Measurement of hypernuclei radius

Yelei Sun

School of Physics, Beihang University

孙叶磊,北京航空航天大学

Outline

- □ Two puzzles: Hyperon puzzle and 3LH lifetime puzzle
- □ Hypernuclei production and decay, invariant-mass method
- Two-target method S. Velardita, YLS, Eur. Phys. J. A, 59:139 (2023)
- □ HYDRA TPC in GLAD/R3B
- □ HYDRA design: field cage, amplification, gas system, laser system, electronics
- □ Perspectives

孙叶磊,北京航空航天大学

Hyperon puzzle

孙叶磊,北京航空航天大学

Hyperon puzzle

孙叶磊,北京航空航天大学

3LH lifetime puzzle

孙叶磊,北京航空航天大学

Measurment of 3LH radius?

孙叶磊,北京航空航天大学

Halo nuclei

孙叶磊,北京航空航天大学

Halo- Hyperhalo in hypernuclei

孙叶磊,北京航空航天大学

Hypernuclei production and decay

孙叶磊,北京航空航天大学

Hypernuclei production from Heavy-ion collisions

孙叶磊,北京航空航天大学

孙叶磊,北京航空航天大学

Transmission method

孙叶磊,北京航空航天大学

孙叶磊,北京航空航天大学

孙叶磊,北京航空航天大学

Two measurements with target thickness d1 and d2

 $\delta \sigma_{AR} / \sigma_{AR}$ with $\sigma_A = 1.8$ ub, $\sigma_R = 888 \pm 19$ mb, $\tau = 216 \pm 19$ ps, $\delta N_A = \text{sqrt}(N_A)$ $\Box 8$ days beam time, uncertainty ~15%: Thin target (d1 = 1cm) for the 1st n

Thin target (d1 = 1 cm) for the 1st measurement Thick target (d2 = 5 cm) for the 2nd measurement

S. Velardita, YLS, Eur. Phys. J. A, 59:139 (2023)

孙叶磊,北京航空航天大学

孙叶磊,北京航空航天大学

Glauber model

$$\sigma_{\text{reac}}(P+T) = \int db \left(1 - |e^{i\chi_{\text{PT}}(b)}|^2\right) \text{ with } e^{i\chi_{\text{PT}}(b)} \rightarrow \left\langle \varphi_0 | e^{i\chi_{\text{CT}}(b_{\text{C}}) + i\chi_{\text{NT}}(b_{\text{C}}+s)} | \varphi_0 \right\rangle$$

$$i\chi_{\text{CT}}(b) = -\int dr \int dr' \rho_{\text{C}}(r) \rho_{\text{T}}(r') \Gamma(b+s-s') \rightarrow \text{NN interaction, density of the core and target}$$

$$i\chi_{\text{NT}}(b) = -\int dr \rho_{\text{T}}(r) \Gamma(b-s). \rightarrow A\text{N interaction, density of target}$$
Hypernuclei "beam"
$$\Gamma(b) = \frac{1 - i\alpha}{4\pi\beta} \sigma_{\text{NN}}e^{-b^2/2\beta} \quad \text{(finite range),}$$

$$\Gamma(b) = \frac{1 - i\alpha}{2} \sigma_{\text{NN}}\delta(b) \quad \text{(zero range).}$$

$$\Gamma(b) = \frac{1 - i\alpha}{2} \sigma_{\text{NN}}\delta(b) \quad \text{(zero range).}$$

B. Abu-Ibrahim et al., CPC 151 (2003) 369-386

孙叶磊,北京航空航天大学

Glauber mod	lel		Density distri [1] F. Hildenbrand	ibution from pior and HW. Hamme	nless EFT er, PRC 100, 034002	2 (2019) 北京航空航天大學 BETHANGUNIVERSITY
\Box <i>A</i> N total cros	s section		— Separation energy [keV]	RMS [fm] pionless EFT [1]	Cross section [mb] - Glauber Model	
σ(σ(Λp)	$\sigma(\Lambda n)$	500	2.5	616	
	[mb]	[mb]	410	2.8	645	
1–5 GeV/c	35		130	4.9	861	
6-21 GeV/c	34.6(4)	34.0(8)	50	7.9	1062	
S. Gjesdal et al. Phys. Lett. B, 40:152–156, (1972) D. Bassano et al. Phys. Rev., 160:1239–1244, (1967))	8 6 - 1 8 - 4 - 2 0	$Slop = 0.$ $\Delta \sigma_{\rm R} = 10$ $\sigma_{\rm R} = 10$	$\begin{array}{c} \bullet & \text{Eikonal} \\ \hline & \bullet & \text{Linear Fit} \end{array}$

孙叶磊,北京航空航天大学

Uncertainty estimation

$3LH + {}^{12}C$ at 1.5GeV/nucleon

Separation energy [keV]	RMS [fm] [1]	σ_R[mb] Glauber Model	$\Delta \sigma_{\rm R}$ 15% [mb]	⊿RMS [fm]	⊿RMS/RMS
500	2.5	616	92	1.1	44%
410	2.8	645	97	1.2	43%
130	4.9	861	129	1.5	31%
50	7.9	1062	159	1.9	24%

