在BESIII和STCF上利用J/Ψ衰变对宇称和电荷-宇称 对称性进行检验

Yong Du (杜勇)

Workshop on Hyperon Physics, 惠州, 2024年4月14号

Based on

Xin-Yu Du, Yong Du, Xiao-Gang He, Jian-Ping Ma, 2404.xxxxx

Motivation

杜勇(交大李所)

Parity violation firstly proposed by Lee and Yang in 1956 and verified by Wu in 1957

Q: Tests of P violation in a different sector? Hadronic meson decay for example?

Similarly, charge-parity violation (CP) firstly observed in kaon oscillation in 1964, and later studies showed that the SM is insufficient to explain the matter-antimatter asymmetry.

$$\frac{-6\left(m_t^2 - m_c^2\right)\left(m_t^2 - m_u^2\right)\left(m_c^2 - m_u^2\right)\left(m_b^2 - m_s^2\right)\left(m_b^2 - m_d^2\right)\left(m_s^2 - m_d^2\right)J}{\Lambda_{\rm EW}^{12}} \sim 10^{-20}$$

Table 2.1: The expected numbers of events per year at different STCF energy points.								
CME (GeV)	Lumi (ab ⁻¹)	Samples	$\sigma(nb)$	No. of Events	Remarks			
3.097	1	J/ψ	3400	3.4×10^{12}				

Q: Tests of both P and CP symmetries at BESIII/STCF in hadronic channels?

Formalism

We consider on-shell production of J/ψ (as the dominant process at STCF) that subsequently decays into a lowest-lying baryon pair ($B = \Lambda, \Sigma^{\pm,0}, \Xi^{0,\pm}$)

$$e^{-}(p_1) + e^{+}(p_2) \to J/\psi \to B(k_1, s_1) + \bar{B}(k_2, s_2)$$

As self-explained by the labels,

- we do not consider beam polarization for this work (Note that beam polarization is a possible option of STCF and one can of course generalize the discussion that follows), thus the initial spins are averaged over.
- we do not sum over the final spins as the final state differential angular distributions are used to extract P and CP violating effects:

$$S_{fi}(\vec{p}, \vec{k}, \vec{s_1}, \vec{s_2}) = S_{fi}(-\vec{p}, -\vec{k}, \vec{s_1}, \vec{s_2})$$

$$S_{fi}(\vec{p}, \vec{k}, \vec{s_1}, \vec{s_2}) = S_{fi}(\vec{p}, \vec{k}, \vec{s_2}, \vec{s_1})$$

$$CP \text{ invariance}$$

Formalism

Due to the on-shell production, all J/ψ particles are generated at rest, and we therefore work in the COM frame and adopt the beam basis for the calculation

• On the production side, the J/ψ density matrix is constructed from its polarization vector ($d_J = 0$ if parity is conserved)

$$\phi^{ij}(\vec{p}) = \frac{1}{3}\delta^{ij} - id_J\epsilon^{ijk}\hat{p}^k - \frac{c_J}{2}\left(\hat{p}^i\hat{p}^j - \frac{1}{3}\delta^{ij}\right)$$

Formalism

• To extract information from the decay of J/ψ , we focus on S_{fi} directly and decompose it in the SU(2) \otimes SU(2) spin space:

 $S_{fi}(\hat{p},\hat{k},\vec{s}_1,\vec{s}_2) = a(\omega)\mathbb{I} \otimes \mathbb{I} + B_1(\hat{p},\hat{k})\vec{s}_1 \otimes \mathbb{I} + B_2(\hat{p},\hat{k})\mathbb{I} \otimes \vec{s}_2 + C^{ij}(\hat{p},\hat{k})\vec{s}_1 \otimes \vec{s}_2$

