

第一届超子物理研讨会

广东惠州 2024/4/14

原子核中的团簇结构及Λ超子的杂质效应

薛怀通 导师:周先荣 华东师范大学

▶引言

▶理论框架

H. Tamura, Prog. Theor. Exp. Phys. 1, 02B012 (2012).

单∆超核实验数据不仅包括基态分离能还包括低激发能谱

H. Tamura, Prog. Theor. Exp. Phys. 2012. A. Gal, et. al., Rev. Mod. Phys., 2016

華東师苑大學 EAST CHINA NORMAL UNIVERSITY

国际奇异核大实验装置

華東师苑大學 EAST CHINA NORMAL UNIVERSITY

□ 协变密度泛函(CDFT)

H, Shen, PTP 2006; Y Tanimura, PRC 2012;
B.N.LU, PRC 2014; T.-T. Sun, PRC 2016;
M, Yao, PRC 2017; J. N. HU, PRC 2018;
Y. T. Rong, PLB 2020; S. Y. Ding, PRC 2022.....

Brueckner-Hartree-Fock (BHF)

J. Cugnon, PRC 2000; E. Khan, PRC 2015 H.-J. Schulze, PRC 2013.....

Beyond-mean-field approach

H. Mei, PRC 2015; J.-W. Cui, PRC 2017; X. Y. Wu, PRC 2017.....

Ab initio methods

H. Nemura et al, Phys. Rev. Lett. 89, 142504 (2002).E. Hiyama, Prog. Part. Nucl. Phys. 2009Roland Wirth et al, Phys. Rev. Lett. 113, 192502 (2014).....

Skyrme-Hartree-Fock (SHF)

X-R.Zhou, PRC 2007; H-J. Schulze, PRC 2014;
Ji-Wei Cui, PRC 2015; W. Y. Li PRC 2018;
J. Guo, PRC 2021; Y. Zhang, PRC 2021;
H. T. Xue, PRC 2022; H. T. Xue, PRC 2024.....

Given Setup Setup

Hiyama, PRC 2002; Hiyama, PRL 2010.....

Cluster model

- E. Hiyama, PRC 2002;
- E. Hiyama, Prog. Part. Nucl. Phys. 2009;
- Y. Kanada-En'yo, Phys. Rev. Lett.1998;
- T. Suhara, Phys. Rev. Lett. 2014.....

SHF在超核中的应用

華東師苑大學 EAST CHINA NORMAL UNIVERSITY

引言-原子核中的团簇结构

众所周知,¹²C是一种典型的存在多种内在结构并相 互竞争的原子核,包括壳结构、三角形3α团簇构和 线性3α结构。因此,长期以来一直受到实验和理论 研究的重视。

T. Otsuka, Nature Commu. 13, 2234 (2022).

基态多呈现为壳结构

z [fm]

y [fm] T. Suhara, Phys. Rev. Lett. 112 (2014) 062501.

-2

-4

0

2

EAST CHINA NORMAL UNIVERSITY

而04则具有线性的3α结构。

Y. Kanada-En'yo, Phys. Rev. Lett. 81 (1998) 5291; Progr. Theoret. Phys. 117 (2007) 655.

Hoyle 态呈现出三角 形的结构。

0式则具有与Hoyle 态类 似,但更高的节点结构

引言-原子核中的团簇结构

AMD

Y. Kanada-En'yo, Phys. Rev. Lett. 81 (1998) 5291; Progr. Theoret. Phys. 117 (2007) 655.

GCM-THSR

B. Zhou, A. Tohsaki, H. Horiuchi, and Z. Ren, Phys. Rev. C 94, 044319 (2016).

ab initio lattice calculations

E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and U.-G. Meißner, Phys. Rev. Lett. 109, 252501 (2012).

covariant DFT

J.-P. Ebran, E. Khan, T. Niksic, D. Vretenar, nature, 487, 341(2012)

P. W. Zhao, N. Itagaki, and J. Meng, Phys. Rev. Lett. 115, 022501 (2015).

J. M. Yao, N. Itagaki, and J. Meng, Phys. Rev. C 90, 054307 (2014).

SHF+AMP+GCM

J.-W. Cui, X.-R. Zhou, and H.-J. Schulze, Phys. Rev. C 91, 054306 (2015).

