

Workshop on Hyperon Physics, Apr. 12–15, 2024, Huizhou, IMP

夸克平均场对超核以及超子物质的研究

Jinniu Hu

School of physics, Nankai University

J.H, A. Li, H. Shen, and H. Toki, Prog. Theor. Exp. Phys. 2014 (2014) 013D02
J.H, A. Li, H. Toki, and W. Zuo, Phys. Rev. C 89 (2014) 025802
X. Xing, J.H., and H. Shen, Phys. Rev. C 94 (2016) 044308
X. Xing, J.H., and H. Shen, Phys. Rev. C 95 (2017) 054310
J.H. and H. Shen, Phys. Rev. C 96 (2017) 054304
L. Wu, J.H., and H. Shen, Phys. Rev. C 101 (2020) 024303
A. Li, Z. Zhen, E. Zhou, J. Dong, J.H., C. Xia, JHEAp 28(2020)19
J. H, Y. Zhang, and H. Shen, J. Phys. G 49 (2022)025104

13/04/2024

Outline

- 1 Introduction
- 2 The quark mean field model
- 3 The strangeness with QMF model
- 4 The summary and perspective

Strangeness nuclear physics

Hadrons

Baryon-Baryon force

A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88(2016)035004

Jinniu Hu

Compact star

Baryon-Baryon scattering data

13/04/2024

- Juelich Meson exchange exchange potential (Jul94,05) J. Haidenbauer, Ulf-G. Meissner, Phys.Rev. C72, 044005 (2005)
- Nijmegen potentials: OBE and ESC (ESCO6, ESC12, ESC16) Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73, 044008 (2006)
- Quark-Cluster models
 - Y. Fujiwara, Y. Suzuki, and C. Nakamoto, Prog. Part. Nucl Phys. 58, 439 (2007)
- Chiral effective potential (NLO13, NLO19)
 - J. Haidenbauer, Ulf-G. Meissner, and A. Nogga, Eur. Phys J. A56, 91 (2020)
- Covariant Chiral effective potential
 - J. Song, Z. Liu, K. Li, and L. Geng, Phys. Rev. C 105, 035203 (2022)
- Lattice QCD potential
 - H. Nemura, arXiv: 1810.04046

Discovery of first *A*-hypernuclei

Danysz and Pniewski discovered the first hypernucleus in Warsaw in September 1952. The hypernucleus was created when a high-energy proton interacted with a nucleus in the emulsions they were using as a detector, producing a hyperfragment.