$$\begin{split} B_1(\hat{\boldsymbol{p}}, \hat{\boldsymbol{k}}) &= \hat{\boldsymbol{p}} b_{1p}(\omega) + \hat{\boldsymbol{k}} b_{1k}(\omega) + \hat{\boldsymbol{n}} b_{1n}(\omega), \\ B_2(\hat{\boldsymbol{p}}, \hat{\boldsymbol{k}}) &= \hat{\boldsymbol{p}} b_{2p}(\omega) + \hat{\boldsymbol{k}} b_{2k}(\omega) + \hat{\boldsymbol{n}} b_{2n}(\omega), \\ C^{ij}(\hat{\boldsymbol{p}}, \hat{\boldsymbol{k}}) &= \delta^{ij} c_0(\omega) + \epsilon^{ijk} \left(\hat{\boldsymbol{p}}^k c_1(\omega) + \hat{\boldsymbol{k}}^k c_2(\omega) + \hat{\boldsymbol{n}}^k c_3(\omega) \right) + \left(\hat{\boldsymbol{p}}^i \hat{\boldsymbol{p}}^j - \frac{1}{3} \delta^{ij} \right) c_4(\omega) + \left(\hat{\boldsymbol{k}}^i \hat{\boldsymbol{k}}^j - \frac{1}{3} \delta^{ij} \right) c_5(\omega) \\ &+ \left(\hat{\boldsymbol{p}}^i \hat{\boldsymbol{k}}^j + \hat{\boldsymbol{k}}^i \hat{\boldsymbol{p}}^j - \frac{2}{3} \omega \delta^{ij} \right) c_6(\omega) + \left(\hat{\boldsymbol{p}}^i \hat{\boldsymbol{n}}^j + \hat{\boldsymbol{n}}^i \hat{\boldsymbol{p}}^j \right) c_7(\omega) + \left(\hat{\boldsymbol{k}}^i \hat{\boldsymbol{n}}^j + \hat{\boldsymbol{n}}^i \hat{\boldsymbol{k}}^j \right) c_8(\omega), \end{split}$$

P and CP invariance will impose constraints on these parameters, whose violation would imply P/CP violation.

$$b_{1p}(\omega) = b_{2p}(\omega) = b_{1k}(\omega) = b_{2k}(\omega) = c_1(\omega) = c_2(\omega) = c_7(\omega) = c_8(\omega) = 0, \quad \text{(from P invariance)}$$

$$b_{1m}(\omega) = b_{2m}(\omega), \quad m = p, k, n \quad \text{and} \quad c_i(\omega) = 0, \quad i = 1, 2, 3. \quad \text{(from CP invariance)}$$

Practically, these parameters determine the differential angular distribution of the decay chain, from which one can construct the asymmetric observables from the observed number of events at the detector:

$$\mathscr{A}(\mathcal{O}) = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} = \frac{3}{2} \langle \mathcal{O} \rangle, \qquad \qquad \langle \mathcal{O} \rangle \equiv \frac{1}{\mathcal{N}} \int \frac{d\Omega_{\hat{k}} d\Omega_{\hat{l}_{p}} d\Omega_{\hat{l}_{\bar{p}}}}{(4\pi)^{3}} \mathcal{O} \cdot \mathcal{W}$$

For J/ψ decay at BESIII/STCF, its decay amplitude can not be determined perturbatively, we therefore introduce the following form factors based on Lorentz invariance

Then only 5 non-vanishing asymmetric observables can be constructed from the differential angular distribution, based on which we define the following derived asymmetries

Parity violation

CP violation

$$A_{\rm PV}^{(1)} \simeq \frac{4\alpha}{3\mathcal{N}} E_c^2 d_J \left(4y_m \operatorname{Re}\left(G_1 G_2^*\right) + \left|G_1\right|^2 \right) \qquad \qquad A_{\rm PV}^{(2)} \simeq \frac{8\alpha\beta}{3\mathcal{N}} E_c^2 \operatorname{Re}\left(F_A G_1^*\right)$$

$$A_{\rm CPV}^{(1)} \simeq -\frac{4\alpha\beta}{3\mathcal{N}} E_c^3 \operatorname{Im}\left(H_T G_1^* + y_m H_T G_2^*\right) \qquad \qquad A_{\rm CPV}^{(2)} \simeq -\frac{8\alpha\bar{\alpha}}{9\mathcal{N}}\beta y_m E_c^3 \operatorname{Re}\left(H_T G_2^*\right)$$

$$G_1^B = F_V^B + H_\sigma^B, \quad G_2^B = G_1^B - \frac{(k_1 - k_2)^2}{4m_B^2} H_\sigma^B,$$

CPV tests from the α parameter of Λ with polarized beams?

