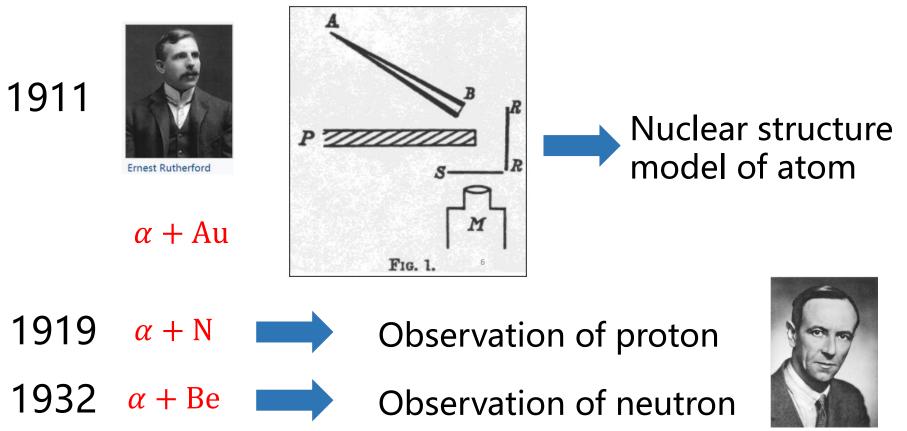


Hyperon-nucleon scattering at BESIII

Jielei Zhang(张杰磊) Henan University

Workshop on Hyperon Physics

2024.04 in Huizhou

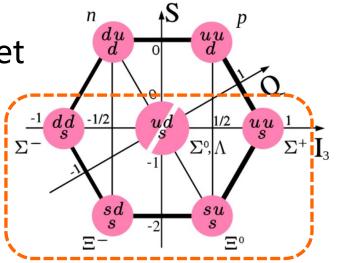

Outline

Introduction

Recent experimental measurements on hyperon-nucleon scattering CLAS, JPARC-E40, BESIII

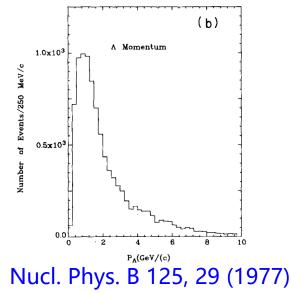
Summary

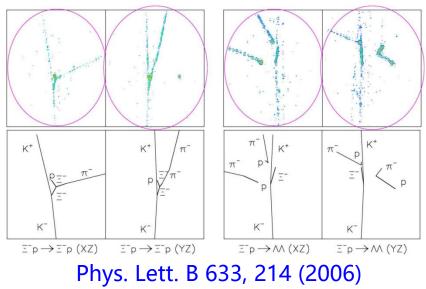
Scattering experiments of particle beams bombarding target materials


James Chadwick

Scattering experiment must have **particle source**, target material, and detector.

Hyperon source


Baryon octet

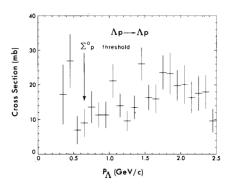

One of main goals of nuclear physics is to understand baryonbaryon interaction in a unified perspective

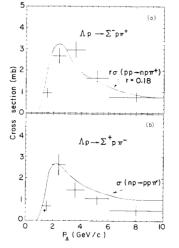
Limited by availability and short-lifetime of hyperon beams

> Hyperons are obtained by bombarding hydrogen bubble chamber or scintillating fiber target with K^- .

Hyperon source

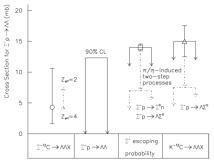
- > Hyperons are obtained by bombarding hydrogen bubble chamber or scintillating fiber target with K^- .
- > Intensity of hyperon beams is low, experimental measurements are scarce and have large uncertainty.
- > No anti-hyperon source.

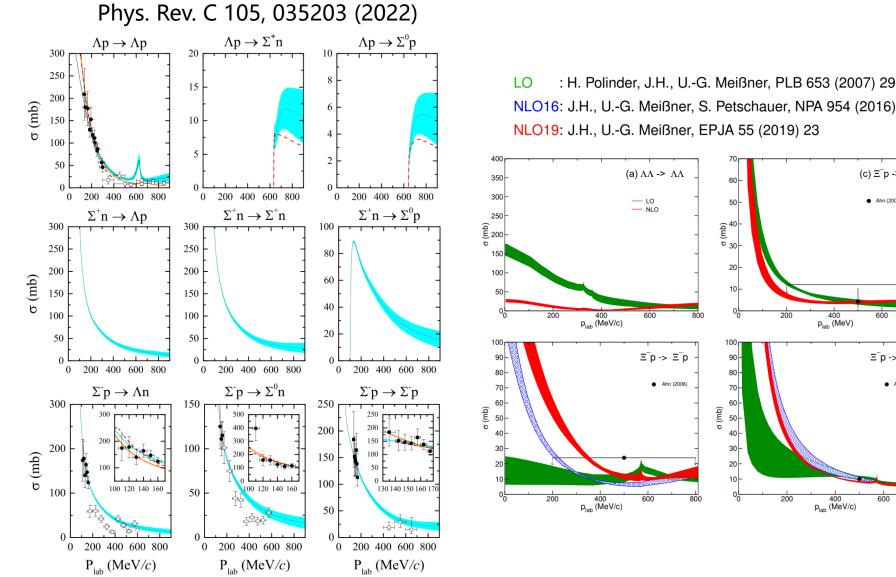

Reaction	Number of events
$\Lambda p \rightarrow \Lambda p$ (elastic)	584
$\Lambda p \rightarrow \Sigma^- p \pi^+$	132
$\Lambda p \rightarrow \Sigma^+ p \pi^-$	60
$\Lambda p \rightarrow \Lambda p \pi^+ \pi^-$	181
$\Lambda p \rightarrow \Sigma^0 p$	35
various Ξ^0 p interactions	25


Phys. Lett. B 32, 720 (1970)

