeV to obtain two g!⌅ for each

of three parameter sets, named as QMF-NK1X1, QMF-NK1X2, and so on. Their values

are listed in Table II. Here, the tensor coupling term between ! and ⌅� is introduced

with f!⌅ = �0.4g!⌅ so that the spin-orbit splitting of ⌅� hypernuclei is largely reduced.

In the present work, the 1p3/2 state of ⌅� hyperon will be used to denote the 1p state in

experimental measurements.

TABLE II: The coupling constants between ! meson and ⌅ hyperon in QMF model with di↵erent

quark masses in terms of the conflating constraints of 1p ⌅� binding energies of 15
⌅�C and their

predictions on its 1s state binding energies B⌅�(1s). The binding energies are in unit of MeV.

Sets g!⌅/g!N B⌅�(1p) B⌅�(1s)

QMF-NK1X1 0.5024 �1.03 �5.19

QMF-NK1X2 0.4954 �1.25 �5.91

QMF-NK2X1 0.4832 �1.03 �5.27

QMF-NK2X2 0.4771 �1.25 �6.01

QMF-NK3X1 0.4694 �1.03 �5.41

QMF-NK3X2 0.4638 �1.25 �6.11

Meanwhile, the ⌅� binding energy at 1s state of 15
⌅�C can be predicted with the same

parameters. Their corresponding values are also tabulated in the last column of Table II

about �5.19— �6.11 MeV. Because all of these B⌅�(1s) is produced by assuming that

7

the B⌅�(1p) from experimental data satisfies a normal distribution, it is natural to analyze

them with the same distribution and calculate their mean value and standard deviation.

Finally, the B⌅�(1s) can be predicated as 5.66 ± 0.38 MeV in the QMF model. At the ex-

perimental aspect, there is only a certain event, IRRAWADDY at J-PARC E07 experiment,

which pointed the B⌅�(1s) = 6.27± 0.27 MeV in 15
⌅�C. Our results are consistent with the

IRRAWADDY event quite well. Furthermore, in another event, KINKA in the KEK E373

experiment, the ⌅� binding energy was not fixed well, which can be 4.96±0.77 or 8.00±0.77

MeV. According to the present calculations, it should be 4.96±0.77 MeV and be interpreted

as a 1s state.

FIG. 2: The distributions of ⌅� binding energy at 1s state, B⌅�(1s) of 15
⌅�C in IRRAWADDY and

KINKA events, their conflation distribution and the prediction distribution from QMF model.

The probabilities of ⌅� binding energy at 1s state from IRRAWADDY and KINKA events

are plotted in Fig. 2, where the KINKA is considered as 1s state with B⌅�(1s) = 4.96±0.77

MeV. In this assumption, their conflation value is 6.13±0.25 MeV. It has a very wide overlap

with the prediction from the present QMF model, 5.66± 0.38 MeV.

On the other hand, the magnitude of ⌅N potential in the nuclear matter is also very

important for the discussions of hyperon in the neutron star, which is strongly correlated to

the onset densities of ⌅ hyperons in the core region of the neutron star. With the Eq. (4),

the single ⌅N potential in the symmetric nuclear matter is easily evaluated, where the �

and ! fields are obtained through solving the equations of motion of nucleons and mesons

in nuclear matter.
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Fig. 7. B!− for the !−–14N system of the E373-T1 [42], KISO [25], and IBUKI [26] events, the present
results, theoretical calculations with the WS and Coulomb potential, and theoretical calculations reported in
Refs. [33,34,36].

In case (A), the B!− values of the IRRAWADDY and KINKA events are significantly larger than
that of the 1p state. Thus, these events are attributed to the 1s state, namely the ground-state spin-
doublet (3/2+, 1/2+) of the 15

! C hypernucleus. This is the first observation of the ! hypernuclear 1s
state. The weighted averages of B!− of “IRRAWADDY and the larger KINKA” or “IRRAWADDY
and the smaller KINKA” are obtained to be 6.13 ± 0.25 MeV or 6.46 ± 0.25 MeV, respectively.
The two cases of the IRRAWADDY and KINKA pair have a B!− discrepancy of 1.7 ± 0.8 MeV or
1.3±0.8 MeV, respectively. If the two events correspond to the same member of the 1s spin doublet,
or if the spin–spin splitting is small enough, the discrepancy indicates that the 1s state has a wider
natural width than the 1p state. If the natural width of the 1s state is narrow, IRRAWADDY and
KINKA are assigned to the 1s spin doublet. In this case, B!− of the ground state would be around
6.3 MeV or 8.0 MeV.

In case (B), assuming a wide natural width in the 1p state, the ! hypernuclear transition from the
1p to 1s state is strongly suppressed. Therefore, the IRRAWADDY event and the two cases of the
KINKA event would be in the 1p state. Whichever combination is adopted to the 1p spin doublet,
there must be a 1p state with a central B!− ≥ 4 MeV. A V !

0 value of 20 MeV is obtained for a
B!− of 4 MeV in the 1p state with the imaginary potential depth (W !

0 ) set to 0 MeV as shown in
Fig. 7. As the W !

0 value increases, the V !
0 value increases to keep B!− at 4 MeV. However, the large

V !
0 is inconsistent with the results of the BNL E885 experiment [16], and consequently case (B) is

unlikely. Reference [57] calculated the bound system of the light s-shell ! hypernucleus using the
HAL QCD potential [40]. The decay width corresponding to the ""–!N coupling was estimated,
and then the decay width in the S-wave was obtained to be less than 0.1 MeV with the HAL QCD
and less than 1 MeV with Nijmegen ESC08c. Since the decay width of the P-wave is usually equal

15/19

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/7/073D

02/6325211 by guest on 15 D
ecem

ber 2021

M. Yoshimoto et al., “First observation of a nuclear s-state of a Ξ hypernucleus, ”, 
Prog. Theor. Exp. Phys. 2021, 073D02 (2021)

15
ΞC

cf. atomic 3D state 
 −BΞ = − 0.17 MeV

nuclear 1p state?

nuclear 1s state?