Sheng Zeng, Yue Xu, Xiao-Rong Zhou, Jia-Jia Qin, Bo Zheng, 2306.15602 (CPC)

Then only 5 non-vanishing asymmetric observables can be constructed from the differential angular distribution, based on which we define the following derived asymmetries

Parity violation

CP violation

近物所惠州研究部

$$A_{\rm PV}^{(1)} \simeq \frac{4\alpha}{3\mathcal{N}} E_c^2 d_J \left(4y_m \operatorname{Re}\left(G_1 G_2^*\right) + \left|G_1\right|^2 \right) \qquad \qquad A_{\rm PV}^{(2)} \simeq \frac{8\alpha\beta}{3\mathcal{N}} E_c^2 \operatorname{Re}\left(F_A G_1^*\right)$$

$$A_{\rm CPV}^{(1)} \simeq -\frac{4\alpha\beta}{3\mathcal{N}} E_c^3 \operatorname{Im}\left(H_T G_1^* + y_m H_T G_2^*\right) \qquad \qquad A_{\rm CPV}^{(2)} \simeq -\frac{8\alpha\bar{\alpha}}{9\mathcal{N}}\beta y_m E_c^3 \operatorname{Re}\left(H_T G_2^*\right)$$

$$G_1^B = F_V^B + H_{\sigma}^B, \quad G_2^B = G_1^B - \frac{(k_1 - k_2)^2}{4m_B^2} H_{\sigma}^B,$$

<u>Q: How to get these form factors?</u>

杜勇 (交大李所)

Low energy precision probe to underlying unknown new paradigm/mechanism at the high-energy scale (*e.g.*, BESIII/STCF)

v_{EW} $u, d, c, s, b, g, \gamma, e, \mu, \tau, \nu_{e,\mu,\tau}$ Matching scale where inputs $G_F, \alpha_{\rm EM}, m_Z$ are precisely known $\log \frac{m_Z}{\Lambda_{\rm QCD}} \approx 4.5$ $\Lambda_{\text{QCD}} = n, p, \pi^{\pm,0}, K^{\pm,0}, \Lambda, \Sigma^{\pm,0}, \dots$ Experiment scale MeV = ${}^{A}N_{Z}$ Standard strategy: 1 RGE down to and 1. RGE down to and then matching at Λ_{QCD} 2. ME eva. e.g., χ PT (lattice/pheno det. of LEC)

 F_A determination:

$$\mathcal{M} = \epsilon_{\mu}^{J/\psi}(q)\bar{u}\left(k_{1}\right)\left[\gamma^{\mu}F_{V} + \gamma^{\mu}\gamma_{5}F_{A} + \frac{i}{2m_{B}}\sigma^{\mu\nu}q_{\nu}H_{\sigma} + \sigma^{\mu\nu}q_{\nu}\gamma_{5}H_{T}\right]v\left(k_{2}\right)$$

In the SM of particle physics, this parity-violating form factor F_A on the decay side comes from the weak currents.

 F_A determination:

 J/ψ produced at an energy $s, t \ll m_{W,Z}^2$, so effective 4-fermion operators can be utilized.

 F_A determination:

 J/ψ produced at an energy $s, t \ll m_{W,Z}^2$, so effective 4-fermion operators can be utilized.

杜勇 (交大李所)

F_A determination:

Z as an example:

$$\mathscr{L}_{Z} \supset -4\sqrt{2}G_{F} \cdot \sum_{q=u,d,s} \left[g_{V-A}^{q} g_{V+A}^{c} c_{1} \left(\bar{q}_{R} \gamma_{\mu} q_{R} \right) \left(\bar{c}_{L} \gamma_{\mu} c_{L} \right) + g_{V+A}^{q} g_{V-A}^{c} c_{2} \left(\bar{q}_{L} \gamma_{\mu} q_{L} \right) \left(\bar{c}_{R} \gamma_{\mu} c_{R} \right) \right]$$