13/04/2024

Hypernuclei chart

12

A Hypernulcei

Hypernucleus	Number of events	$B_{\Lambda} \pm \Delta B_{\Lambda} \; ({\rm MeV})$	Hypernucleus	s_{Λ}	p_{Λ}	d_Λ	f_{Λ}	g_{Λ}
$^{3}_{\Lambda}$ H	204	0.13 ± 0.05		-		(π^+, K^+)		
${}^{4}_{\Lambda}$ H	155	2.04 ± 0.04	$^{208}_{\Lambda}$ Pb	26.9(8)	22.5(6)	17.4(7)	12.3(6)	7.2(6)
$^{4}_{\Lambda}$ He	279	2.39 ± 0.03	$^{139}_{\Lambda}$ La	25.1(12)	21.0(6)	14.9(6)	8.6(6)	2.1(6)
⁵ _A He	1784	3.12 ± 0.02	$^{89}_{\Lambda}$ Y	23.6(5)	17.7(6)	10.9(6)	3.7(6)	-3.8(10)
⁶ / _A He	31	4.18 ± 0.10	$\frac{1}{\Lambda}$	21.3(0) 17 2(2)	7 6(2)	-1.0(5)		
$^{7}_{\Lambda}$ He	16	Not averaged	¹⁶ O	13.0(2)	2.5(2)	1.0(0)		
$^{7}_{\Lambda}$ Li	226	5.58 ± 0.03	$^{\Lambda}_{\Lambda}$ C	12.0(2)	1.1(2)			
$^{7}_{\Lambda}$ Be	35	5.16 ± 0.08	$^{12}_{\Lambda}$ C	11.36(20)	0.36(20)			
⁸ / _A He	6	7.16 ± 0.70	$^{10}_{\Lambda}\mathrm{B}$	8.7(3)				
⁸ _Å Li	787	6.80 ± 0.03	$52_{ m V}$	21.8(3)		$(e, e'K^+)$		
⁸ _Å Be	68	6.84 ± 0.05	$^{\Lambda}_{^{16}N}$	13.76(16)	2.84(18)			
⁹ _A Li	8	8.50 ± 0.12	$^{\Lambda}_{\Lambda}$ B	11.52(2)	0.54(4)			
⁹ _A Be	222	6.71 ± 0.04	$^{10}_{\Lambda}$ Be	8.55(13)				
${}^{9}_{\Lambda}$ B	4	8.29 ± 0.18	$^{7}_{\Lambda}$ He	5.55(15)		F 1 '		
$^{10}_{\Lambda}$ Be	3	9.11 ± 0.22	¹³ C	11.69(12)	0.8(3)	Emulsion		
$^{10}_{\Lambda}$ B	10	8.89 ± 0.12	$^{\Lambda}_{^{12}\text{B}}$	11.37(6)				
$^{11}_{\Lambda}$ B	73	10.24 ± 0.05	$^{\Lambda}_{\Lambda}C$		0.14(5)			
$^{\Lambda}_{\Lambda}$ B	87	11.37 ± 0.06	$\frac{\hat{8}}{\Lambda}$ Li	6.80(3)				
$^{\Lambda}_{\Lambda}$ C	6	10.76 ± 0.19	$^{7}_{\Lambda}$ Be	5.16(8)		(π)		
$^{13}_{\Lambda}C$	6	11.69 ± 0.12	⁴⁰ Ca		11.0(5)	(K, π) 1.0(5)		
$^{\Lambda}_{\Lambda}$ C	3	12.17 ± 0.33	$\frac{\Lambda^{Ca}}{\Lambda^{S}}$	17.5(5)	8.2(5)	-1.0(5)		

A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88(2016)035004

13/04/2024

Single Λ potential

A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88(2016)035004

13/04/2024

ΛΛ Hypernulcei

 $\Lambda\Lambda$ -Hypernuclear Chart

Event	$^{A}_{\Lambda\Lambda}$ Z	$ar{B}_\Lambda({}^{ m A-1}_\Lambda { m Z})$	$B^{ m exp}_{\Lambda\Lambda}$	$B^{ m CM}_{\Lambda\Lambda}$	$B^{ m SM}_{\Lambda\Lambda}$
E373-Nagara	⁶ He	3.12 ± 0.02	6.91 ± 0.16	6.91 ± 0.16	6.91 ± 0.16
E373-DemYan		6.71 ± 0.04	14.94 ± 0.13	14.74 ± 0.16	$14.97\pm0.22^{\rm a}$
E176-G2		8.86 ± 0.11	17.53 ± 0.71	18.23 ± 0.16	18.40 ± 0.28
E373-Hida		8.86 ± 0.11	20.83 ± 1.27	18.23 ± 0.16	18.40 ± 0.28
E373-Hida	$^{\Lambda\Lambda}_{\Lambda\Lambda}$ Be	10.02 ± 0.05	22.48 ± 1.21		20.72 ± 0.20
E176-E2	$^{\Lambda\Lambda}_{\Lambda\Lambda}$ B	10.09 ± 0.05	20.02 ± 0.78		20.85 ± 0.20
E176-E4	$^{13}_{\Lambda\Lambda}$ B	11.27 ± 0.06	23.4 ± 0.7		23.21 ± 0.21