Jinniu Hu13/04/2024 37

The 𝚵N potential in nuclear matter

The ⌅N potentials as functions of nuclear density are given in Fig. 3 with di↵erent QMF

parameter sets. It is an attractive potential and decreases in low-density region. It becomes

saturated around ⇢N = 0.14 fm�3. In the high-density region, it rapidly increases and

inverses to a repulsive potential. The nuclear saturation densities in QMF-NK1, QMF-NK2,

and QMF-NK3 are around 0.152 fm�3 [31]. At this density, the ⌅N potentials are around

�10.72—�13.15 MeV.

FIG. 3: The single ⌅N potentials in symmetric nuclear matter from QMF models as functions of

nuclear density.

The normal distribution of ⌅N potential, U⌅ at nuclear saturation density ⇢0 from QMF

models is obtained with the same scheme about the B⌅� of 1s state ⌅� hyperon in 15
⌅�C ,

which is shown in Fig. 4 and U⌅(⇢0) = �11.96± 0.85 MeV. The magnitude of this potential

is obviously smaller than the recent analysis with the Wood-Saxon potential, where the

⌅N potential depth is about 24.3 ± 0.8 MeV [22]. Therefore, this Wood-Saxon potential

also provided a more bound state of 1s ⌅� with 10 MeV, which is not consistent with the

results from the KINKA and IRRAWADDY events. Furthermore, the ⌅N potential was also

discussed with chiral NLO potential with G-matrix, where U⌅(⇢0) ⇠ �5—�8 MeV [24, 25].

Its prediction about ⌅� binding energy was a little bit smaller than the present experiment

constraints. The ⌅N potential at nuclear saturation density was also calculated with the

HAL-QCD ⌅N potential, which was about �10.6—�16.2 MeV with G-matrix method [26].

It may generate the lightest ⌅ hypernucleus with the same lattice potential in the framework

of the Gaussian expansion method [36].
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FIG. 4: The distribution of ⌅N potential at nuclear saturation density from the QMF models.

IV. SUMMARY AND OUTLOOK

The ⌅N potential was studied in the framework of quark-mean field (QMF) model, with

the recent experimental constraints about the ⌅� +14 N system. Firstly, several binding

energies of 1p state ⌅� hyperon in 15
⌅�C hypernucleus from the KEK E176, KEK E373,

and J-PARC E07 experiments were conflating as B⌅� = 1.14 ± 0.11 MeV. With this data,

the coupling constant between ! meson and ⌅ hyperon was fixed in the case of di↵erent

quark masses, while the other parameters in the QMF model have been determined by the

free baryon masses and the ground-state properties of doubly magic nuclei. After that, the

binding energy of 1s state ⌅� hyperon in 15
⌅�C was predicted as B⌅�(1s) = 5.66± 0.38 MeV,

which is consistent with the observables from the IRRAWADDY event. Besides, the ⌅�

hyperon in the KINKA event can be interpreted as a 1s state with present results, whose

binding energy should be 4.96± 0.77 MeV.

The single ⌅N potential in the symmetric nuclear matter was calculated with the same

parameter sets. It has a strong attractive contribution below 0.25 fm�3. Its magnitude at

nuclear saturation density is �11.96±0.85 MeV from present QMF models, which accords to

the results of HAL-QCD potential within the Brueckner-Hartree-Fock model and is smaller

than the analysis of Wood-Saxon potential. It will be much helpful to the investigations of

the neutron star to better discuss the strangeness degree of freedom in compact star.

Although there has been strong evidence to show that the ⌅N potential provides an
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⌅N potential depth is about 24.3 ± 0.8 MeV [22]. Therefore, this Wood-Saxon potential

also provided a more bound state of 1s ⌅� with 10 MeV, which is not consistent with the

results from the KINKA and IRRAWADDY events. Furthermore, the ⌅N potential was also
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The charmed baryons

FIG. 1: (Color online) The effective masses of charmed baryons, M∗
B , for Λ+

c , Σ+
c , and Ξ++

cc as

functions of the quark mass corrections δmu with three parameter sets [set A (solid curves), set B

(dashed curves), and set C (dotted curves)].

more by the σ meson. It is very similar with the results of Λ, Σ, and Ξ hyperons in our

previous work [71].

B. Properties of Λ+
c hypernuclei

The properties of Λ+
c hypernuclei can be studied within QMF model, once the relation

between quark mass corrections and effective masses of charmed Λ+
c baryons are derived

from quark potential model. The coupling constants between mesons and nucleons have

been determined by fitting the ground-state properties of several doubly-magic nuclei in our

previous work, i.e., the binding energies per nucleon and the charge radii of 40Ca, 48Ca, 90Zr,

and 208Pb [70, 71]. The χ2 function was defined as

χ2 =
1

N

N
∑

i=1

(

XTheo.
i −XExp.

i

XExp.
i

)2

, (31)

with the least square method, whereX represents the binding energy, E/A and charge radius,

rch of nuclei. To discuss the mass influences of constituent quark, there were three masses of

u, d quark adopted as 250, 300, 350 MeV. The corresponding coupling constants between

13
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TABLE II. The potential parameters aq and Vq for u and c quarks corresponding to mu = 250 MeV as set A, mu = 300 MeV as set B, and
mu = 350 MeV as set C.

mu (MeV) Vu (MeV) au (fm−3) mc (MeV) Vc (MeV) ac (fm−3)

Set A 250 −24.286601 0.579450 1300 284.58724 0.118172
Set B 300 −62.257187 0.534296 1350 239.53994 0.117312
Set C 350 −102.041575 0.495596 1400 193.67265 0.116036

equation. The Dirac equations for baryons are given as

[
iγ µ∂µ − M∗

N − gωNωγ 0 − gρNρτ3γ
0 − e

(1 − τ3)
2

Aγ 0
]