 $c_{1,2}(m_Z) = 1$, but its running will mix with the following two octet operators from the anomalous dimension even though they are absent at $\mu = m_Z$:

$$c_8\left(\bar{q}_R\gamma_\mu T^A q_R\right)\left(\bar{c}_L\gamma_\mu T^A c_L\right), \qquad c_8'\left(\bar{q}_L\gamma_\mu T^A q_L\right)\left(\bar{c}_R\gamma_\mu T^A c_R\right)$$

$$16\pi^2 \frac{d}{d\ln\mu} \begin{pmatrix} c_1 \\ c_8 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{6g_s^2 C_F}{N_c} \\ -12g_s^2 & -6g_s^2 N_c + \frac{12g_s^2}{N_c} \end{pmatrix} \begin{pmatrix} c_1 \\ c_8 \end{pmatrix}$$

F_A determination:

Choose a basis to diagonalize the anomalous dimension and to disentangle the octet contribution:

$$\mathcal{O}_{ud+}^{LR} = \frac{1}{N_c} \left(\bar{d}_R \gamma_\mu d_R \right) \left(\bar{c}_L \gamma_\mu c_L \right) + 2 \left(\bar{d}_R \gamma_\mu T^A d_R \right) \left(\bar{c}_L \gamma_\mu T^A c_L \right) \qquad \mathcal{O}_{ud-}^{LR} = -\frac{4C_F}{N_c} \left(\bar{d}_R \gamma_\mu d_R \right) \left(\bar{c}_L \gamma_\mu c_L \right) + \frac{4}{N_c} \left(\bar{d}_R \gamma_\mu T^A d_R \right) \left(\bar{c}_L \gamma_\mu T^A c_L \right) \\ \mathcal{L}_Z \supset -4\sqrt{2} G_F \cdot \sum_{q=d,s} \left[\frac{g_{V-A}^q g_{V+A}^c}{N_c} C_{ud+}^{LR} \mathcal{O}_{ud+}^{LR} - \frac{g_{V-A}^q g_{V+A}^c}{2} C_{ud-}^{LR} \mathcal{O}_{ud-}^{LR} \right]$$

the anomalous dimension is then simple to solve

$$16\pi^2 \frac{d}{d\ln\mu} \left(\begin{array}{c} C_{ud+}^{LR} \\ C_{ud-}^{LR} \end{array} \right) = 16\pi^2 \frac{d}{d\ln\mu} \left(\begin{array}{c} \frac{6C_F}{b} \alpha_s & 0 \\ 0 & -\frac{3}{bN_c} \alpha_s \end{array} \right)$$

F_A determination:

For example, for Σ^0

$$F_A^{\Sigma^0} = \left(\frac{G_F g_V}{2\sqrt{2}}\right) \cdot D \cdot \left\{\frac{1}{3}s_w^2 \left(\mathscr{R}_Z - \tilde{\mathscr{R}}_Z\right) - \left|V_{cd}\right|^2 \mathscr{R}_W\right\}$$

without running, $\mathscr{R}_Z = \tilde{\mathscr{R}}_Z = 1$ and $\mathscr{R}_W = 1/N_c \approx 0.33$.

with running, $\mathscr{R}_Z\approx 1.07,\,\tilde{\mathscr{R}}_Z\approx 1.51$ and $\mathscr{R}_W\approx -$ 0.03.

F_A determination:

For example, for Σ^0

$$F_A^{\Sigma^0} = \left(\frac{G_F g_V}{2\sqrt{2}}\right) \cdot D \cdot \left\{\frac{1}{3}s_w^2 \left(\mathscr{R}_Z - \tilde{\mathscr{R}}_Z\right) - \left|V_{cd}\right|^2 \mathscr{R}_W\right\}$$

without running, $\mathscr{R}_Z = \tilde{\mathscr{R}}_Z = 1$ and $\mathscr{R}_W = 1/N_c \approx 0.33$.

with running, $\mathscr{R}_Z\approx 1.07,\,\tilde{\mathscr{R}}_Z\approx 1.51$ and $\mathscr{R}_W\approx -$ 0.03.