A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88(2016)035004

13/04/2024

E- Hypernulcei

KISO

S. H. Hayakawa et al. [J-PARC E07 Collaboration], Phys. Rev. Lett. 126 062501 (2021)

13/04/2024

Hyperon in neutron star

13/04/2024

ALICE Coll, Phys. Rev. Lett 123, (2019) 112002

13/04/2024

Theoretical nuclear structure methods

\checkmark ab initio methods

H. Nemura, Y. Akaishi, and Y. Suzuki, Phys. Rev. Lett. 89(2002)142504

E. Hiyama and T. Yamada, Prog. Part. Nucl. Phys. 63(2009)339

D. Lonardoni, S. Gandolfi, and F. Pederiva, Phys. Rev. C 87(2013)041303(R)

R. Wirth, et al. Phys. Rev. Lett. 113(2014)192502

√ Shell model

D. J. Millener, Nucl. Phys. A 881(2012)298

✓ Skyrme Hartree-Fock model

M. Rayet, Ann. Phys. (NY) 102(1976)226
X. R. Zhou, et al. Phys. Rev. C 76(2007)034312
H.-J. Schulze and T. Rijken, Phys. Rev. C 88(2013)024322
Y. Zhang, H. Sagawa, and E. Hiyama Phys. Rev. C 103(2021)034321

\checkmark Covariant density functional theory

H. Shen, F. Yang, and H. Toki, Prog. Theor. Phys. 115(2006)325
R. L. Xu, C. Wu, and Z. Z. Ren, J. Phys. G 39(2012)085107
T. T. Sun, et al., Phys. Rev. C 94(2016)064319
S. Y. Ding, Z. Qian, B. Y. Sun, and W. H. Long, Phys. Rev.C 106(2022)054311
Y. T. Rong, P. W. Zhao, and S. G. Zhou, Phys. Lett, B, 807(2020)135533

副大

Europe muon collaboration effect

I. C. Cloet, et al. J. Phys. G 46(2018)093001

阁大

$$-F_1(x) = \frac{1}{2} \sum e_i^2 [q_i^{\uparrow}(x) + q_i^{\downarrow}(x)]$$
13/04/2024 Jinniu Hu

Electron-Ion Collider

U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

13/04/2024

Relativistic many-body theories from quark level

- ✓ baryons are not point particles!
- ✓ baryon properties change in medium!
- √ quark-gluon plasma!

Many-body methods from quark model

1980s 1990/2000s ✓ Quark meson coupling (QMC) model K. Tsushima, et al. Nucl. Phys. A 630(1998)691

✓ Friedberg-Lee model

副大

J. S. Liang and H. Shen, Phys. Rev. C88 (2013) 035208 √Quark mean field (QMF) model H. Toki, U. Meyer, A. Faessler, and R. Brockmann, Phys. Rev. C 58 (1998) 3749

H. Shen, H. Toki, Nucl. Phys. A 707 (2002) 469

......

Outline

- 1 Introduction
- 2 The quark mean field model
- 3 The strangeness with QMF model
- 4 The summary and perspective

X. Xing, J.H., and H. Shen, Phys. Rev. C 94 (2016) 044308

Constituent quark in Dirac equation

 $[-i\alpha \cdot \nabla + \beta m_i^* + \beta U(r)]q_i(r) = \varepsilon_i^* q_i(r)$

and effective single particle energy is

$$\varepsilon_i^* = \varepsilon_i - g_\omega^i - g_\rho^i \rho \tau_3$$

Confinement potential

$$U(r) = \frac{1}{2}(1+\gamma^0)(ar^2 + V_0)$$

• Center-of-mass corrections $\langle B|\sum_{i=1}^{3}\gamma^{0}(i)\{\frac{1}{3}\gamma(i)\cdot\sum_{j=1}^{3}\vec{p_{j}}+\frac{1}{2}(1+\gamma^{0}(i))[U(r_{i})-U(\rho_{i})]\}|B\rangle$

Quark level

• Pionic self-energy correction

$$\delta M_B^{\pi} = -\sum_k \sum_{B'} \frac{V_j^{\dagger BB'} V_j^{BB'}}{w_k}$$

• Gluon correction

Color-electric
$$(\Delta E_B)_g^E = \frac{1}{8\pi} \sum_{i,j} \sum_{a=1}^8 \int \frac{d^3 r_i d^3 r_j}{|\vec{r_i} - \vec{r_j}|} \langle B|J_i^{0a}(\vec{r_i})J_j^{0a}(\vec{r_j})|B\rangle$$