Reaction	Momentum interval (GeV/c)	Number of events	σ (mb)
Ap→all	0.5 → 1.0		25.8 ± 6.2
-	$1.0 \rightarrow 1.5$		31.3 ± 6.5
	$1.5 \rightarrow 2.0$		42.8 ± 7.1
	$2.0 \rightarrow 2.5$		37.5 ± 7.2
	$2.5 \rightarrow 3.0$		34.1 ± 8.3
	3.0 → 4.0		41.8 ± 10.0
Λp →Λ p	$0.5 \rightarrow 1.0$	20	22.2± 5.0
	$1.0 \rightarrow 1.5$	21	12.9 ± 2.8
	$1.5 \rightarrow 2.0$	37	22.0 ± 3.6
	$2.0 \rightarrow 2.5$	28	16.1 ± 3.1
	2.5 → 3.0	12	11.0 ± 3.2
	3.0 →4.0	13	12.5 ± 3.4
Ap →Σ ^o	0,66→4,0	11	1.5 ± 0.5
$\Lambda p \rightarrow \Lambda p \pi^{o}$	$0.88 \rightarrow 4.0$	29	4.1 ± 0.8
$\Lambda p \rightarrow \Lambda p \pi^+ \pi^-$	1.36→4.0	12	1.9 ± 0.6
Σ ⁺ p →Σ ⁺ p	$0.5 \rightarrow 1.5$	10	31.2 ± 10.1
3 F 3 F	$1.5 \rightarrow 2.5$	8	18.7 ± 6.6
	$2.5 \rightarrow 4.0$	4	15.3 ± 7.8
Σ⁻р →Σ ⁻р	$0.5 \rightarrow 1.5$	6	13.2 ± 4.7
5 P -5 P	$1.5 \rightarrow 2.5$	11	13.9 ± 4.1
	$2.5 \rightarrow 4.0$	4	7.5± 3.8
≡~р⊸≣ - р	1.0 →4.0	6	13 ± 6
Ξop →Ξop	$1.0 \rightarrow 4.0$	4	19 ± 10

(1) (2)(3) (4) (5)




Phys. Lett. B 38, 123 (1972)

reaction	events *	signature	cross-section events **	cross-section (mb)
$\Xi^{o} + p \rightarrow \Xi^{o} + p$	2	к,Λ	1	8
$\Xi^{o} + p \rightarrow \Lambda + \Sigma^{+}$	6	Λ	4	24
$\Xi^{0} + p \rightarrow \Sigma^{0} + \Sigma^{+}$	1	Λ	1	6
$\Xi^{o} + p \rightarrow \pi^{+} + \Lambda + \Lambda$	1	к,Λ	1	6
$\Xi^{o} + p \rightarrow \pi^{o} + \Lambda + \Sigma^{+}$	1	Λ	1	6
$\Xi^{o} + p \rightarrow \pi^{+} + \Xi^{-} + p$	1	K or Λ	1	5
$\Xi^{\mathbf{O}} + \mathbf{p} \rightarrow \pi^{+} + \pi^{+} + \Xi^{-} + \mathbf{n}$	1	к,Λ	1	6
$\Xi^{o} + p \longrightarrow \Xi^{-} + p$	2	Λ	2	8
$\Xi^{O} + p \rightarrow \Sigma^{-} + \Sigma^{+}$	1	К	1	4
$\Xi^{0} + \mathbf{p} \rightarrow \Sigma^{\mathbf{-}} + \mathbf{K}^{0} + \mathbf{p}$	1	К	1	4

Phys. Lett. B 633, 214 (2006)

Theory of hyperon-nucleon (YN) interaction has large uncertainty due to lack of relevant measurements

NLO16: J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273 NLO19: J.H., U.-G. Meißner, EPJA 55 (2019) 23

(c) Ξ⁻p -> ΛΛ

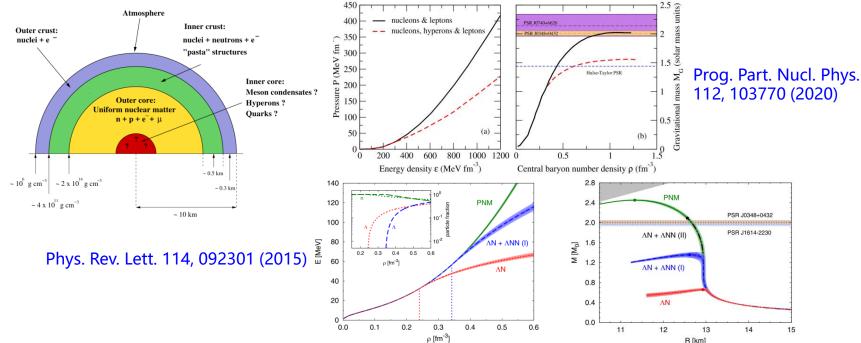
Ahn (2006)

 $\Xi^{-}p \rightarrow \Xi^{0}n$

600

Abn (2006)

400 p_{lab} (MeV)

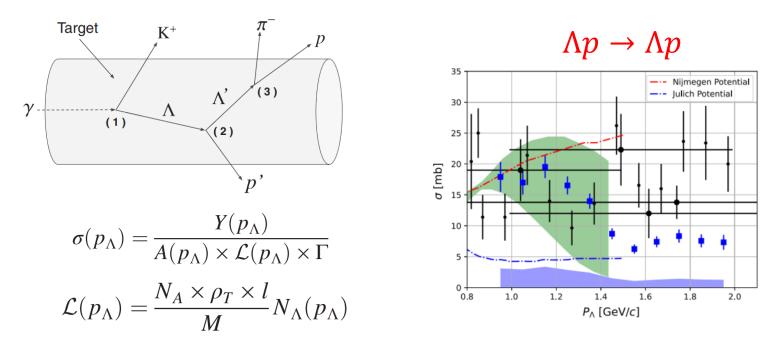

400 p_{lab} (MeV/c)

"Hyperon puzzle" of neutron stars

Hyperons are believed to be appeared in inner core of neutron stars.