F_A^B Running?	$F_A^n \left(\times 10^{-6}\right)$	$F_A^p \left(\times 10^{-7}\right)$	$F_A^{\Sigma^+}$ (×10 ⁻⁷)	$F_A^{\Sigma^0}\left(imes 10^{-9} ight)$.	$F_A^{\Sigma^-}$ (×10 ⁻⁷)	$F_A^{\Xi^0}(imes 10^{-6})$	$F_A^{\Xi^-}$ (×10 ⁻⁶)	$F_A^{\Lambda}(imes 10^{-6})$
No	0.85	-13.2	-8.86	-61.8	7.62	-0.62	-1.14	-0.74
t	1.43	-8.17	-8.60	6.18	8.73	1.58	1.06	1.09
t+s	1.27	-9.29	-9.73	-125	7.24	1.42	0.91	0.94

F_A determination:

For example, for Σ^0

Weak mixing angle determination

$$F_A^{\Sigma^0} = \left(\frac{G_F g_V}{2\sqrt{2}}\right) \cdot D \cdot \left\{\frac{1}{3}s_w^2 \left(\mathscr{R}_Z - \tilde{\mathscr{R}}_Z\right) - \left|V_{cd}\right|^2 \mathscr{R}_W\right\}$$

without running, $\mathscr{R}_Z = \tilde{\mathscr{R}}_Z = 1$ and $\mathscr{R}_W = 1/N_c \approx 0.33$.

2nd row CKM unitary test

近物所惠州研究部

with running, $\mathscr{R}_Z\approx 1.07,\,\tilde{\mathscr{R}}_Z\approx 1.51$ and $\mathscr{R}_W\approx -$ 0.03.

F_A^B Running?	$F_A^n \left(\times 10^{-6}\right)$	$F_A^p \left(\times 10^{-7}\right)$	$F_A^{\Sigma^+}$ (×10 ⁻⁷)	$F_A^{\Sigma^0} \left(imes 10^{-9} ight) F_A^{\Sigma^0} \left(imes 10^{-9} ight)$	$F_A^{\Sigma^-}(\times 10^{-7})$	$F_A^{\Xi^0}(\times 10^{-6})$	$F_A^{\Xi^-}(imes 10^{-6})$	$F_A^{\Lambda}(imes 10^{-6})$
No	0.85	-13.2	-8.86	-61.8	7.62	-0.62	-1.14	-0.74
t	1.43	-8.17	-8.60	6.18	8.73	1.58	1.06	1.09
t+s	1.27	-9.29	-9.73	-125	7.24	1.42	0.91	0.94

 $G_{1,2}$ determination:

 $G_{1,2}$ determination:

$$\mathcal{M} = \epsilon_{\mu}^{J/\psi}(q)\bar{u}\left(k_{1}\right)\left[\gamma^{\mu}F_{V} + \gamma^{\mu}F_{F}F_{A} + \frac{i}{2m_{B}}\sigma^{\mu\nu}q_{\nu}H_{\sigma} + \sigma^{\mu\nu}q_{\nu}F_{T}\right]v\left(k_{2}\right)$$
Small P violating Small CP violating

 $G_{1,2}$ determination:

Recall $|G_E/G_M| = |G_2/G_1|$, G_1 can be determined from the branching ratios.

 H_T determination:

$$\mathcal{M} = \epsilon_{\mu}^{J/\psi}(q)\bar{u}\left(k_{1}\right)\left[\gamma^{\mu}F_{V} + \gamma^{\mu}\gamma_{5}F_{A} + \frac{i}{2m_{B}}\sigma^{\mu\nu}q_{\nu}H_{\sigma} + \sigma^{\mu\nu}q_{\nu}\gamma_{5}H_{T}\right]v\left(k_{2}\right)$$

To this end, we assume this is dominated by the EDM of B, whose Lagrangian is given by

$$\mathscr{L}_{B_{\rm EDM}} = -i\frac{d_B}{2}\bar{B}\sigma_{\mu\nu}\gamma_5 BF^{\mu\nu}$$

Matching the amplitudes leads to

$$H_T = \frac{e \cdot Q_C \cdot g_V \cdot d_B}{m_{J/\psi^2}}$$

Q: How to calculate? A: Quark model + NR QCD

H_T determination:

d_B	QM	Reduced Results	d_B	NR QCD & QM	Reduced Results
$d_p^{ m qEDM}$	$rac{1}{3}(4d_u-d_d)$		$d_p^{ m qCDM}$	$-rac{1}{3}\left(4Q_df_d-Q_uf_u ight)$	
$d_n^{ m qEDM}$	$rac{1}{3}(4d_d-d_u)$		d_p^{qCDM}	$-rac{1}{3}\left(4Q_uf_u-Q_df_d ight)$	
$d_{\Sigma^+}^{ m qEDM}$	$rac{1}{3}(4d_u-d_s)$	$-rac{1}{3}d_s$	$d_p^{ m qCDM}$	$-rac{1}{3}\left(4Q_uf_u-Q_sf_s ight)$	$-rac{1}{9}ef_s$
$d_{\Sigma^0}^{{\overline{ ext{q}}}{ m EDM}}$	$\frac{1}{3}(2d_u+2d_d-d_s)$	$-rac{1}{3}d_s$	$d_p^{ m qCDM}$	$-rac{1}{3}\left(2Q_uf_u+2Q_df_d-Q_sf_s ight)$	$-rac{1}{9}ef_s$
$d_{\Sigma^{-}}^{ m \overline{qEDM}}$	$rac{1}{3}(4d_d-d_s)$	$-rac{1}{3}d_s$	$d_p^{ m qCDM}$	$-rac{1}{3}\left(4Q_df_d-Q_sf_s ight)$	$-rac{1}{9}ef_s$
$d_{\Xi^0}^{ m \overline{qEDM}}$	$rac{1}{3}(4d_s-d_u)$	$rac{4}{3}d_s$	$d_p^{ m qCDM}$	$-rac{1}{3}\left(4Q_sf_s-Q_uf_u ight)$	$rac{4}{9} e f_s$
$d_{\Xi^{-}}^{ m \overline{qEDM}}$	$rac{1}{3}(4d_s-d_d)$	$rac{4}{3}d_s$	$d_p^{ m qCDM}$	$-rac{1}{3}\left(4Q_sf_s-Q_df_d ight)$	$rac{4}{9} e f_s$
$d_{\Lambda^0}^{\overline{ ext{qEDM}}}$	d_s	d_s	$d_p^{ m qCDM}$	$-Q_s f_s$	$rac{1}{3} e f_s$

d_J determination:

Recall it is related to the production of J/ψ only, and is thus the simplest one to compute from Z exchange to violate parity

$$d_J = \frac{\sqrt{2sG_F}}{32\pi\alpha_{\rm EM}} \cdot (3 - 8s_w^2)$$

Another weak mixing angle determination with a precision $A_{\rm PV}^{\,(1)}$

RGE improvement negligible at leading order due to $\alpha_{\rm EM}$ suppression.

Thanks to our BESIII colleagues for the great efforts and success!

Parameters	$\Sigma^+ \overline{\Sigma}^- [12]$	$\Sigma^- ar{\Sigma}^+$	$\Sigma^0 ar{\Sigma}^0 \left[13 ight]$	$\Lambda ar{\Lambda} [14]$	$par{p}$ [15]	$\Xi^0 \bar{\Xi}^0$ [16, 17]	$\Xi^{-}\bar{\Xi}^{+}$ [18]
$\sqrt{s}(\text{GeV})$	2.9000		$m_{J/\psi}$	$m_{J/\psi}$	3.0800	$m_{J/\psi}$	$m_{J/\psi}$
$lpha_B$	0.35 ± 0.23		-0.449 ± 0.022	0.4748 ± 0.0038		0.514 ± 0.016	0.586 ± 0.016
lpha	-0.982 ± 0.14	-0.068 ± 0.008		0.7519 ± 0.0043		-0.3750 ± 0.0038	-0.376 ± 0.008
$ar{lpha}$	-0.99 ± 0.04			0.7559 ± 0.0078		-0.3790 ± 0.0040	-0.371 ± 0.007
$\Delta\Phi(\mathrm{radian})$	1.3614 ± 0.4149	—	—	0.7521 ± 0.0066	—	1.168 ± 0.026	1.213 ± 0.049
$ G_E/G_M = \mathbf{R}$	0.85 ± 0.22		1	0.96 ± 0.14	0.47 ± 0.45	1	1
$ G_M $	(derived)		0.0071 ± 0.0009	(derived)	0.0347 ± 0.0018	0.0081 ± 0.0021	0.0114 ± 0.0010