图片取自 http://lambda.phys.tohoku.ac.jp/strangeness/index-j.html 研究动机-A超核中的团簇结构

D AQCM

团簇中核子自旋轨道耦合会驱使团簇 破坏;1s态超子会加剧这一现象。

□ SHF

平均场给出的结果与AQCM一致

'Вe

-5 -4 -3 -2 -1 0 1 2 3 4 -5 -4 -3 -2 -1 0 1 2 3 4 5

Plot by H.T. Xue

 $\rho(\text{fm}^{-3})$

0.11 0.10

 $\begin{array}{c} 0.09\\ 0.08\\ 0.07\\ 0.06\\ 0.05\\ 0.04\\ 0.03 \end{array}$

0.02

□ SHF+AMP+GCM

但对于 8 Be、 $^{9}_{\Lambda}$ Be, 团簇结构未消失,与AQCM结果一致

Wen-Ying Li, Ji-Wei Cui, and Xian-Rong Zhou, Phys. Rev. C **97**, 034302 (2018)

N. Itagaki and E. Hiyama, Phys. Rev. C 107, 024309 (2023).

AQCM的研究结果表明核子的自旋轨道耦合会破坏团簇结构,1s态超子更会加剧这一现象。 但是对于⁸Be和 $^{9}_{\Lambda}Be$,该效应不明显。那么在¹²C和 $^{13}_{\Lambda}C$ 中会怎样?

□SHF超核平均场: SHF 模型 + Λ N 相互作用(Skyrme型) **□超核的总能量:** $E = \int d^3 r \epsilon(r),$

□ 总能量密度包括核子部分、超子部分:

$$\varepsilon = \varepsilon_N \left[\rho_n, \rho_p, \tau_n, \tau_p, \boldsymbol{J}_n, \boldsymbol{J}_p \right] + \varepsilon_\Lambda \left[\rho_n, \rho_p, \rho_\Lambda, \tau_\Lambda \right]$$

□密度、动能密度、流密度通过单粒子波函数计算:

$$\left[\rho_q, \ \tau_q, \ \boldsymbol{J}_q\right] = \sum_{i=1}^{N_q} n_q^i \left[|\phi_q^i|^2, \ |\nabla \phi_q^i|^2, \ \phi_q^{i*} (\nabla \phi_q^i \times \boldsymbol{\sigma})/i \right]$$

X.-R. Zhou, H.-J. Schulze et al, Phys. Rev. C 76, 034312 (2007).

Skyrme型A N相互作用(通过唯像地拟合实验数据确定参数)
□ A超子的能量密度泛函:

$$\epsilon_{\Lambda} = \frac{\tau_{\Lambda}}{2m_{\Lambda}} + a_{0}\rho_{\Lambda}\rho_{N} + a_{3}^{*}\rho_{\Lambda}\rho_{N}^{1+\alpha} + a_{3}^{'}\rho_{\Lambda}(\rho_{N}^{2} + 2\rho_{n}\rho_{p}) + a_{1}(\rho_{\Lambda}\tau_{N} + \rho_{N}\tau_{\Lambda}) - a_{2}(\rho_{\Lambda}\Delta\rho_{N} + \rho_{N}\Delta\rho_{\Lambda})/2 + a_{4}(\rho_{\Lambda}\nabla \cdot J_{N} + \rho_{N}\nabla \cdot J_{\Lambda}),$$

 $\Box \Lambda$ 超子所处平均场: $V_{N \to \Lambda} = a_0 \rho_N + a_1 \tau_N - a_2 \Delta \rho_N + a_3 \rho_N^{\alpha} - a_4 \nabla \cdot J_N$

□ 核子平均场: $V_{\Lambda \to N} = a_0 \rho_\Lambda + a_1 \tau_\Lambda - a_2 \Delta \rho_\Lambda + a_3 \alpha \rho_\Lambda \rho_N^{\alpha - 1} - a_4 \nabla \cdot \boldsymbol{J}_\Lambda.$

H.-J. Schulze, E. Hiyama, Phys. Rev. C 90, 047301 (2014).

对力与BCS近似

□ 核子对力:
$$V_q(\mathbf{r}_1, \mathbf{r}_2) = -V_0^{(q)} \delta(\mathbf{r}_1 - \mathbf{r}_2)$$

 $V_q(\mathbf{r}_1, \mathbf{r}_2) = -V_q' \left[1 - \frac{\rho_N((\mathbf{r}_1 + \mathbf{r}_2)/2)}{0.16 \text{ fm}^{-3}} \right] \delta(\mathbf{r}_1 - \mathbf{r}_2)$
□ BCS能隙方程: $2(\varepsilon_\mu - \lambda) v_\mu - G\left(\sum_v u_v v_\mu\right) (u_\mu^2 - v_u^2) / u_\mu = 0$
 $\int v_\mu^2 + \mu_\mu^2 = 1 \quad \varepsilon_\mu = -Gv_\mu^2$
 $\mu_\mu^2 = \frac{1}{2} [1 + \frac{\varepsilon_\mu' - \lambda}{(\varepsilon_\mu' - \lambda)^2 + \Delta}], \quad v_\mu^2 = \frac{1}{2} [1 - \frac{\varepsilon_\mu' - \lambda}{(\varepsilon_\mu' - \lambda)^2 + \Delta}].$