 $\begin{array}{ll} B_1 \rightarrow B_2 + l + \bar{\nu}_l, \ B_2 + l \rightarrow B_1 + \nu_l \\ n \rightarrow p + e^- + \bar{\nu}_e, \ p + e^- \rightarrow n + \nu_e \\ \Lambda \rightarrow p + e^- + \bar{\nu}_e, \ p + e^- \rightarrow \Lambda + \nu_e \end{array} \begin{array}{ll} \Sigma^- \rightarrow n + e^- + \bar{\nu}_e, \ n + e^- \rightarrow \Sigma^- + \nu_e \\ \Xi^- \rightarrow \Lambda + e^- + \bar{\nu}_e, \ \Lambda + e^- \rightarrow \Xi^- + \nu_e \end{array}$

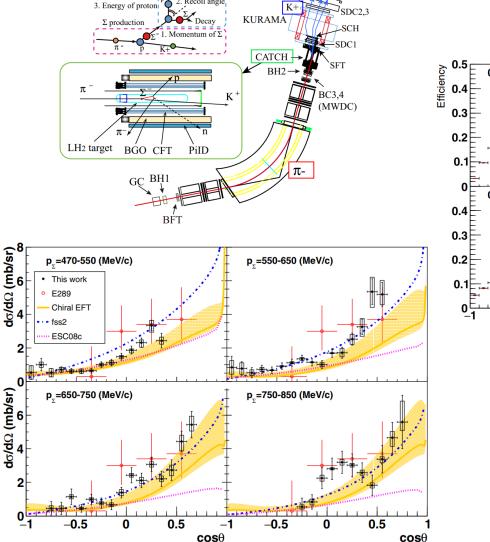
- Appearance of hyperons softens equation of state, lead to maximum mass that neutron stars can sustain is less than mass of already-observed neutron stars.
- A repulsive force is introduced to stiffen equation of state in theory, such as a combination of ΛN and ΛNN interactions. Study of hyperon-nucleon interaction is crucial to solve "hyperon puzzle" of neutron stars.



Some recent experimental results on hyperon-nucleon scattering

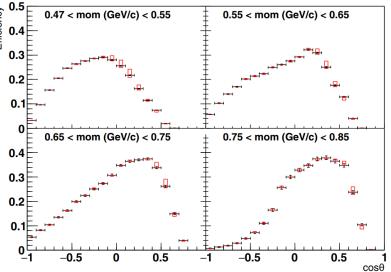
PHYSICAL REVIEW LETTERS 127, 272303 (2021)

(CLAS Collaboration)


Improved Λp Elastic Scattering Cross Sections between 0.9 and 2.0 GeV/c as a Main Ingredient of the Neutron Star Equation of State

This is the first data on this reaction since the 1970s.

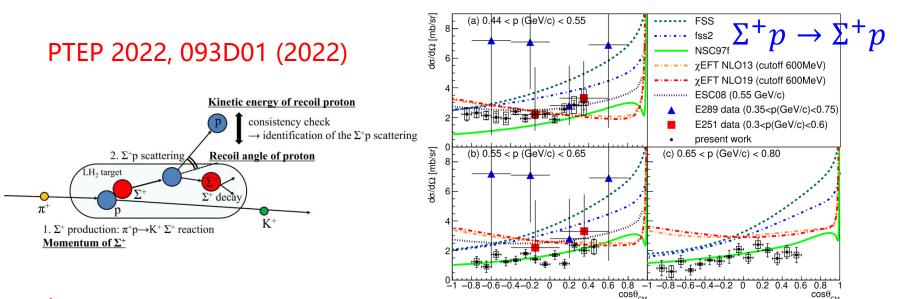
Some recent experimental results on hyperon-nucleon scattering


J-PARC E40 Collaboration

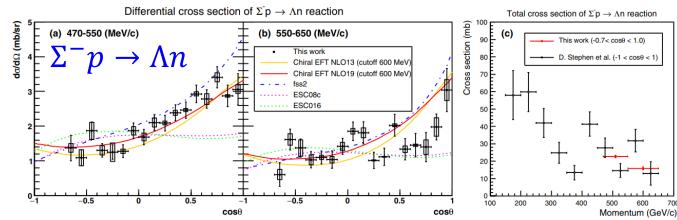
Σp scattering

2. Recoil angle

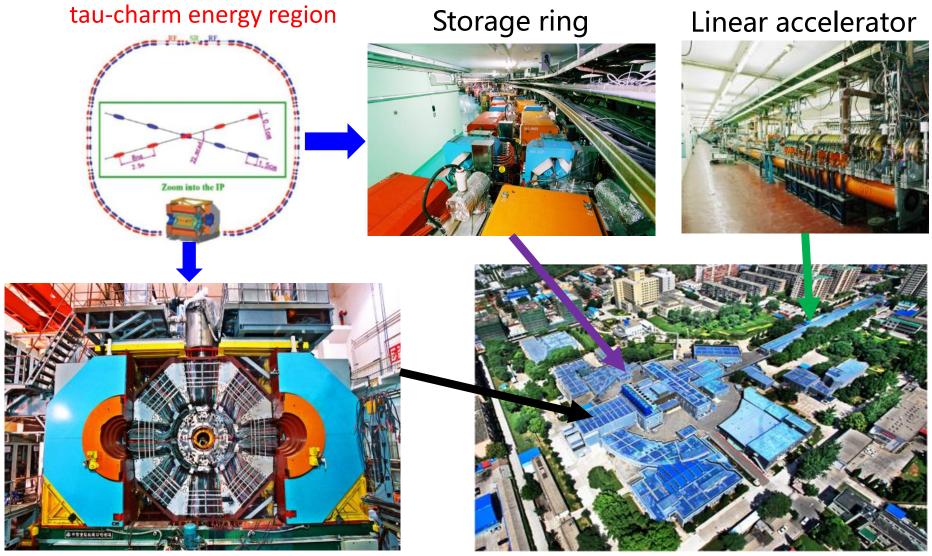
Phys. Rev. C 104, 045204 (2021)