×ψN = 0,
[

iγ µ∂µ − M∗
!+

c
− gω!+

c
ωγ 0 +

fω!+
c

2M!+
c

σ 0i∂iω − eq!+
c
Aγ 0

]

×ψ!+
c

= 0. (29)

The equations of motion for mesons can be obtained by

)σ − m2
σ σ − g2σ

2 − g3σ
3

= ∂M∗
N

∂σ
〈ψNψN 〉 +

∂M∗
!+

c

∂σ

〈
ψ!+

c
ψ!+

c

〉
,

)ω − m2
ωω − c3ω

3

= −gωN 〈ψNγ 0ψN 〉 − gω!+
c

〈
ψ!+

c
γ 0ψ!+

c

〉

+
fω!+

c

2m!+
c

∂i
〈
ψ!+

c
σ 0iψ!+

c

〉
,

)ρ − m2
ρρ = −gρN 〈ψNτ3γ

0ψN 〉,

)A = −e
〈
ψN

(1 − τ3)
2

γ 0ψN

〉
− e〈ψ!+

c
q!+

c
γ 0ψ!+

c
〉. (30)

These equations can be solved self-consistently within nu-
merical methods to generate the single-particle energies of
baryons and the total energy of charmed hypernucleus.

III. RESULT AND DISCUSSION

A. Properties of baryons

The potential parameters aq and Vq for u, d , and c quarks
should be first fixed to investigate the properties of baryons. u
and d quarks are considered equally because of the very small
differences of properties between them, while the c quark is
distinguished from them, whose mass is very large. The u
or d quark mass in the QMF model is adopted from 250–
350 MeV as constituent quark [72,73]. Therefore, to discuss
the influence of quark mass on the properties of baryons,
the constituent quark mass for u quark or d quark is taken
as 250, 300, and 350 MeV, respectively, in this work. The
corresponding potential parameters au and Vu can be derived
by fitting the mass and radius of the free nucleon, which have
been obtained in our previous work [72,73]. For the charm
c quark, its mass is chosen as 1300, 1350, and 1400 MeV,
correspondingly now. The potential parameters ac and Vc are
gained by fitting the experimental masses of !+

c , *+
c , and

+++
cc baryons in free space [41] with the least-squares method.
These parameters are listed in Table II. For the convenience

of latter discussion, the parameters corresponding to mu =
250 MeV in Table II are named as set A, the parameters
corresponding to mu = 300 MeV as set B, and the parameter
corresponding to mu = 350 MeV as set C.

The masses of charmed baryons, !+
c , *+

c , and +++
cc in free

space generated by set A, set B, and set C are listed to compare
with the latest experimental data [41] in Table III. Meanwhile,
the contributions from center-of-mass correction, pion correc-
tion, and gluon correction to the masses of charmed baryons

TABLE III. The masses of charmed baryons (!+
c , *+

c , and +++
cc ) in free space with set A, set B, and set C parameter sets, compared with

the experimental data and various contributions in charmed baryon masses, respectively (the units of all quantities are MeV).

Baryon E 0
B εcm δMπ

B ()EB)g MTheor.
B MExpt.

B [41]

!+
c 2562.949 137.904 −65.172 −47.747 2312.126 2286.46 ± 0.14

Set A *+
c 2562.949 137.904 −36.207 −0.790 2388.048 2452.9 ± 0.4

+++
cc 3737.473 96.999 −16.293 −15.607 3608.574 3621.40 ± 0.72

± 0.27 ± 0.14
!+

c 2558.524 140.641 −69.277 −43.096 2305.510 2286.46 ± 0.14

Set B *+
c 2558.524 140.641 −38.487 −1.291 2378.105 2452.9 ± 0.4

+++
cc 3741.683 97.896 −17.319 −14.588 3611.879 3621.40 ± 0.72

± 0.27 ± 0.14
!+

c 2553.749 141.522 −72.829 −39.007 2300.390 2286.46 ± 0.14

Set C *+
c 2553.749 141.522 −40.461 −1.674 2370.092 2452.9 ± 0.4

+++
cc 3744.384 98.099 −18.207 −13.640 3614.437 3621.40 ± 0.72

± 0.27 ± 0.14

024303-5
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FIG. 2: (Color online) The binding energies of single Λ+

c hyperons at various angular momenta

from 17
Λ+
c
O to 209

Λ+
c
Pb with three parameter sets [QMF-NK1C (dotted curve), QMF-NK2C (dashed

curve), and QMF-NK3C (solid curve)].

small. The differences become obvious at intermediate mass region. The spin-orbit forces of

Λ+
c hypernuclei are very small now. Therefore, we did not distinguish the spin-orbit partners

at a fixed orbital angular momentum here. The corresponding results from QMF-NK1C’,

QMF-NK2C’, and QMF-NK3C’ sets are plotted in Fig. 3, where the Λ+
c only can occupy

the 1s1/2 state. Furthermore, the binding energies of Λ+
c hypernuclei in QMF-NK3C are the

largest in the parameter sets which are determined by the naive quark counting rules, while

from the lattice simulations, the QMF-NK3C’ set generates the smallest binding energies

and the differences among the three sets of parameters are almost negligible. It is because

that the Λ+
c N potentials from lattice simulations are fixed as one half of ΛN potentials.