Color-magnetic
$$(\Delta E_B)_g^M = -\frac{1}{8\pi} \sum_{i,j} \sum_{a=1}^8 \int \frac{d^3 r_i d^3 r_j}{|\vec{r_i} - \vec{r_j}|} \langle B|\vec{J}_i^a(\vec{r_i}) \cdot \vec{J}_j^a(\vec{r_j})|B \rangle$$

Quark color current density $J_i^{\mu a}(x) = g_c \bar{\psi}_q(x) \gamma^{\mu} \lambda_i^a \psi_q(x)$

• Baryon mass

$$M_B^* = E_B^{*0} - \epsilon_{\text{c.m.}} + \delta M_B^{\pi} + (\Delta E_B)_g^E + (\Delta E_B)_g^M$$

Baryon level

• Strangeness QMF Lagrangian

$$\begin{split} \mathcal{L}_{\text{QMF}} &= \bar{\psi} \left[i\gamma_{\mu}\partial^{\mu} - M_{N}^{*} - g_{\omega}\omega\gamma^{0} - g_{\rho}\rho\tau_{3}\gamma^{0} - e\frac{(1-\tau_{3})}{2}A\gamma^{0} \right]\psi \\ &+ \bar{\psi}_{H} \left[i\gamma_{\mu}\partial^{\mu} - M_{H}^{*} - g_{\omega}^{H}\omega\gamma^{0} + \frac{f_{\omega}^{H}}{2M_{H}}\sigma^{0i}\partial_{i}\omega \right]\psi_{H} \\ &- \frac{1}{2}(\nabla\sigma)^{2} - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} \\ &+ \frac{1}{2}(\nabla\omega)^{2} + \frac{1}{2}m_{\omega}^{2}\omega^{2} + \frac{1}{4}c_{3}\omega^{4} \\ &+ \frac{1}{2}(\nabla\rho)^{2} + \frac{1}{2}m_{\rho}^{2}\rho^{2} + \frac{1}{2}(\nabla A)^{2}, \end{split} \qquad \bullet \quad \text{Dirac equations for baryons} \\ &+ \frac{1}{2}(\nabla\rho)^{2} + \frac{1}{2}m_{\rho}^{2}\rho^{2} + \frac{1}{2}(\nabla A)^{2}, \qquad \left[i\gamma_{\mu}\partial^{\mu} - M_{N}^{*} - g_{\omega}\omega\gamma^{0} - g_{\rho}\rho\tau_{3}\gamma^{0} - e\frac{(1-\tau_{3})}{2}A\gamma^{0} \right]\psi = 0, \\ &\left[i\gamma_{\mu}\partial^{\mu} - M_{H}^{*} - g_{\omega}^{H}\omega\gamma^{0} + \frac{f_{\omega}^{H}}{2M_{H}}\sigma^{0i}\partial_{i}\omega \right]\psi_{H} = 0. \end{split}$$

• Equations of motion for mesons

$$\begin{split} \Delta \sigma &- m_{\sigma}^{2} \sigma - g_{2} \sigma^{2} - g_{3} \sigma^{3} = \frac{\partial M_{N}^{*}}{\partial \sigma} \langle \bar{\psi}\psi \rangle + \frac{\partial M_{H}^{*}}{\partial \sigma} \langle \bar{\psi}_{H}\psi_{H} \rangle, \\ \Delta \omega &- m_{\omega}^{2} \omega - c_{3} \omega^{3} = -g_{\omega} \langle \bar{\psi}\gamma^{0}\psi \rangle - g_{\omega}^{H} \langle \bar{\psi}_{H}\gamma^{0}\psi_{H} \rangle + \frac{f_{\omega}^{H}}{2M_{H}} \partial_{i} \langle \bar{\psi}_{H}\sigma^{0i}\psi_{H} \rangle, \\ \Delta \rho &- m_{\rho}^{2} \rho = -g_{\rho} \langle \bar{\psi}\tau_{3}\gamma^{0}\psi \rangle, \\ \Delta A &= -e \langle \bar{\psi}\frac{(1-\tau_{3})}{2}\gamma^{0}\psi \rangle. \end{split}$$