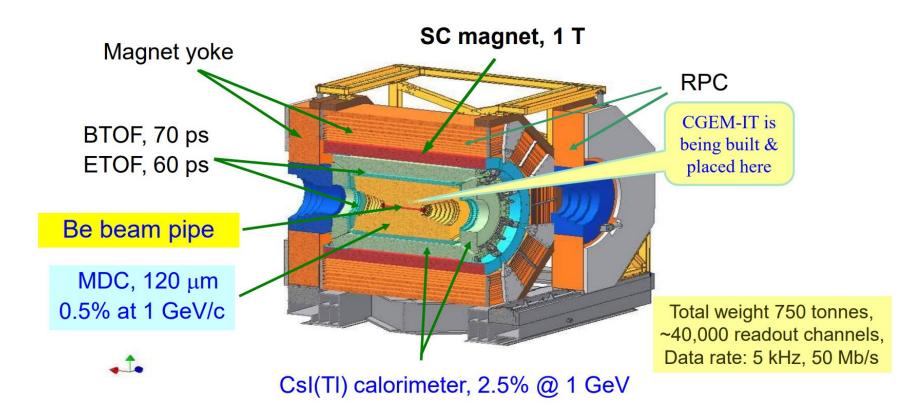
 $\Sigma^- p \to \Sigma^- p$


Some recent experimental results on hyperon-nucleon scattering

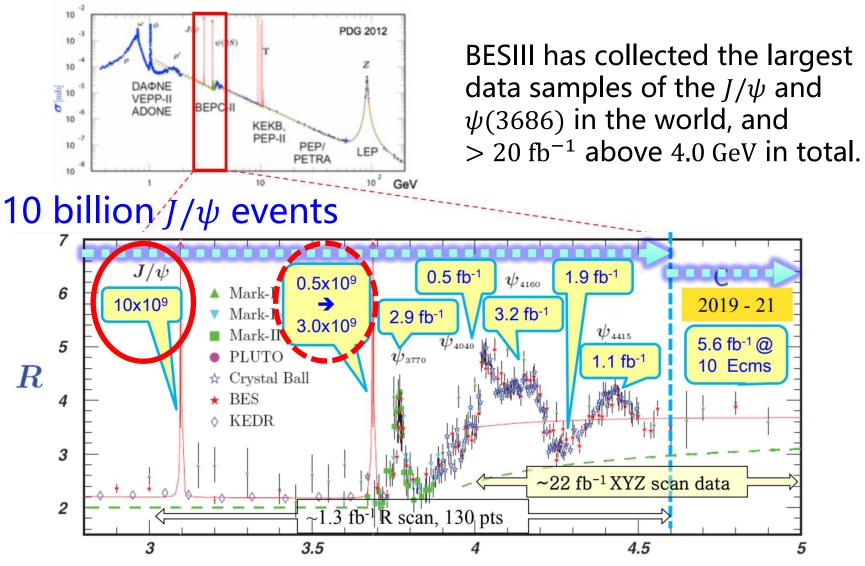
J-PARC E40 Collaboration


700

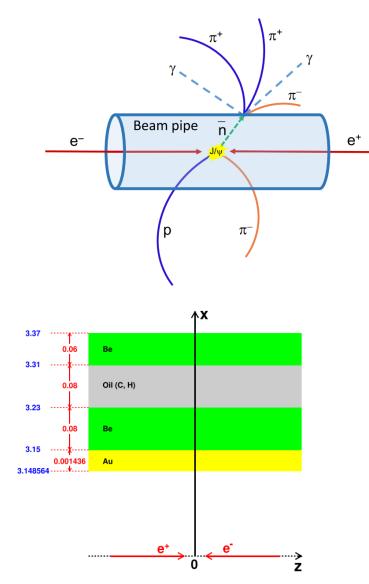
Phys. Rev. Lett. 128, 072501 (2022)



Beijing Electron Positron Collider II (BEPCII) and Beijing Spectrometer III (BESIII)


BESIII detector

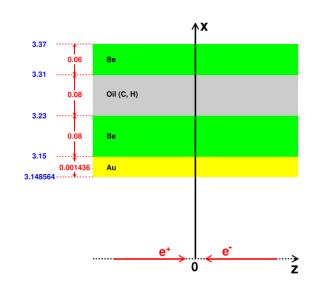
BESIII detector

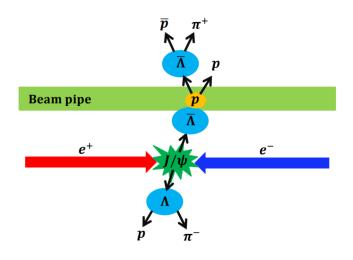


Has been in full operation since 2008, all subdetectors are in very good status!

BESIII data samples

Experimental study on particle targeting at BESIII

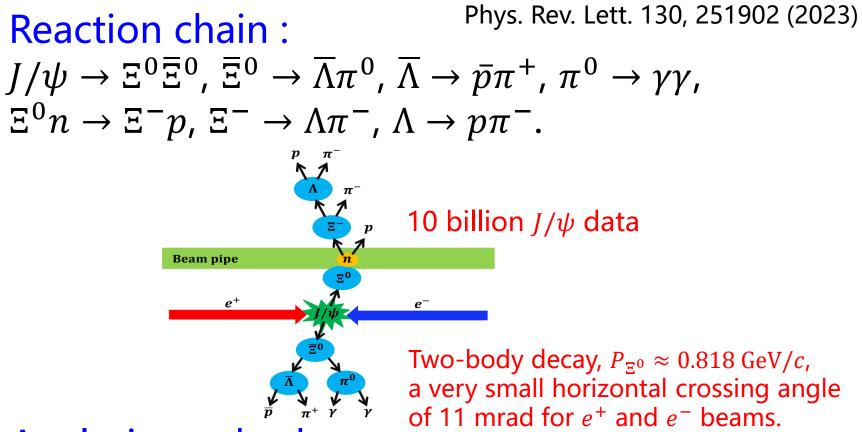



Phys. Rev. Lett. 127, 012003 (2021) arXiv: 2209.12601 $\bar{n}p \rightarrow \pi^+\pi^+\pi^-\pi^0$, $\pi^0 \rightarrow \gamma\gamma$ $\Xi^0 n \rightarrow \Xi^- p$ **Beam pipe**

particle source: hyperon from J/ψ decays target material: beam pipe detector: BESIII detector 14