[1] pionless EFT, F. Hildenbrand and H.-W. Hammer, PRC 100, 034002 (2019)

HYDRA (Hypernuclei Decay R³B Apparatus)

孙叶磊,北京航空航天大学

HYDRA Prototype

孙叶磊,北京航空航天大学

北京航空航天大學

HYDRA Prototype

Assembly@GSI clean room

- 1) Field cage pilars and wired PCBs
- 2) Field cage in the chamber
- 3) GEM installation (GEM+MM to reduce IBF)
- 4) Anode pad plane
- 5) Kapton window

孙叶磊,北京航空航天大学

Gas controller

BROOKS SLA5800 mass flow and pressure controller

- □ Based on R3B/MUSICgas system (CEA/T. Julien)
- □ Gas flow and pressure regulator
- □ ~1.01bar

Gas mixture	Proportion	Drift velocity [cm/µs]	Transversal diffusion [μm/ √cm]	Longitudinal diffusion [µm/ √cm]
Ar-CF4-iC4H10	95/1/4	5.5	110	250
	96/2/2	7	90	225
Ar-C3F8-iC4H10	96/1/3	6	105	250
Ar-Xe-iC4H10	92/6/2	5.5	110	250
Ar-C3F8	98/2	7.5	80	225
Ar-C2F6-iC4H10	95/1/4	5.5	105	250
Ar-CF4-CO2	97/1/2	5	125	275
Ar-iC4H10	95/5	4.25	140	275
Ar-neoC5H12	95/5	4.75	130	275

@E=250V/cm and B=2T

孙叶磊,北京航空航天大学

Laser calibration system

- □ Technique used in ALICE/STAR TPC
- ☐ Drift velocity calibration
- **TPC** stability
- □ Trajectory distoration due to E/B field non-uniformity

孙叶磊,北京航空航天大学

Laser calibration system

孙叶磊,北京航空航天大学

Reacout electronics

孙叶磊,北京航空航天大学

HYDRA Collaboration

Hypernuclei studies at R³B with HYDRA Letter of Intent, G-PAC, 2020

H. Alvarez-Pol,¹¹ T. Aumann,⁵ J. Benlliure,¹¹ M. Bleicher,⁷ A. Botvina,⁷, A. Corsi,⁸ D. Cortina-Gil,¹¹ H. Ekawa,⁴ L. Fabbietti,¹⁰ R. Gernhaüser,¹⁰ L. Ji,⁵ D. Körper,³ T. Kröll,⁵ M. Nakagawa,⁴ S. Ota,¹ A. Obertelli,⁵ E. C. Pollacco,⁸ C. Rappold,⁶ J. L. Rodriguez,¹¹ D. Rossi,⁵ R. Roth,⁵ T. R. Saito,^{4,9,3} H. Scheit,⁵ H. Simon,³ Y. L. Sun,⁵ O. Tengblad,⁶ S. Velardita,⁵ F. Wienholtz,⁵ R. Wirth,² S. Zacarias,⁵ and the R³B collaboration

¹Center for Nuclear Studies (CNS), University of Tokyo, Japan
 ²Facility for Rare Isotope Beams, Michigan State University, USA
 ³GSI Helmholtzzentrum für Schwerionenförschung, Germany
 ⁴High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN, Japan
 ⁵Institut für Kernphysik, Technische Universität Darmstadt, Germany
 ⁶Institut für Theoretische Physik, J.W. Goethe Universität, Frankfurt am Mainz, Germany
 ⁸ Irfu, CEA Saclay, France
 ⁹School of Nuclear Science and Technology, Lanzhou University, China
 ¹⁰Technische Universität Munchen, Germany
 ¹¹ Universidade de Santiago de Compostela, Spain

June 10, 2020

Spokespersons: A. Obertelli and Y. L. Sun, TU Darmstadt

LOI submitted in 2020 31 collaborators from 11 institutes

孙叶磊,北京航空航天大学

Matter radius of the hyperhalo candidate $^{3}_{\Lambda}$ H from interaction cross-section measurements

Proposal, G-PAC 2022

Spokesperson: A. Obertelli, TU Darmstadt, for the $R^{3}B$ collaboration **GSI contact person:** H. Simon, GSI

Proposal submitted for G-PAC 2022

2022-10-21, Ranked as A, 34 shifts (11days) granted! Interaction cross section of 3LH+C

Laser test in GLAD: 2023-Nov. Experiment expected: 2025 Feb.

Workshop on Hyperon Physics, Huizhou, 2024.04.12-2024.04.15 27

SIKEN

Perspectives: Hypernuclei study based on HFRS@HIAF

YLS et al., PRC 98, 024903 (2018)

北京航

□ Possibility to study the production of neutron-rich hypernuclei with neutron-rich beams

孙叶磊,北京航空航天大学

Perspectives: Coulomb breakup of 3LH ?

孙叶磊,北京航空航天大学

Thank you for your attention!

孙叶磊,北京航空航天大学