The scalar potentials, US
Λ+
c
and vector potentials UV

Λ+
c
of Λ+

c baryons at 1s1/2 states for

41
Λ+
c
Ca, 90

Λ+
c
Y, and 209

Λ+
c
Pb as functions of their radius are shown in Fig. 4 with QMF-NK1C,

QMF-NK2C, and QMF-NK3C sets. These scalar and vector potentials are produced by the

σ and ω mesons, respectively. They have the similar magnitudes and lead to total attractive

Λ+
c N potentials to bind the Λ+

c hypernuclei. This attractive potential at r = 0 is about −40

MeV. The US
Λ+
c
and UV

Λ+
c
have the largest magnitude from QMF-NK3C. This is because that

the effective Λ+
c mass in set C is the smallest, which can be expressed as M∗

Λ+
c
= MΛ+

c
+US

Λ+
c
.
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mesons and nucleon were named as QMF-NK1, QMF-NK2, and QMF-NK3, respectively.

Their corresponding χ2 were 3.42 × 10−5, 2.33 × 10−5, and 1.08 × 10−5. These parameters

are listed in Table IV for the later discussions conveniently.

gqσ gω gρ g2 g3 c3

(fm−1)

QMF-NK1 5.15871 11.54726 3.79601 -3.52737 -78.52006 305.00240

QMF-NK2 5.09346 12.30084 4.04190 -3.42813 -57.68387 249.05654

QMF-NK3 5.01631 12.83898 4.10772 -3.29969 -39.87981 221.68240

TABLE IV: The coupling constants between mesons and nucleon in QMF-NK1, QMF-NK2, and

QMF-NK3 sets.

The isospin of Λ+
c baryon is zero, which does not interact with the isovector ρ meson.

On the other hand, the coupling strength between σ meson and Λ+
c has been included in

the effective mass of Λ+
c baryon. Therefore, the Λ+

c N potential is mainly dependent on the

coupling constant between ω meson and Λ+
c baryon, gωΛ+

c
in QMF model. However, there

is no specific information about Λ+
c N interaction at the aspect of experiment. Therefore,

we would like to adopt two schemes to fix gωΛ+
c
. The first way is following the method of

QMC model and RMF model [46–48, 50, 51], where gωΛ+
c
= 2/3gωN according to the naive

quark counting rule. In our previous work [70], the coupling strength between ω meson and

nucleon, gωN were taken three values, which were dependent on constituent quark masses.

For the convenient of later discussion, the corresponding values of gωΛ+
c
from naive quark

counting rule are called as QMF-NK1C, QMF-NK2C, QMF-NK3C, respectively.

Furthermore, the Λ+
c N potentials were simulated by Lattice QCD method with different

pion masses recently, where the magnitude of Λ+
c N potential in heavy nuclei, 209

Λ+
c
Pb, was just

one half of the ΛN potential at the central region by employing the single-folding potential

method [64]. Based on this achievement, we also would like to determine gωΛ+
c
with the

following scheme. Firstly, we make an approximation that the binding energy of Λ+
c in 209

Λ+
c
Pb

is one half of that in 209
Λ Pb in QMF model when the Coulomb contribution is turned off.

Then the single-Λ binding energies at 1s state in 209
Λ Pb are calculated within the parameters

from our previous work in Ref. [71]. Now the gωΛ+
c
can be determined through fitting the

single-Λ+
c binding energy of 209

Λ+
c
Pb. Finally, three coupling constants between ω meson and

14
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Jinniu Hu13/04/2024 40FIG. 3: (Color online) The binding energies of single Λ+
c hyperons from 17

Λ+
c
O to 52

Λ+
c
V hypernuclei

with three parameter sets [QMF-NK1C’ (dotted curve), QMF-NK2C’ (dashed curve), and QMF-

NK3C’ (solid curve)].

The corresponding vector coupling constant, gωΛ+
c
is the biggest. The ranges of scalar and

vector potentials of Λ+
c baryon increase with the mass of Λ+

c hypernuclei. The scalar potential

US
Λ+
c
and vector potential UV

Λ+
c
from QMF-NK1C’, QMF-NK2C’, and QMF-NK3C’ for 41

Λ+
c
Ca

are plotted in Fig. 5. Their behaviors are very similar with the QMF-NK1C, QMF-NK2C,

and QMF-NK3C sets except the smaller vector potentials. In these cases, the US
Λ+
c
+ UV

Λ+
c

are about −13 MeV at central region of charmed hypernuclei, which generated the smaller

binding energies.

Actually, the properties of Λ+
c baryons in Λ+

c hypernuclei are determined by the total

potentials from σ meson, ω meson, and Coulomb field. In Fig. 6, the contributions to

Λ+
c N potential from σ and ω, Vσ + Vω, the Coulomb interaction, VA, and the total, Vall =

Vσ+Vω+VA are shown for 17
Λ+
c
O and 209

Λ+
c
Pb within QMF-NK3C (left panel) and QMF-NK3C’

set (right panel). It can be found that the sums of σ and ω potentials for 17
Λ+
c
O and 209

Λ+
c
Pb both

are around −45 MeV by using the QMF-NK3C set. However, the contributions provided by

Coulomb force in these two hypernuclei are completely different, which are around 7 MeV

and 26 MeV for 17
Λ+
c
O and 209

Λ+
c
Pb, respectively. Therefore, the total potential of 209

Λ+
c
Pb is much

smaller than that of 17
Λ+
c
O, which generates the deeper single Λ+

c energies for light charmed

19
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126 T. Miyamoto et al. / Nuclear Physics A 971 (2018) 113–129

Fig. 8. !c−208Pb folding potentials calculated from the spin-independent central potential of the !cN system (Fig. 7) 
for mπ " 700, 570 and 410 MeV cases.