Experimental study on particle targeting at BESIII

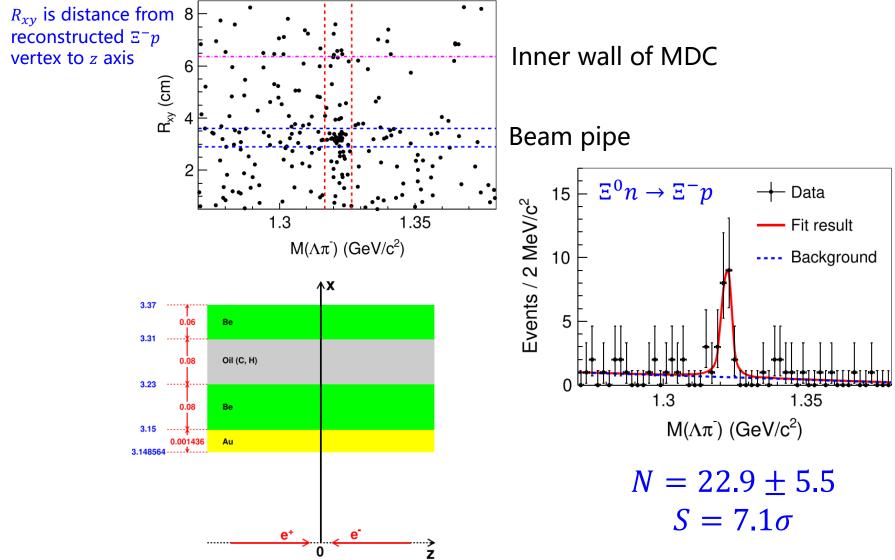
Hyperon/Antihyperon	$\tau \; (\times 10^{-10} {\rm s})$	Decay mode	\mathcal{B} (×10 ⁻³)	$P \; ({\rm GeV}/c)$	$E_{\rm cm}~({\rm GeV})$	$N~(imes 10^5)$	$N^{\mathrm{bp}}~(imes 10^5)$
$\Lambda/ar\Lambda$	2.63	$J/\psi \to \Lambda \bar{\Lambda}$	1.89	1.074	2.24	189	103
$\Sigma^+/ar{\Sigma}^-$	0.80	$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	1.07	0.992	2.28	107	15
$\Xi^0/ar{\Xi}^0$	2.90	$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	1.17	0.818	2.35	117	51
$\Xi^-/\bar{\Xi}^+$	1.64	$J/\psi \to \Xi^- \bar{\Xi}^+$	0.97	0.807	2.35	97	23
$\Lambda/ar{\Lambda}$	2.63	$\psi(2S) \to \Lambda \bar{\Lambda}$	0.38	1.467	2.36	11	7
$\Sigma^+/ar{\Sigma}^-$	0.80	$\psi(2S) \to \Sigma^+ \bar{\Sigma}^-$	0.24	1.408	2.40	7	2
$\Xi^0/ar{\Xi}^0$	2.90	$\psi(2S) \rightarrow \Xi^0 \bar{\Xi}^0$	0.23	1.291	2.47	7	4
$\Xi^-/\bar{\Xi}^+$	1.64	$\psi(2S) \to \Xi^- \bar{\Xi}^+$	0.29	1.284	2.47	9	3
$\Omega^-/ar\Omega^+$	0.82	$\psi(2S) \to \Omega^- \bar{\Omega}^+$	0.06	0.774	2.67	2	0.1



New results on hyperon-nucleon scattering at BESIII

- ➢ First Study of Reaction $\Xi^0 n \to \Xi^- p$ Using Ξ^0 -Nucleus Scattering at an Electron-Positron Collider Phys. Rev. Lett. 130, 251902 (2023)
- First measurement of ΛN inelastic scattering with Λ from $e^+e^- → J/ψ → Λ\overline{Λ}$ arXiv:2310.00720
- > First study of antihyperon-nucleon scattering $\overline{\Lambda}p \rightarrow \overline{\Lambda}p$ and measurement of $\Lambda p \rightarrow \Lambda p$ arXiv:2401.09012

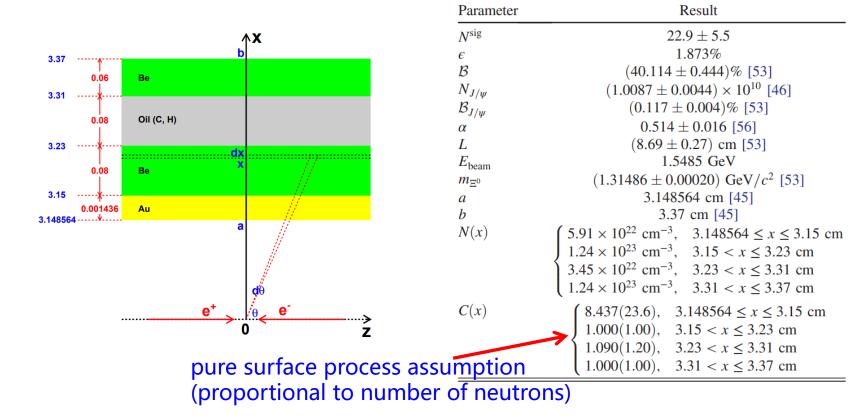
Study of $\Xi^0 n \to \Xi^- p$



Analysis method :

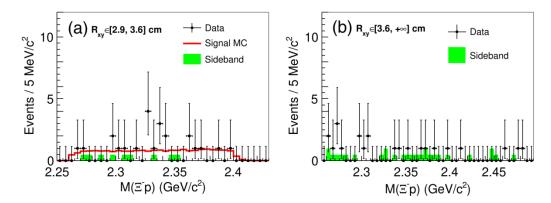
Using $\overline{\Xi}^0$ to tag the event and requiring the recoiling

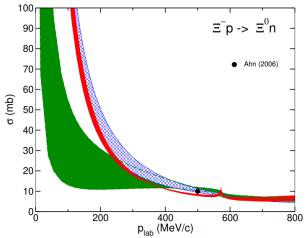
mass in Ξ^0 region. Then reconstructing Ξ^- and p in the signal side.


Study of $\Xi^0 n \to \Xi^- p$

Cross section of $\Xi^0 + {}^9\text{Be} \rightarrow \Xi^- + p + {}^8\text{Be}$

$$\sigma(\Xi^{0} + {}^{9}\text{Be} \to \Xi^{-} + p + {}^{8}\text{Be}) = \frac{N^{\text{sig}}}{\epsilon \mathcal{BL}_{\text{eff}}}$$


$$\mathcal{L}_{\text{eff}} = \frac{N_{J/\psi} \mathcal{B}_{J/\psi}}{2 + \frac{2}{3}\alpha} \int_{a}^{b} \int_{0}^{\pi} (1 + \alpha \cos^{2}\theta) e^{-\frac{x}{\sin\theta\beta\gamma L}} N(x) C(x) d\theta dx$$



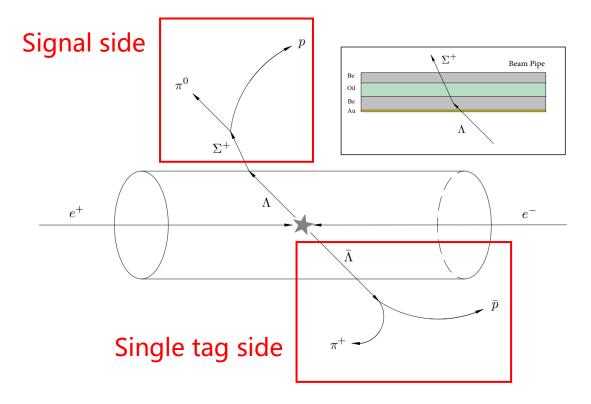
Study of $\Xi^0 n \to \Xi^- p$

The measured cross section of the reaction process $\Xi^0 + {}^9\text{Be} \rightarrow \Xi^- + p + {}^8\text{Be}$ is $\sigma(\Xi^0 + {}^9\text{Be} \rightarrow \Xi^- + p + {}^8\text{Be}) = (22.1 \pm 5.3_{\text{stat}} \pm 4.5_{\text{sys}})$ mb at $P_{\Xi^0} \approx 0.818 \text{ GeV}/c.$

If we take the effective number of reaction neutrons in ⁹Be nucleus as 3, the cross section of $\Xi^0 n \to \Xi^- p$ for single neutron is determined to be $\sigma(\Xi^0 n \to \Xi^- p) = (7.4 \pm 1.8_{\text{stat}} \pm 1.5_{\text{sys}})$ mb, consistent with theoretical predictions.