13/04/2024

The effective nucleon mass

$$U(r) = \frac{1}{2}(1+\gamma^0)(ar^2 + V_0)$$

国

13/04/2024

The properties of nuclei

Binding energy and charge radii

The properties of nuclear matter

Nuclear saturation properties

Model	$ ho_0$	E/A	K_0	J	M_N^*/M_N	L^0	$K_{ m sym}^0$	$K_{\rm asy}$	Q_0	K_{τ}
	(fm^{-3})	(MeV)	(MeV)	(MeV)		(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
QMF-NK1	0.154	-16.3	323	30.6	0.70	84.8	-28.8	-537.6	495.4	-667.7
QMF-NK2	0.152	-16.3	328	32.9	0.66	93.7	-23.5	-585.7	221.0	-648.8
QMF-NK3	0.150	-16.3	322	33.6	0.64	97.3	-12.0	-595.8	263.0	-675.3

symmetric nuclear matter

pure neutron matter

副大

Outline

- 1 Introduction
- 2 The quark mean field model
- 3 The strangeness with QMF model
- 4 The summary and perspective

SQMF parameters

The strength of quark confinement potential

		m_u (MeV)	V_u (MeV	a_u (f	m^{-3}) m	$v_s \; ({\rm MeV})$	$V_s \ ({ m MeV})$	$a_s \ (\mathrm{fm}^{-3})$	3)
	set A	2	50 -	-24.28660	01 0.57	9450	330	101.78180	0.09731'	7
	set B	3	- 00	-62.25718	87 0.53	4296	380	54.548210	0.087243	3
	set C	3	50 –	-102.0415	75 0.49	5596	430	6.802695	0.079534	4
The coupling constants between meson and baryons										
Model		m_u	g_{σ}^{u}	g_ω	g^{Λ}_{ω}	g_{ω}^{Ξ}	$g_{ ho}$	g_2	g_3	c_3
	((MeV)						(fm^{-1})		
QMF-N	NK1S	250	5.15871	11.54726	$0.8258g_{\omega}$	0.4965g	ω 3.79601	-3.52737	-78.52006	305.00240
QMF-N	NK2S	300	5.09346	12.30084	$0.8134g_{\omega}$	0.4800g	ω 4.04190	-3.42813	-57.68387	249.05654
QMF-N	NK3S	350	5.01631	12.83898	$0.8040g_{\omega}$	0.4681g	ω 4.10772	-3.29969	-39.87981	221.68240

$$U_{\Lambda}^{(N)} = -30 \text{ MeV}$$
$$U_{\Xi}^{(N)} = -12 \text{ MeV}$$

13/04/2024

The effective masses of baryons

	Baryon	E_B^0	$\epsilon_{\rm c.m.}$	δM^{π}_B	$(\Delta E_B)_g$	$M_B^{ ext{Theor.}}$	$M_B^{ m Expt.}$
set A	$\begin{array}{c} \Lambda \\ \Sigma^0 \\ \Xi^0 \end{array}$	1446.340 1446.340 1504.254	231.975 231.975 175.047	-65.172 -36.207 -16.293	-24.390 10.515 -1.289	1124.803 1188.673 1311.625	$\begin{array}{c} 1115.683 \pm 0.006 \\ 1192.642 \pm 0.024 \\ 1314.86 \pm 0.20 \end{array}$
set B	$\begin{array}{c} \Lambda \\ \Sigma^0 \\ \Xi^0 \end{array}$	1433.489 1433.489 1491.611	220.692 220.692 165.564	-69.277 -38.487 -17.319	-18.313 13.753 2.979	1125.207 1188.063 1311.707	$\begin{array}{c} 1115.683 \pm 0.006 \\ 1192.642 \pm 0.024 \\ 1314.86 \pm 0.20 \end{array}$
set C	$\begin{array}{c} \Lambda \\ \Sigma^0 \\ \Xi^0 \end{array}$	1421.908 1421.908 1480.703	210.233 210.233 157.102	-72.829 -40.461 -18.207	-13.170 16.203 6.377	1125.676 1187.417 1311.771	$\begin{array}{c} 1115.683 \pm 0.006 \\ 1192.642 \pm 0.024 \\ 1314.86 \pm 0.20 \end{array}$