Fig. 9. The binding energy of !c in symmetric nuclei such as 12C, 28Si, 40Ca, 58Ni, 90Zr and 208Pb for each ensemble. 
The binding energies are calculated from the folding potentials for !c hypernuclei by using the Gaussian expansion 
method. The folding potentials are constructed from the spin-independent central potential of the !cN system (Fig. 7) 
for mπ " 700, 570 and 410 MeV cases. In the calculation of the binding energies, we adjust the mass of !c and nuclei 
to those of physical values.

expected, the binding energy |Eb| increases as the atomic number increases. Furthermore, as 
the !cN potential approaches to the physical one (as the u, d quark masses decrease toward 
physical values), the binding energy increases. These results suggest that !c hypernuclei may 
exist, if their binding energy is larger than the Coulomb repulsion. In order to estimate the effect 
of Coulomb force, we calculate the expectation value for the Coulomb potential using the binding 
solutions of !c hypernulei |ψb〉 as

HAL QCD results 

T. Miyamoto et al. / Nuclear Physics A 971 (2018) 113–129 127

Fig. 10. The expectation value of folding potential for Coulomb force in !c hypernuclei (Blue). The expectation values 
are calculated from the binding solution of the !c hypernuclei for Ensemble 3 (mπ ! 410 MeV). For comparison, the 
binding energy of !c hypernuclei (Green) and sum of them (Red) are also plotted. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

ECoulomb = 〈ψb|V C
F |ψb〉

〈ψb|ψb〉
, (29)

where V C
F is the single-folding Coulomb potential defined by

V C
F ($r) =

∫
d3r ′ρch( $r ′)VCoulomb($r − $r ′), (30)

where VCoulomb($r) is an ordinary Coulomb potential and ρch is charge density distribution by 
the Fourier–Bessel coefficient obtained from elastic electron scattering [44]. Fig. 10 shows the 
expectation values of the folding potential for Coulomb force calculated by using the binding 
solution of !c hypernuclei for Ensemble 3 (mπ ! 410 MeV). For comparison, we also plot the 
binding energy for !c hypernuclei without Coulomb potential and the sum of them in Fig. 10. 
We observe that the Coulomb repulsion is large for heavy nuclei and !c−208Pb state becomes 
unbound with Coulomb force. In the nuclei for A = 12–58, on the other hand, the expectation 
values of Coulomb force are not much stronger than the binding energy of !c hypernuclei. Since 
the binding energy increases as the attraction of the !cN potential becomes stronger toward the 
physical quark mass, this observation suggests a possibility that !c hypernuclei may exist in 
light or medium-heavy nuclei.

6. Summary and conclusions

We have investigated the !cN interaction on the basis of lattice QCD simulations. The 
potentials have been extracted by the HAL QCD method using the (2 + 1)-flavor full QCD con-
figurations with the lattice volume of (2.9 fm)3 and the pion mass, mπ ! 410, 570, 700 MeV. 
We have extracted the central potential in 1S0 channel and the central and tensor potential in 
3S1 −3 D1 channel. We found a repulsion at short distances and an attraction at intermediate 
distances in the central potentials for both channels. The strength of the attraction is weaker than 

FIG. 6: (Color online) The different contributions to the central potential Vall = VA + Vσ + Vω

for 17
Λ+
c
O and 209

Λ+
c
Pb within QMF-NK3C and QMF-NK3C’. The dashed lines are from the Coulomb

contribution, the dashed-dotted curves represent the sum of contributions from σ meson and ω

meson, and the total ones are given as solid curves.

obtained by fitting the ground-state properties of several double magic nuclei. The Λ+
c N

potential was very significant to study the properties of single Λ+
c hypernuclei, which were

decided by the coupling strength between ω meson and Λ+
c baryon. Therefore, two schemes

were adopted in this work. The first one was that the naive quark counting rule was adopted,

where gωΛ+
c
= 2/3gωN . In the second way, the conclusion of latest lattice simulations pro-

vided a good reference, which pointed out that the Λ+
c N potential was just one half of

ΛN potential in 209
Λ+
c
Pb with single-folded potential method. Finally, two kinds of parameter

sets were obtained, named as QMF-NK1C, QMF-NK2C, QMF-NK3C, and QMF-NK1C’,

QMF-NK2C’, QMF-NK3C’, respectively with different constituent quark masses.

The properties of single Λ+
c hypernuclei were systematically calculated from light to heavy

mass region. The nuclear many-body systems became more bound when the Λ+
c baryon were

22
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Binding energies and radius of charmed hypernuclei

SINGLE-!+
c HYPERNUCLEI WITHIN A QUARK MEAN- … PHYSICAL REVIEW C 101, 024303 (2020)

TABLE V. The coupling constants between ω meson and !+
c from the naive quark counting rule and lattice QCD simulation.

QMF-NK1C QMF-NK2C QMF-NK3C QMF-NK1C′ QMF-NK2C′ QMF-NK3C′

gω!+
c

7.69817 8.20056 8.55932 9.16621 9.60204 9.93609

209
!+

c
Pb, was just one-half of the !N potential at the central

region by employing the single-folding potential method [65].
Based on this achievement, we also would like to deter-
mine gω!+

c
with the following scheme. First, we make an

approximation that the binding energy of !+
c in 209

!+
c

Pb is
one-half of that in 209

! Pb in the QMF model when the Coulomb
contribution is turned off. Then the single-! binding energies
at the 1s state in 209

! Pb are calculated within the parameters
from our previous work in Ref. [73]. Now the gω!+

c
can be

determined through fitting the single-!+
c binding energy of

209
!+

c
Pb. Finally, three coupling constants between ω meson and

!+
c are obtained, which are gω!+

c
= 0.7938gωN for QMF-

NK1C′, gω!+
c

= 0.7806gωN for QMF-NK2C′, and gω!+
c

=
0.7739gωN for QMF-NK3C′. In the QMF or RMF model,
the single-baryon potential can be written as UB = U B

S + U B
V .

The scalar and vector potentials, U B
S and U B

V , are related
to the scalar meson and vector mesons, respectively. In the
QMF model, the scalar component was decided by the quark
level. Therefore, when the single-baryon potential is well
known, the strength of the vector potential is easily obtained.
Although the present lattice QCD simulation only included
the contributions from 1S0 and 3S1 −3 D1 channels, they can
already represent the basic characters of !+

c N potentials. It
should be a good attempt to connect the density functional the-
ory and lattice calculations with the single-baryon potential.
The tensor coupling between the ω meson and the !+

c baryon
will be also included to generate a small spin-orbit splitting in
hypernucleus following the conventional way, fω!+

c
= −gω!+

c

[28–30]. The detailed values of gω!+
c

from these two schemes
are listed in Table V.