M. Bender et al., Eur. Phys. J. A 8, 59 (2000).

角动量投影+生成坐标法

β为集体坐标,这里是形变参数

对β求和,考虑形状涨落

口投影后的超子波函数:

 $|JMK\beta\rangle = \hat{P}^{J}_{MK}|\Phi^{(N\Lambda)}(\beta)\rangle.$

内本 构造波函数空间:

口在该空间展开波函数:

 $|JMK_1\beta_1\rangle, |JMK_2\beta_1\rangle, |JMK_3\beta_1\rangle...$ $|JMK_1\beta_2\rangle, |JMK_2\beta_2\rangle, |JMK_3\beta_2\rangle...$ (MeV) 30 20 ^{to} $|JMK_1\beta_3\rangle, |JMK_2\beta_3\rangle, |JMK_3\beta_3\rangle...$ J=2 10 J=4 J=6 -2 2 -1 0 3 4 5 6 $|i, JM\rangle = \sum_{\beta K} f_{\beta K}^{i, JM} |JMK\beta\rangle,$ J. M. Yao et al., Phys. Rev. C 90, 054307 (2014) 对K求和,意味着将不同K的成分混合起来, 轴对称偶偶核一般可取为0。

角动量投影+生成坐标法

□矩阵元:

□粒子数修正:

with corr

□求解Hill-Wheeler得到本征值:

$$\begin{split} &\sum_{\beta K} (H^{JM}_{\beta K,\beta' K'} - E^{JM}_{n} N^{JM}_{\beta K,\beta' K'}) f^{i,JM}_{\beta' K'} = 0 \\ &H^{JM}_{\beta K,\beta' K'} = \langle JMK\beta | \hat{H}' | JMK'\beta' \rangle, \\ &N^{JM}_{\beta K,\beta' K'} = \langle JMK\beta | \hat{N} | JMK'\beta' \rangle, \\ &\hat{H}' = \hat{H} - \lambda_p (\hat{N}_p - Z) - \lambda_n (\hat{N}_n - N) \end{split} \qquad \begin{aligned} & \overset{+180}{\overset{-1$$

N

17

角动量投影+生成坐标法

□投影位能面:

$$E_{JK}(\beta) = \frac{H_{KK}^{I}(\beta,\beta)}{N_{KK}^{I}(\beta,\beta)}.$$

□ 集体态波函数:
 $g_{\alpha}^{I}(\beta) = \sum_{\beta'} [\mathcal{R}^{\frac{1}{2}}]^{k}(\beta,\beta')F_{\alpha}^{I}(\beta'), [\mathcal{R}^{\frac{1}{2}}]^{k}(\beta,\beta') = \sum_{k} \sqrt{n_{k}}w_{k}(\beta)w_{k}^{*}(\beta')$
□ 平均形变:
 $\bar{\beta}_{\alpha}^{I} = \sum_{\beta} |g_{\alpha}^{I}(\beta)|^{2}\beta$
□ 均方根半径:
 $R_{ms}^{I\alpha} = \sqrt{\sum_{\beta} F_{\alpha}^{I}(\beta')^{*}F_{\alpha}^{I}(\beta)\langle\Phi^{(N\Lambda)}(\beta')|r^{2}\hat{P}_{KK}^{I}|\Phi^{(N\Lambda)}(\beta)\rangle}$
□ 电四极跃迁几率:
 $B(E2, J_{\alpha}^{+} \to J_{\alpha'}^{+}) = \frac{1}{2J+1} |\langle J_{\alpha'}^{+}||\hat{Q}_{2}||J_{\alpha}^{+}\rangle|^{2}$
□ 电单极跃迁强度:
 $\rho^{2}(E0, J_{\alpha'}^{+} \to J_{\alpha}^{+}) = \left|\frac{\langle J_{\alpha'}^{+}|\hat{T}(E0)|J_{\alpha}^{+}\rangle}{eR_{c}^{2}}\right|^{2}$

∧超核的投影能量、 激发能

转动对称性的恢复对原子核、 超核的结合能有增益。

EAST CHINA NORMAL UNIVERSITY

- 1s态超子使超核形变略微减 小。
- 原子核理论激发能、超核基 态能量与实验值符合地不错。

 \square 对于 Λ^{13} C,基态能量与实 验值符合的很好

A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88, 035004 (2016).