P/CP violation	$A_{ m PV}^{(1)} (imes 10^{-3})$	$A_{ m PV}^{(2)}(imes 10^{-4})$	$A_{ m CPV}^{(1)}(imes 10^{-3})$	$A_{ m CPV}^{(2)}(imes 10^{-3})$	$\sqrt{\epsilon \cdot t} \cdot \delta (imes 10^{-4})_{ m BESIII}$	$\sqrt{\epsilon \cdot t} \cdot \delta (imes 10^{-5})_{ m STCF}$
Λ	3.14	5.02	11.9	-6.38	2.30	1.25
Σ^+	-2.15	8.13	9.50	1.33	3.06	1.66
Ξ^0	-1.11	-3.07	-10.6	-1.13	2.92	1.56
Ξ_	-1.03	-2.10	-11.5	-1.07	3.21	1.74

Alternatively using the LR asymmetry

Jinlin Fu, Hai-Bo Li, Jian-Peng Wang, Fu-Sheng Yu, Jianyu Zhang, 2307.04346 (PRD)

Precision measurement of the weak mixing angle using, for example, $A_{\rm PV}^{(1)}$

$$\frac{\delta s_w^2}{s_w^2} = a_1 \frac{\delta m_{J/\psi}}{m_{J/\psi}} \oplus a_2 \frac{\delta R}{R} \oplus a_3 \frac{\delta \alpha}{\alpha} \oplus a_4 \frac{\delta \Delta \Phi}{\Delta \Phi} \oplus a_5 \frac{\delta A_{PV}^{(1)}}{A_{PV}^{(1)}}$$

Baryons	a_1	$rac{\delta m_{J/\psi}}{m_{J/\psi}} \left(imes 10^{-6} ight)$	$a_2 (imes 10^{-2})$	$\frac{\delta R}{R}$	a_3	$rac{\delta lpha}{lpha} (imes 10^{-2})$	$a_4 (imes 10^{-2})$	$rac{\delta\Delta\Phi}{\Delta\Phi} \left(imes 10^{-2} ight)$	a 5	$rac{\sqrt{\epsilon}\delta A_{\mathrm{PV}}^{(1)}}{A_{\mathrm{PV}}^{(1)}} \left(imes 10^{-2} ight)$	$(\delta s_w^2)_{ m BESIII}$
Λ	2.76	1.94	45.5	0.15	1.61	0.34	0.67	0.88	1.61	7.32	0.0319
Σ^+	3.20	1.94	7.72×10^{-2}	0.26	1.60	14.3	110	30.5	1.60	14.2	0.2701
Ξ^0	3.14	1.94	6.59	—	1.60	1.46	5.59	2.23	1.60	26.3	0.1004
Ξ^-	3.20	1.94	1.69		1.61	2.85	11.5	4.04	1.61	31.2	0.1215

杜勇 (交大李所)

Results

Detector efficiency on the determination of $\sin \theta_W$

 $\epsilon = 1$

 $\epsilon = 0.4$

A factor of $1.5 \simeq 1/\sqrt{\epsilon}$ increase in the uncertainty of $\sin \theta_W!$

Special thanks to Prof. ShuangShi Fang for this information!

Results

杜勇

(交大李所)

Using LR asymmetry with 80% polarized beams at STCF, the relative uncertainty was found at the per mille level (comparable with LEP/LHC and the cutting-edge MOLLER) with just one-year data collection!

Bondar, Grabovsky, Reznichenko, Rudenko, Vorbyev, 1912.09760 (JHEP)

Jinlin Fu, Hai-Bo Li, Jian-Peng Wang, Fu-Sheng Yu, Jianyu Zhang, 2307.04346 (PRD)

Summary

- * We briefly present the formalism for extracting P and CP violation through J/ψ production and decay.
- * The form factors for J/ψ production and decay are derived, with the large logs resummed using the RGE. Corrections to the axial-vector form factors are large (even differ by a factor of 10), which in turn affect both the magnitudes and the signs of the predicted parity-violating asymmetry.
- ✤ P- and CP-violating asymmetries are predicted at $O(10^{-4} \sim 10^{-3})$, measurable already at BESIII with significant improvement can be achieved at STCF even with 20% detector efficiency.
- A measurement of the weak mixing angle is feasible, improving the precision in baryon decay parameters and the detector efficiency will be important.
- The other octet baryons? We are looking forward to more results from our BESIII colleagues.