It can be found that these coupling constants between the ω
meson and the !+

c baryon are larger than that generated from
the SU(4) symmetry in meson-exchange potential [68], where
gω!+

c
is 5.28191. It is because the coupling strengths between

the scalar meson and the !+
c baryon in the QMF model are

relatively stronger.
The binding energies per baryon and various radius of

single-!+
c hypernuclei are shown in Table VI within QMF-

NK3C and QMF-NK3C′ sets from light to heavy mass sys-
tems, when the !+

c baryon occupies the lowest 1s1/2 state.
The corresponding properties of normal nuclei as the core
of the single-!+

c hypernuclei are also give as comparison.
With the QMF-NK3C set, the nuclear many-body system
becomes more bound when the !+

c baryon is included and
its charge radius, proton radius, and neutron radius slightly
increase. However, the radii of !+

c baryon density distribution
are smaller than those of the proton and neutron in such a
case. It demonstrates that the !+

c baryon is attracted inside the
nuclei. These calculations are consistent with the results from
the RMF model by Tan et al. [51]. While there are only bound
states between the !+

c baryon and normal nuclei core up to
52
!+

c
V for single-!+

c hypernuclei within the QMF-NK3C′ set,
where the coupling constant between the ω meson and the !+

c
baryon is larger than that in the QMF-NK3C set. It generates a
more repulsive !+

c N potential. Furthermore, Coulomb contri-
butions between the !+

c baryon and protons are growing with
the mass number A. Therefore, it can be easily understood that
there is no heavy-!+

c hypernuclei when the !+
c N potential

is not so attractive. Actually, this conclusion is very similar
to recent work by Miyamoto et al., where the !+

c N poten-

TABLE VI. Binding energies per baryon −E/A, charge radius rch, and radius (in fm) of protons rp, neutrons rn, and !+
c baryon r!+

c
, in

!+
c (1s1/2) with QMF-NK3C and QMF-NK3C′ sets for 16O, 40Ca, 51V, 89Y, 139La, and 208Pb and their corresponding single !+

c hypernuclei.

QMF-NK3C QMF-NK3C′

−E/A rch rp rn r!+
c

−E/A rch rp rn r!+
c

16O 8.1377 2.7225 2.6042 2.5763 8.1377 2.7225 2.6042 2.5763
17
!+

c
O 9.1039 2.7298 2.6118 2.5797 1.8199 7.7937 2.7418 2.6244 2.5936 3.1746

40Ca 8.5916 3.4562 3.3638 3.3141 8.5916 3.4562 3.3638 3.3141
41
!+

c
Ca 9.0333 3.4630 3.3708 3.3174 2.2599 8.4159 3.4692 3.3771 3.3252 3.8017

51V 8.6403 3.6050 3.5200 3.6127 8.6403 3.6050 3.5200 3.6127
52
!+

c
V 9.0162 3.6086 3.5237 3.6123 2.3773 8.5047 3.6190 3.5343 3.6246 3.7366

89Y 8.6990 4.2435 4.1724 4.2923 8.6990 4.2435 4.1724 4.2923
90
!+

c
Y 8.8925 4.2466 4.1755 4.2921 2.9105

139La 8.4276 4.8556 4.7954 4.9826 8.4276 4.8556 4.7954 4.9826
140
!+

c
La 8.5388 4.8565 4.7964 4.9812 3.5325

208Pb 7.8992 5.5037 5.4517 5.6898 7.8992 5.5037 5.4517 5.6898
209
!+

c
Pb 7.9623 5.5052 5.4532 5.6892 4.2618

024303-7The 𝚲c hyperon is inside of the nuclei with quark counting 
The 𝚲c hyperon is outside of the nuclei with lattice
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FIG. 6. The different contributions to the central potential Vall = VA + Vσ + Vω for 17
#+

c
O and 209

#+
c

Pb within QMF-NK3C and QMF-NK3C’.
The dashed lines are from the Coulomb contribution, the dashed-dotted curves represent the sum of contributions from σ meson and ω meson,
and the total ones are given as solid curves.

IV. CONCLUSION

The single-#+
c hypernuclei were studied within the quark

mean-field (QMF) model. First, a baryon was regarded as
a combination composed by three constituent quarks, which
were confined by central harmonics oscillator potentials with
the Dirac vector-scalar mixing form. Furthermore, the pion
and gluon corrections were also included to treat the baryons
from strong interaction more realistically. The strengths of
the confinement potentials for u, d, c quarks, were fixed by
the masses and radii of baryons from the observations after
considering three different constituent quark masses.

With respect to the nuclear many-body system, the baryons
interact with each other in the hypernucleus via exchanging
the scalar and vector mesons between the quarks in different
baryons. The coupling constants between the vector mesons
and u, d quarks have been obtained by fitting the ground-state
properties of several double magic nuclei. The #+

c N potential
was very significant to study the properties of single-#+

c
hypernuclei, which were decided by the coupling strength
between the ω meson and the #+

c baryon. Therefore, two
schemes were adopted in this work. The first one was that
the naive quark counting rule was adopted, where gω#+

c
=

2/3gωN . In the second one, the conclusion of the latest lattice
simulations provided a good reference, which pointed out that
the #+

c N potential was just one-half of the #N potential in
209
#+

c
Pb with the single-folded potential method. Finally, two

kinds of parameter sets were obtained, named as QMF-NK1C,
QMF-NK2C, QMF-NK3C, and QMF-NK1C′, QMF-NK2C′,
QMF-NK3C′, respectively, with different constituent quark
masses.