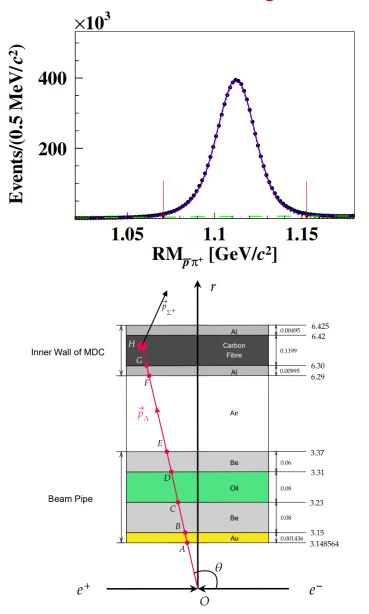
LO : H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29
 NLO16: J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273
 NLO19: J.H., U.-G. Meißner, EPJA 55 (2019) 23

No significant H-dibaryon signals are seen

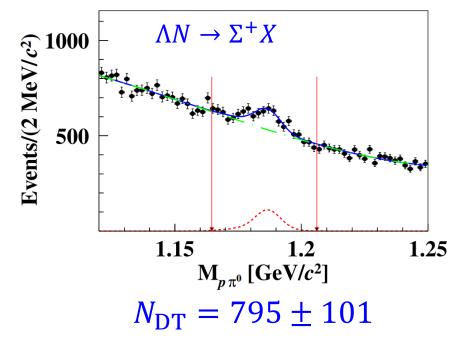

This work is the first study of hyperon-nucleon interaction in electron-positron collisions, and opens up a new direction for such research. 20

Study of $\Lambda N \rightarrow \Sigma^+ X$

arXiv:2310.00720

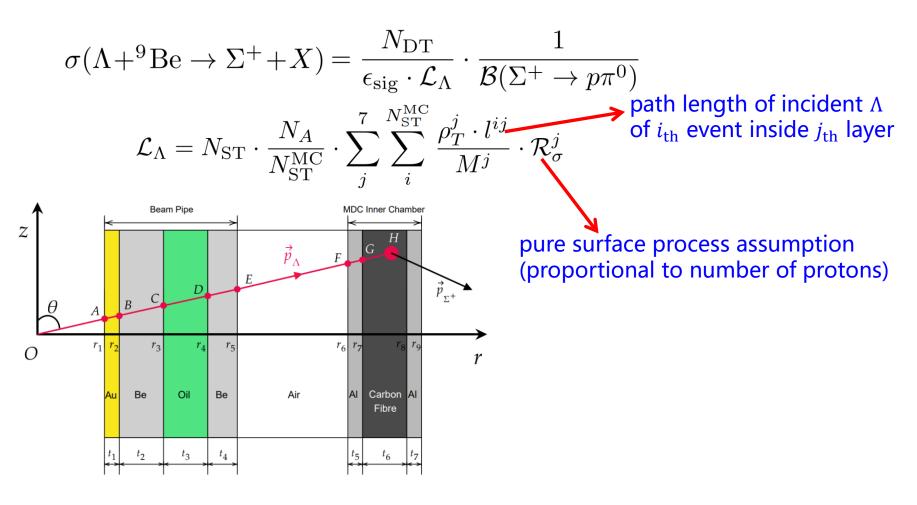

Reaction chain :

 $J/\psi \to \Lambda \overline{\Lambda}, \ \overline{\Lambda} \to \overline{p}\pi^+, \ \Lambda + N(\text{nucleus}) \to \Sigma^+ + X(\text{anything}), \\ \Sigma^+ \to p\pi^0, \ \pi^0 \to \gamma\gamma.$



Two-body decay, $P_{\Lambda} \approx 1.074 \text{ GeV/}c$, a very small horizontal crossing angle of 11 mrad for e^+ and e^- beams, resulting in a small range of 0.017 GeV/c above and below 1.074 GeV/c for P_{Λ} .

Study of $\Lambda N \rightarrow \Sigma^+ X$

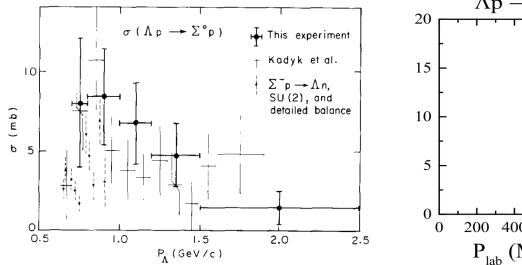


 $N_{\rm ST} = 7207565 \pm 3741$

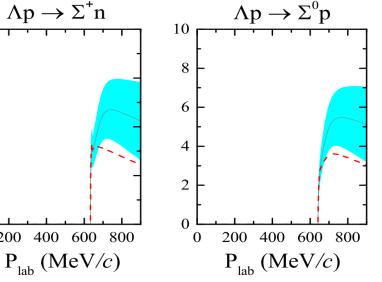
The reaction position can not be determined. These signal events mainly come from the reaction with beam pipe and inner wall of MDC.