13/04/2024

副大學

The energy level of hypernuclei

國南間大學

X. Xing, J.H., and H. Shen, Phys. Rev. C 95 (2017) 054310

The energy level of Λ hypernuclei

Jinniu Hu

The potentials of hypernuclei

2

4

r [fm]

6

A

 $\mathsf{U}^{\Xi^\circ}_{\mathrm{S}}$

 $U_v^{\Xi^\circ}$

 $U_s^{\Xi^\circ}$

 $\mathsf{U}_{v}^{\Xi^{0}}$

 $U_s^{\Xi^0}$

8

 $^{208}_{\Xi^0}$ Pb

10

 $^{89}_{\Xi^0} Y$

 $_{\Xi^{0}}^{40}Ca$

13/04/2024

300

The properties of hypernuclei

13/04/2024

Jinniu Hu

周大

The properties of hypernuclei

Ine KISO event (=+14N) of =- hypernuclei K. Nakazawa et al., Prog. Theor. Exp. Phys. 2015, 033D02 (201									
$^{15}{\Xi^-}\mathrm{C}(1s)$	$\frac{15}{\Xi^{-}}\mathrm{C}(1p)$	$\frac{12}{\Xi^-}$ Be(1s)							
5.82	1.21	3.78							
5.69	1.14	3.59							
5.61	1.08	3.49							
5.80	1.21	4.35							
5.65	1.14	4.20							
5.58	1.08	4.11							
4.38 ± 0.25	1.11 ± 0.25	3.0 - 5.5							
	ent ($\Xi^{+14}N$ a et al., Prog. 1 $\Xi^{15}E(1s)$ 5.82 5.69 5.61 5.61 5.80 5.65 5.58 4.38 \pm 0.25	et al., Prog. Theor. Exp. Phy							

T.T.Sun, E.Hiyama, H.Sagawa, H.J.Schulze, J. Meng, Phys. Rev. C 94, 064319 (2016) J. Margueron, E. Khan, F. Gulminelli, Phys. Rev. C 96, 054317 (2017). The IBUKI event (2021): 1.27 ± 0.21

The properties of Ξ - hypernuclei

13/04/2024

Jinniu Hu

剧大

The conflation values of 1p Ξ^- hyperon in $\Xi^-+^{14}N$ system

13/04/2024

Jinniu Hu

阁大

The present Ξ -hypernuclei data

13/04/2024

Jinniu Hu

国

The EN potential in nuclear matter 🧰

The charmed baryons

	m_u (MeV)	V_u (MeV)	$a_u ({\rm fm}^{-3})$	m_c (MeV)	V_c (MeV)	$a_c ({\rm fm}^{-3})$
Set A	250	-24.286601	0.579450	1300	284.58724	0.118172
Set B	300	-62.257187	0.534296	1350	239.53994	0.117312
Set C	350	-102.041575	0.495596	1400	193.67265	0.116036

The charmed hypernuclei

13/04/2024

The charmed hypernuclei

HAL QCD results

QMF results

Binding energies and radius of charmed hypernuclei

L. Wu, J.H., a	nd H.	Shen,	Phys.	Rev.	С	101	(2020)	024303
----------------	-------	-------	-------	------	---	-----	--------	--------