The properties of single-#+
c hypernuclei were systemat-

ically calculated from the light to heavy mass region. The
nuclear many-body systems became more bound when the
#+

c baryons were included for QMF-NK1C, QMF-NK2C,
and QMF-NK3C parameter sets. The rms radii of #+

c baryon
density distribution were much smaller than those of protons
and neutrons. It means that the #+

c baryon was inside of
the #+

c hypernuclei. When the lattice simulation results were
used, the #+

c N potential did not bind so deeply. There was no
bound state of heavy #+

c hypernuclei because of the strong
repulsive contribution from Coulomb force up to A ≈ 50.
These results were consistent with the recent calculations by
the RMF model, the HAL QCD group, and the perturbative
many-body method.

The single-#+
c energies were also studied when the #+

c
baryons were fixed at particular angular momenta. The #+

c
baryon can occupy a very high angular momentum state
when the coupling constants between the ω meson and the
#+

c baryon were adopted by naive quark counting rules.
Meanwhile, there were only 1s1/2 states with QMF-NK1C′,
QMF-NK2C′, and QMF-NK3C′ sets, where shallow #+

c N
potentials were generated by scalar meson, vector mesons,
and the Coulomb field from HAL QCD data.

The strength of the #+
c N potential is the significant quan-

tity in investigating the properties of single-#+
c hypernuclei,

which cannot be determined by experimental observations
very well now. In this work, two schemes were adopted,
which have very large differences for heavy nuclei system.
The relevant experiments about #+

c hypernuclei are expected
to be done, especially in the heavy mass region to determine
the magnitude of the #+

c N potential.

024303-10
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The present 𝚵- hypernuclei dataTable 16 Value of B⌅� of ⌅�–14N for all twin hypernuclei found in the E373 and the E07

experiments. The E373-T1 reflects the updated mass of the ⌅� hyperon.

Experiment Event Daughters B⌅� [MeV]

E373 T1 [39] 5
⇤He+

5
⇤He+

4He+n �2.2 ± 1.2

E373 T2 KISO [24] 10
⇤ Be + 5

⇤He 3.87± 0.21 or 1.03± 0.18

E07 T006 IBUKI [25] 10
⇤ Be + 5

⇤He 1.27± 0.21

E373 T3 KINKA 9
⇤Be+

5
⇤He+n 8.00± 0.77 or 4.96± 0.77

E07 T007 9
⇤Be+

5
⇤He+n �1.04± 0.85

E07 T010 IRRAWADDY 5
⇤He+

5
⇤He+

4He+n 6.27± 0.27

E07 T011 5
⇤He+

5
⇤He+

4He+n 0.90± 0.62

Fig. 7 B⌅� of ⌅�–14N system of the E373-T1 [39], KISO [24], IBUKI [25] events, the

present results, theoretical calculations with the WS and Coulomb potential, and theoretical

calculations reported in [32, 33, 35].
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The conflation method  

pendent experiments, which measure the same physical quantity, B⌅�(1p), a mathematical

method named conflation will be used [34, 35]. All observables of ⌅� binding energy from

the above events are assumed to satisfy the normal distributions,

f(x) =
1

�i

p
2⇡

exp


�(x�mi)2

2�2
i

�
, (5)

where mi is the mean value, and the �i represents the standard deviation. It can be proved

that the best linear unbiased estimation for many independent observations with normal

distributions is still a normal distribution in conflation method with

mt =
nX

i

mi�
�2
i

 
nX

i

��2
i

!�1
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FIG. 1: The normal distributions of ⌅� binding energy at 1p state, B⌅�(1p) of 15
⌅�C in 14-03-35,

KISO, IBUKI, and T011 events and their conflation distribution.

In Fig. 1, the probabilities of B⌅� at 1p state in 15
⌅�C from 14-03-35, KISO, IBUKI, and

T011 events are shown, when the observables from KEK E176, E373, and J-PARC E07

were considered as the normal distributions. Their conflating distribution is given as the

shadow region. It can be found that the conflating mean value is close to the means of

four independent experiments with a smaller variance, which indicates a better accuracy

since the total valid measurements are increasing compared to the single experimental data.
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shadow region. It can be found that the conflating mean value is close to the means of

four independent experiments with a smaller variance, which indicates a better accuracy

since the total valid measurements are increasing compared to the single experimental data.

6

m is the mean value 
𝛔 is the standard deviation 
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FIG. 8. Fractions of leptons and baryons in neutron star matter as
functions of total baryon density, for QMF-NK1S, QMF-NK2S, and
QMF-NK3S parameter sets.

and !− hyperons appear around two times saturation density.
!0 hyperons exist above ρB = 0.9 fm−3. At high density,
the fraction of !− hyperons approaches that of protons.
Meanwhile, the fraction of # hyperons is suppressed by !−

hyperons. In total, the appearance of hyperons occurs earlier
at larger u quark mass.

By using the EOS of neutron star matter to solve the TOV
equation, the properties of neutron stars, such as the masses as
functions of central density and radius, are obtained in Fig. 9.
The maximum masses are 2.09M" to 2.14M" generated by

FIG. 9. The masses of neutron stars as functions of density and
radius, for QMF-NK1S, QMF-NK2S, and QMF-NK3S parameter
sets.

QMF-NK1S to QMF-NK3S, respectively. These results are in
accord with recent astronomical observations of two massive
neutron stars, PSR J1614-2230 (1.928 ± 0.017 M") [25,26]
and PSR J0348+0432 (2.01 ± 0.04 M") [27]. Moreover, the
hyperons # and ! can exist in the core region of a neutron star.
The densities corresponding to maximum masses are around
ρB = 0.7 fm−3. The radii of these neutron stars are distributed
from 13.0 to 13.2 km. They are larger than the constraint
region determined by Hebeler et al. [64,65] around 11 km, but
smaller than values from the MQMC framework. Actually, the
radius of a neutron star still has not been measured directly.
Comparing our previous work with a QMF model without
pion and gluon corrections [41], the description of properties
of neutron stars is largely improved to satisfy the constraint of
observations in the present QMF parameter sets.