Cross section of $\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X$

Parameter	Value
$N_{ m DT}$	795 ± 101
$\epsilon_{ m sig}$	24.32%
\mathcal{L}_{Λ}	$(17.00 \pm 0.01) \times 10^{28} \text{ cm}^{-2}$
$\mathcal{B}(\Sigma^+ \to p\pi^0)$	$(51.57 \pm 0.30)\%$

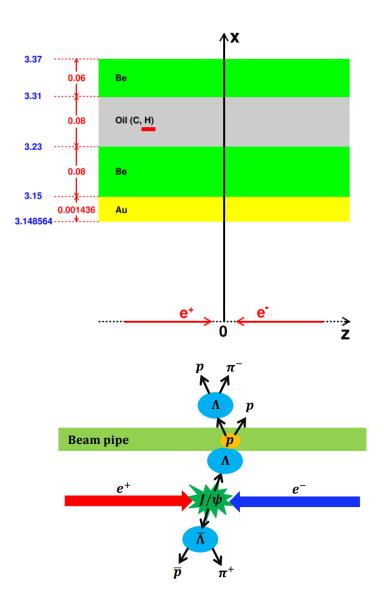

Study of $\Lambda N \to \Sigma^+ X$

The measured cross section of the reaction process $\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X$ is $\sigma(\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X) = (37.3 \pm 4.7_{\text{stat}} \pm 3.5_{\text{sys}})$ mb at $P_{\Lambda} \approx 1.074$ GeV/c. This work represents the first attempt to investigate Λ -nucleus interaction at an $e^{+}e^{-}$ collider.

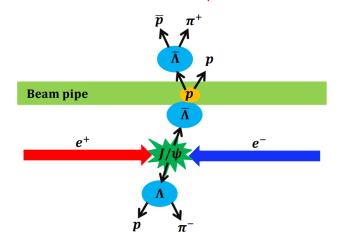

If taking the effective number of reaction protons in ⁹Be nucleus as 1.93, the cross section of $\Lambda p \rightarrow \Sigma^+ X$ for single proton is determined to be $\sigma(\Lambda p \rightarrow \Sigma^+ X) = (19.3 \pm 2.4_{stat} \pm 1.8_{sys})$ mb.

$$\sigma(\Lambda p \to \Sigma^+ n)$$
 is twice of $\sigma(\Lambda p \to \Sigma^0 p)$

Nucl. Phys. B 125, 29 (1977)

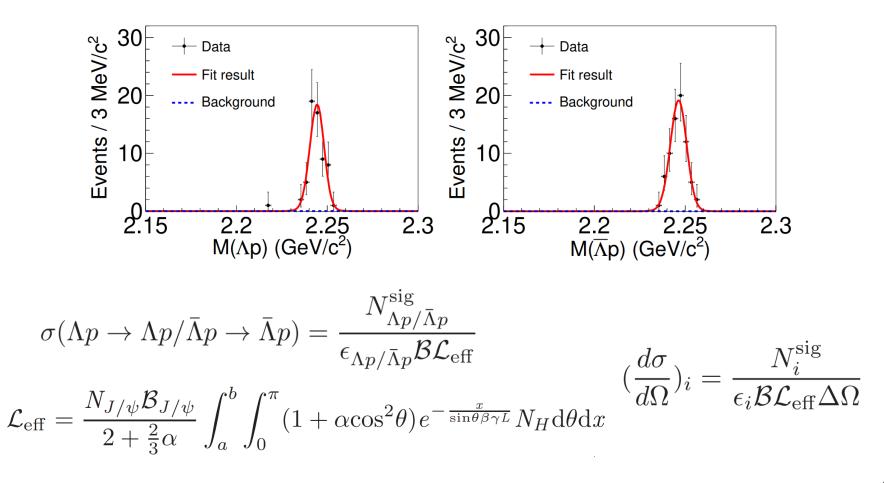


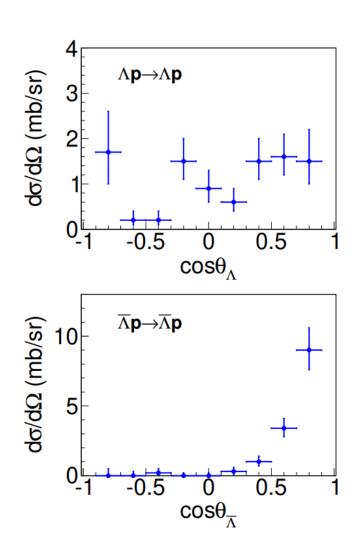
Phys. Rev. C 105, 035203 (2022)



24

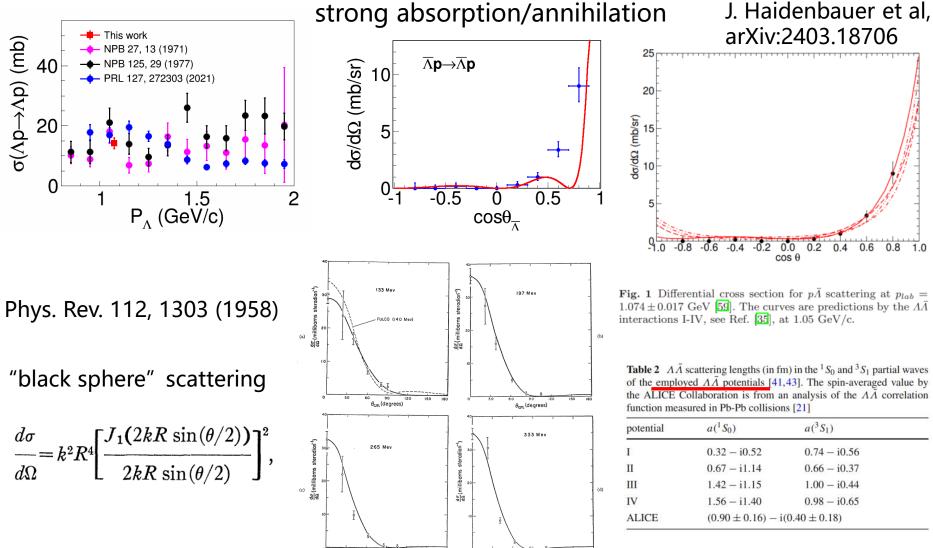
arXiv:2401.09012




Taking the hydrogen in the cooling oil of the beam pipe as target material, the information on the hyperon-proton scattering can be directly extracted.

Two-body decay, $P_{\Lambda/\overline{\Lambda}} \approx 1.074 \text{ GeV}/c$

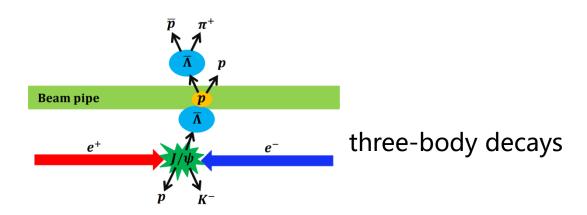
The center-of-mass energy for the incident $\Lambda/\overline{\Lambda}$ and a static *p* is about 2.243 GeV/*c*².