团簇结构及1s态A超子的杂质效应

族结构及1s态A超于的采	贞父义 [2] 而且两个	团簇结构消失。
本工作未发现Hoyle态中的3 α 结构,可 能需要考虑八极形变。 $\begin{pmatrix} 4 \\ 2 \end{bmatrix}$ $\begin{pmatrix} 12 \\ 2 \end{bmatrix}$ $\begin{pmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{pmatrix} 0 \\ 2 \end{bmatrix}$ $\begin{pmatrix} 0 \\ 2 \end{bmatrix}$ $\begin{pmatrix} 0 \\ 3 \end{bmatrix}$ $\begin{pmatrix} 0 \\ 3 \end{bmatrix}$		
$ \widehat{\mathbf{H}} = \underbrace{ \begin{bmatrix} -4 \\ -0.17 \\ -6 \end{bmatrix} }_{-0.17} \underbrace{ \begin{bmatrix} -0 \\ -0.19 $	p(IIII) 0.18 0.15 0.12 0.09 J_i	$ \begin{array}{c c} & & & & 13\\ \hline & & & & & & \\ \hline & \rightarrow J_f & B(E2) & & & & & \\ \hline & & & & & & & \\ \hline & & & &$
$\overset{N}{\underset{2}{\overset{0}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$	$1/2_4^+$ $1/2_5^+$ 0.06 0.03 0.00 2_1^+	$ \rightarrow 0^+_1 11.5 \ (7.6) \begin{array}{c} 3/2^+_1 \rightarrow 1/2^+_1 & 10.7 & 0.93 \\ 5/2^+_1 \rightarrow 1/2^+_1 & 10.7 & 0.93 \end{array} $
$\begin{array}{c} -4 \\ -6 \\ -6 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -6 \\ -4 \\ -2 \\ 0 \\ -4 \\ -2 \\ -6 \\ -4 \\ -2 \\ -2 \\ -0 \\ -4 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	$\begin{array}{c} 3.19 \\ 2 \\ 4 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ 4 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -4 \\ -6 \\ -4 \\ -2 \\ 0 \\ -4 \\ -2 \\ -2 \\ -2 \\ -4 \\ -2 \\ -2 \\ -2$	$ \rightarrow 2_1^+ \qquad 17.8 \qquad \begin{array}{ccc} 7/2_1^+ \rightarrow 3/2_1^+ & 15.1 & 0.85 \\ 9/2_1^+ \rightarrow 5/2_1^+ & 16.8 & 0.94 \end{array} $
$E [MeV] R_c[fm] \bar{\beta}$ $\frac{^{13}C}{E [MeV] R_c[fm] \bar{\beta}}$	THSR: 3.7/4.2	□ Hoyle态及0 ⁺ ₃ 的3α团簇结构未发
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OCM: 4.7/5.6	现,发现了04 的链状3团簇结构。
0_3^+ 8.84 2.60 0.82 $1/2_3^+$ -2.53 2.57 0.62 0_4^+ 13.17 3.32 2.72 $1/2_4^+$ 4.19 3.19 2.34 0_5^+ 15.17 2.86 1.59 $1/2_5^+$ 5.07 2.92 1.80	定性解释: 核子自旋轨道耦合使半径减小	□ 半径、电四极跃迁都体现1s态Λ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AQCM考虑核子自旋轨道耦合, 团簇间距较OCM要小0.5~1fm。	超子对这些激发态的收缩效应。
		21

1s态A的加入使得中心密度增大

 $^{12}C \otimes \Lambda s$ 组态的超核态

 $^{12}C \otimes \Lambda p$ 组态的超核态

- 未发现1p态超子形成的团 簇结构。
- 各负宇称带基于不同的激
 发核心形成。

H.T. Xue, et al., Phys. Rev. C 109, 024324 (2024).

- □ ¹²C的0⁺_{1,2,3}态的激发能与实验值符合的很好, 0⁺_{4,5}的激发能与实验值相差不大; 没有找到0⁺_{2,3} 态中的团簇结构, 发现了0⁺4链状3α结构; 对于 ¹³_AC, 基态能量与实验值符合的很好, 1s态∧的收缩 效应导致均方根半径、电四极跃迁几率减小, 并破坏1/2⁺₄的团簇结构; 负宇称能级1/2⁻ 、 3/2⁻ 与实验激发能符合很好, 但顺序相反。
- ▶ 需要考虑三个1p轨道混合, 期望可以改善1/2⁻ 、 3/2⁻ 顺序相反的问题。

 由于Hoyle态中的3α团簇以三角形分布,因此目前只考虑轴对称形变是不够的,需要将八极形变 的参考态引入以进一步研究它的团簇结构;八极形变引入会带来负宇称态,需要进一步考虑宇称 投影;

谢谢! 敬请批评指正