			QMF-NK3C	1		QMF-NK3C'				
	-E/A	r _{ch}	r_p	r_n	$r_{\Lambda_c^+}$	-E/A	r _{ch}	r_p	r_n	$r_{\Lambda_c^+}$
¹⁶ O	8.1377	2.7225	2.6042	2.5763		8.1377	2.7225	2.6042	2.5763	
$^{17}_{\Lambda^+}$ O	9.1039	2.7298	2.6118	2.5797	1.8199	7.7937	2.7418	2.6244	2.5936	3.1746
40 Ca	8.5916	3.4562	3.3638	3.3141		8.5916	3.4562	3.3638	3.3141	
$^{41}_{\Lambda^+}$ Ca	9.0333	3.4630	3.3708	3.3174	2.2599	8.4159	3.4692	3.3771	3.3252	3.8017
51 V	8.6403	3.6050	3.5200	3.6127		8.6403	3.6050	3.5200	3.6127	
$^{52}_{\Lambda^+}$ V	9.0162	3.6086	3.5237	3.6123	2.3773	8.5047	3.6190	3.5343	3.6246	3.7366
⁸⁹ Y	8.6990	4.2435	4.1724	4.2923		8.6990	4.2435	4.1724	4.2923	
$^{90}_{\Lambda^+}$ Y	8.8925	4.2466	4.1755	4.2921	2.9105					
139 La	8.4276	4.8556	4.7954	4.9826		8.4276	4.8556	4.7954	4.9826	
$^{140}_{\Lambda^{+}}$ La	8.5388	4.8565	4.7964	4.9812	3.5325					
208 Pb	7.8992	5.5037	5.4517	5.6898		7.8992	5.5037	5.4517	5.6898	
$^{209}_{\Lambda^+_c}\mathrm{Pb}$	7.9623	5.5052	5.4532	5.6892	4.2618					

The Λ_c hyperon is inside of the nuclei with quark counting The Λ_c hyperon is outside of the nuclei with lattice

The charmed hypernuclei

The potentials of charmed hyper nuclei

13/04/2024

The present Ξ - hypernuclei data

Experiment	Event	Daughters	$B_{\Xi^{-}}$ [MeV]		
E373	T1 [39]	${}^5_{\Lambda}\text{He} + {}^5_{\Lambda}\text{He} + {}^4\text{He} + n$	-2.2 ± 1.2		
E373	T2 KISO [24]	$^{10}_{\Lambda}\mathrm{Be} + ^{5}_{\Lambda}\mathrm{He}$	3.87 ± 0.21	or	1.03 ± 0.18
E07	T006 IBUKI [25]	$^{10}_{\Lambda}\mathrm{Be} + ^{5}_{\Lambda}\mathrm{He}$	1.27 ± 0.21		
E373	T3 KINKA	${}^9_{\Lambda}\text{Be} + {}^5_{\Lambda}\text{He} + n$	8.00 ± 0.77	or	4.96 ± 0.77
$\mathrm{E07}$	T007	$^9_{\Lambda}\mathrm{Be}+^5_{\Lambda}\mathrm{He}+\mathrm{n}$	-1.04 ± 0.85		
$\mathrm{E07}$	T010 IRRAWADDY	$^{5}_{\Lambda}\text{He}+^{5}_{\Lambda}\text{He}+^{4}\text{He}+\text{n}$	6.27 ± 0.27		
E07	T011	$^{5}_{\Lambda}\text{He}+^{5}_{\Lambda}\text{He}+^{4}\text{He}+\text{n}$	0.90 ± 0.62		

The conflation method

$$f(x) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left[-\frac{(x-m_i)^2}{2\sigma_i^2}\right]$$

m is the mean value σ is the standard deviation

$$m_t = \sum_{i}^{n} m_i \sigma_i^{-2} \left(\sum_{i}^{n} \sigma_i^{-2} \right)^{-1/2},$$
$$\sigma_t = \left(\sum_{i}^{n} \sigma_i^{-2} \right)^{-1/2}.$$

衛胤

Jinniu Hu

_1

南周大學

The strangeness in neutron star

副

44

13/04/2024

Outline

- **1** Introduction
- 2 The quark mean field model
- 3 The strangeness with QMF model
- 4 The summary and perspective

The effects of chiral dynamics and gluons are introduced into the QMF model.

The improved QMF model was applied to the finite nuclei, Λ , Ξ^{0} , Ξ^{-} , Λ_{c} hypernuclei and neutron star, which can describe the many-body strangest system very well.

The EMC effect will be studied within QMF model.