$\cos \theta_{\Lambda/\bar{\Lambda}}$	$N_i^{ m sig}$	$\epsilon_i \ (\%)$	$\frac{d\sigma}{d\Omega}$ (mb/sr)
[-0.9, -0.7]	$(5.0^{+2.6}_{-1.9}, 0.0^{+1.1}_{-0.0})$	(6.94, 4.93)	$(1.7^{+0.9}_{-0.7}, 0.0^{+0.5}_{-0.0})$
(-0.7, -0.5]	$(1.0^{+1.4}_{-0.7}, 0.0^{+1.1}_{-0.0})$	(14.13, 10.44)	$(0.2^{+0.2}_{-0.1}, 0.0^{+0.3}_{-0.0})$
(-0.5, -0.3]	$(1.0^{+1.4}_{-0.7}, 1.0^{+1.4}_{-0.7})$	(17.32, 13.27)	$(0.2^{+0.2}_{-0.1}, 0.2^{+0.3}_{-0.1})$
(-0.3, -0.1]	$(11.0^{+3.7}_{-3.0}, 0.0^{+1.1}_{-0.0})$	(17.74, 14.66)	$(1.5^{+0.5}_{-0.4}, 0.0^{+0.2}_{-0.0})$
(-0.1, 0.1]	$(6.9^{+3.0}_{-2.3}, 0.0^{+1.1}_{-0.0})$	(19.11, 15.79)	$(0.9^{+0.4}_{-0.3}, 0.0^{+0.2}_{-0.0})$
(0.1, 0.3]	$(5.0^{+2.6}_{-1.9}, 2.0^{+1.8}_{-1.1})$	(19.53, 16.82)	$(0.6^{+0.3}_{-0.2}, 0.3^{+0.3}_{-0.2})$
(0.3, 0.5]	$(12.0^{+3.8}_{-3.1}, 7.0^{+3.0}_{-2.3})$	(19.21, 17.68)	$(1.5^{+0.5}_{-0.4}, 1.0^{+0.4}_{-0.3})$
(0.5, 0.7]	$(13.0^{+3.9}_{-3.3}, 25.0^{+5.3}_{-4.7})$	(19.71, 17.60)	$(1.6^{+0.5}_{-0.4}, 3.4^{+0.7}_{-0.6})$
(0.7, 0.9]	$(6.0^{+2.8}_{-2.1}, 37.0^{+6.4}_{-5.8})$	(9.80, 9.93)	$(1.5^{+0.7}_{-0.5}, 9.0^{+1.6}_{-1.4})$

Cross sections in $-0.9 \le \cos\theta_{\Lambda/\bar{\Lambda}} \le 0.9$ are measured to be $\sigma(\Lambda p \to \Lambda p) = (12.2 \pm 1.6 \pm 1.1)$ mb and $\sigma(\bar{\Lambda} p \to \bar{\Lambda} p) = (17.5 \pm 2.1 \pm 1.6)$ mb

Total cross sections are determined to be $\sigma_t(\Lambda p \rightarrow \Lambda p) = (14.2 \pm 1.8 \pm 1.3) \text{ mb and}$ $\sigma_t(\overline{\Lambda} p \rightarrow \overline{\Lambda} p) = (27.4 \pm 3.2 \pm 2.5) \text{ mb}$



 θ_{cm} (degrees)

 $\theta_{\rm cm}$ (degrees)

More (anti)hyperon-nucleon scattering can be studied at BESIII

Elastic scattering	Inelastic scattering
$\Lambda p o \Lambda p$	$\Lambda p \to \Sigma^0 p, \Lambda p \pi^0, \Sigma^+ p \pi^-$
$ar\Lambda p o ar\Lambda p$	$ar{\Lambda}p ightarrow ar{\Sigma}^0 p, ar{\Lambda}p\pi^0, ar{\Sigma}^-p\pi^+$
$\Sigma^+ p \to \Sigma^+ p$	$\Sigma^+ p \to \Lambda p \pi^+, \ \Sigma^+ p \pi^0, \ \Sigma^0 p \pi^+$
$\bar{\Sigma}^- p \to \bar{\Sigma}^- p$	$\bar{\Sigma}^- p ightarrow \bar{\Lambda} p \pi^-, \ \bar{\Sigma}^- p \pi^0, \ \bar{\Sigma}^0 p \pi^-$
$\Xi^0 p ightarrow \Xi^0 p$	$\Xi^0 p ightarrow \Lambda \Sigma^+, \Sigma^0 \Sigma^+, \Xi^0 p \pi^0, \Xi^- p \pi^+$
$\bar{\Xi}^0 p o \bar{\Xi}^0 p$	$ar{\Xi}^0 p ightarrow ar{\Xi}^0 p \pi^0, \ ar{\Xi}^+ p \pi^-$
$\Xi^- p \to \Xi^- p$	$\Xi^- p \to \Lambda\Lambda, \Lambda\Sigma^0, \Sigma^0\Sigma^0, \Xi^- p\pi^0, \Xi^0 p\pi^-$
$\bar{\Xi}^+ p \to \bar{\Xi}^+ p$	$\bar{\Xi}^+ p \rightarrow \bar{\Xi}^+ p \pi^0, \ \bar{\Xi}^0 p \pi^+$
$\Omega^- p \to \Omega^- p$	$\Omega^- p \to \Lambda \Xi^0, \ \Sigma^0 \Xi^0, \ \Sigma^+ \Xi^-$
$\bar{\Omega}^+ p \to \bar{\Omega}^+ p$	

Summary

1. Recently, some hyperon-nucleon scattering processes have been measured with unprecedented precision by CLAS and J-PARC E40 Collaborations. Hyperon-nucleon scattering can also be measured at BESIII now.

$$\succ \Xi^{0}n \to \Xi^{-}p$$
$$\succ \Lambda N \to \Sigma^{+}X$$
$$\succ \Lambda p \to \Lambda p$$
$$\triangleright \overline{\Lambda}p \to \overline{\Lambda}p$$

2. This is the first study of hyperon-nucleon scattering in electronpositron collisions, and opens up a new direction for such research. Especially, antihyperon-nucleon scattering is studied for the first time.

3. More (anti)hyperon-nucleon scattering processes can be studied at BESIII.

Thanks for your attention!