IV. CONCLUSION

We have studied the properties of single # and !0

hypernuclei and neutron stars with hyperons in terms of a quark
mean field (QMF) model including pion and gluon corrections,
where the baryons are composed of three independent relativis-
tic quarks confined by a harmonic oscillator potential mixing
with scalar and vector components. Corrections due to the
center-of-mass motion and pionic and gluonic exchanges were
considered in calculating properties of baryons perturbatively.
The baryon-baryon interactions were generated by exchanging
σ , ω, and ρ mesons between quarks of different baryons in a
mean field approximation.

The strengths of s quark confinement potentials and
constituent quark mass were determined by fitting free baryon
masses of #, &0, and !0 hyperons with a least-squares fitting
method as a whole. The coupling constants between u,d quarks
and mesons were already obtained in our previous work about
normal nuclei. Those between s quarks and mesons were
determined through the potentials of #N and !N at nuclear
saturation density, as U# = −30 MeV and U! = −12 MeV,
respectively. Finally, we obtained three parameter sets corre-
sponding to u quark mass: mu = 250 MeV, mu = 300 MeV,
and mu = 350 MeV, named QMF-NK1S, QMF-NK2S, and
QMF-NK3S.

Energy levels of a single # hyperon for three hypernuclei,
40
# Ca, 89

# Y, and 208
# Pb, were calculated. The results were very

consistent with the experiment observations and were largely
improved comparing to those from the previous QMF model
without pion and gluon corrections, especially for high angular
momentum states. Meanwhile, energy levels of a single !0

hyperon in 40
!0 Ca, 89

!0 Y, and 208
!0 Pb were also obtained. The

results for !0 hypernuclei could serve as a reference for future
experiments. The # binding energies from 16

# O to 208
# Pb were

also compared systematically to the experimental data, and
agree with them very well.

Finally, properties of neutron stars were studied in the
present framework. The coupling constants of # and !
hyperons were kept at the same values used in hypernuclei.
The coupling constant between the ω meson and & hyperon
was chosen to be the same value as for the # hyperon. It
was found that the # and !− hyperons started to appear
in neutron stars at two times nuclear saturation density and
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and PSR J0348+0432 (2.01 ± 0.04 M") [27]. Moreover, the
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of neutron stars is largely improved to satisfy the constraint of
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mean field approximation.
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QMF-NK1S to QMF-NK3S, respectively. These results are in
accord with recent astronomical observations of two massive
neutron stars, PSR J1614-2230 (1.928 ± 0.017 M") [25,26]
and PSR J0348+0432 (2.01 ± 0.04 M") [27]. Moreover, the
hyperons # and ! can exist in the core region of a neutron star.
The densities corresponding to maximum masses are around
ρB = 0.7 fm−3. The radii of these neutron stars are distributed
from 13.0 to 13.2 km. They are larger than the constraint
region determined by Hebeler et al. [64,65] around 11 km, but
smaller than values from the MQMC framework. Actually, the
radius of a neutron star still has not been measured directly.
Comparing our previous work with a QMF model without
pion and gluon corrections [41], the description of properties
of neutron stars is largely improved to satisfy the constraint of
observations in the present QMF parameter sets.

IV. CONCLUSION

We have studied the properties of single # and !0

hypernuclei and neutron stars with hyperons in terms of a quark
mean field (QMF) model including pion and gluon corrections,
where the baryons are composed of three independent relativis-
tic quarks confined by a harmonic oscillator potential mixing
with scalar and vector components. Corrections due to the
center-of-mass motion and pionic and gluonic exchanges were
considered in calculating properties of baryons perturbatively.
The baryon-baryon interactions were generated by exchanging
σ , ω, and ρ mesons between quarks of different baryons in a
mean field approximation.

The strengths of s quark confinement potentials and
constituent quark mass were determined by fitting free baryon
masses of #, &0, and !0 hyperons with a least-squares fitting
method as a whole. The coupling constants between u,d quarks
and mesons were already obtained in our previous work about
normal nuclei. Those between s quarks and mesons were
determined through the potentials of #N and !N at nuclear
saturation density, as U# = −30 MeV and U! = −12 MeV,
respectively. Finally, we obtained three parameter sets corre-
sponding to u quark mass: mu = 250 MeV, mu = 300 MeV,
and mu = 350 MeV, named QMF-NK1S, QMF-NK2S, and
QMF-NK3S.

Energy levels of a single # hyperon for three hypernuclei,
40
# Ca, 89

# Y, and 208
# Pb, were calculated. The results were very

consistent with the experiment observations and were largely
improved comparing to those from the previous QMF model
without pion and gluon corrections, especially for high angular
momentum states. Meanwhile, energy levels of a single !0

hyperon in 40
!0 Ca, 89

!0 Y, and 208
!0 Pb were also obtained. The

results for !0 hypernuclei could serve as a reference for future
experiments. The # binding energies from 16

# O to 208
# Pb were

also compared systematically to the experimental data, and
agree with them very well.

Finally, properties of neutron stars were studied in the
present framework. The coupling constants of # and !
hyperons were kept at the same values used in hypernuclei.
The coupling constant between the ω meson and & hyperon
was chosen to be the same value as for the # hyperon. It
was found that the # and !− hyperons started to appear
in neutron stars at two times nuclear saturation density and
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Summary and perspective

The effects of chiral dynamics and gluons are 
introduced into the QMF model.


The improved QMF model was applied to the finite 
nuclei, 𝚲, 𝚵0, 𝚵-, 𝚲c hypernuclei and neutron star, which 
can describe the many-body strangest system very well.


The EMC effect will be studied within QMF model.


