Selected results on hyperon and related studies with ALICE erson Nith Person

张晓明

华中师范大学

The 1st Workshop on Hyperon Physics 12 – 15 April 2024, Huizhou, China

ALICE apparatus

Drift

MUON

FILTER

QCD phase diagram

Heavy-ion collisions

< 1 fm/*c*

~10 fm/*c*

~10¹⁵ fm/*c*

Particle formation

Ζ

- Mixed phase
- Chemical freeze-out T_{ch} Particle composition is fixed
- Kinetic freeze-out T_{kin} Particle spectra are fixed

Particle and nucleus abundances

- Measurements are well described by statistical hadronization models fit over 9 orders of magnitude
- Chemical freeze-out temperature $T_{ch} \sim 156$ MeV at $\mu_{B} \sim 0$
- **ALICE** arXiv:2211.04384

Antimatter/matter imbalance

- $\mu_{\rm B} = 0.71 \pm 0.45$ MeV compatible with zero within 1.6 σ

Improved precision by cancelation of correlated uncertainties in the ratio

Mass difference of (anti)-nuclei

nuclei sector – Confirms CPT invariance for (light) nuclei

STAR Measure hypertriton binding energy (best ever) and systematically larger than previous measured

• Test of CPT invariance of residual nuclear force by measuring mass difference in the

Hypertriton lifetime

ALICE Phys. Rev. Lett. 131 (2023) 10

Hypernuclei – probes of Y-N interaction

Light/hyper nuclei production

- - \rightarrow Statistical hadronization models (SHM): abundance is fixed at T_{ch}
 - \rightarrow Coalescence of nucleons: associated with T_{kin}
- Data of deuterium, tritium, ³He and hypertriton prefers coalescence

Alpha production at the LHC

- the first time at the LHC
- (Anti-)alpha production is underestimated by the coalescence mode – different picture from light nuclei

Abnormal f₀(980) suppression

f₀(980) – meson, tetraquark or K-Kbar molecule?

- ϕ/π : increases with multiplicity (system size): strange enhancement
- K^{*0}/π : insensitive to multiplicity: strange enhancement vs. rescattering
- f₀(980)/K^{*0}: less sensitive to hadronic interactions
 - \Rightarrow Suggest hidden |S| = 0 and a conventional meson scenario

- Further constraints on the residual strong interaction between NN, YN and YY
- Important input of EoS of neutron stars

Attractive
Attractive

$$\overline{p_{0}}$$
 150 200
 $\overline{p_{1}}$ $k^{*} = |\vec{p}_{1}^{*} - \vec{p}_{2}^{*}|/2$
 $r^{*} = |\vec{r}_{1}^{*} - r_{2}^{*}|$

----- Repulsive

- Further constraints on the residual strong interaction between NN, YN and YY
- Important input of EoS of neutron stars

Repulsive
Attractive

$$7 - 150 = 200$$

V/c)
function $k^* = |\vec{p}_1^* - \vec{p}_2^*|/2$
 $r^* = |\vec{r}^* - r^*|$

$$r^* = |\vec{r}_1^* - r_2^*|$$

Absence interaction $C(k^*) = 1$

14

- interaction between NN, YN and YY
- Important input of EoS of neutron stars

- Important input of EoS of neutron stars

16

- Important input of EoS of neutron stars

Proton-hyperon interaction

• $p-\Omega^{-}$ correlation signal is around two time larger than $p-\Xi^{-}$, large difference in strong interaction • $p-\Omega$ bound-state is not yet observed in data

V(r) (MeV)

p-D- interactions

- Data is compatible with the Coulomb-only interaction within $1.1-1.5\sigma$ • Scattering length $f^1 \in [-0.4, 0.9]$ fm⁻¹ for I = 0 at 68% CL

Important for modeling charm quark transport in the quark-gluon plasma

Indicate either attractive interaction w/ or w/o bound-state formation

D- π and **D**-K interactions

Correlation functions are compatible with the Coulomb-only hypothesis

D-m scattering length

- - Challenging the current understanding on the residual strong interaction between D mesons and pions
- Indicate small or almost vanished scattering of D mesons with hadrons

Deviation between data and models including the strong interaction

(Anti-)nuclei factory

ALI-PREL-48897!

- Production not yet fully understood
- Nucleon coalescence, statistical hadronizaton...
- New tool to study QGP hadronizaton

ALICE Phys. Rev. Lett. 127 (2021) 172301 Nature Phys. 19 (2023) 61

 Strong impact on Dark Matter searches, e.g.

 $\rightarrow \chi_0 \chi_0 \rightarrow \overline{d}, \overline{{}^3\text{He}} + X$

A journey through QCD

23

Nicroscopic of the QCD

Femtoscopic of the QCD

Femtoscopic of the QCD

Next-generation experiment

ALICE experiment at the LHC

- ACORDE | ALICE Cosmic Rays Detector
- AD ALICE Diffractive Detector
- DCal Di-jet Calorimeter
- **EMCal** Electromagnetic Calorimeter
- HMPID High Momentum Particle Identification Detector
- ITS-IB Inner Tracking System Inner Barrel
- **ITS-OB** Inner Tracking System Outer Barrel
- MCH | Muon Tracking Chambers
- MFT | Muon Forward Tracker
- MID Muon Identifier
- PHOS / CPV | Photon Spectrometer
- TOF | Time Of Flight
- T0+A Tzero + A
- T0+C | Tzero + C
- TPC | Time Projection Chamber
- TRD | Transition Radiation Detector
- V0+ Vzero + Detector
- **ZDC** Zero Degree Calorimeter

29

$$C(\vec{k}^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 r^*$$

Emitting source: hypersurface at kinematic freezout of final-state particles

Described with a Gaussian core

$$G(r*, r_{\rm core}(m_{\rm T})) = \frac{1}{(4\pi r_{\rm core}^2(m_{\rm T}))^{3/2}} \cdot \exp\left(-\frac{1}{4\pi r_{\rm core}^2(m_{\rm T})}\right)^{3/2}$$

See Phys. Lett. B 811 (2020) 135849

Source size ~1fm makes the high-multiplicity pp system

• Fit correlation functions of p-p and $p-\Lambda$ pairs

- Interaction precisely described
- → Gaussian source with radius as free parameter

