

Studies on Weak Radiative Hyperon Decays at BESIII

贾泽坤

University of Science and Technology of China

Workshop on Hyperon Physics, 2024.04.14, Huizhou

Physics Motivation Overview

- Decay of ground hyperons:
 - Weak hadronic decay ($\Lambda \rightarrow p\pi^-$)
 - Semi-leptonic decay $(\Lambda \rightarrow pe\nu_e)$
 - Weak radiative decay (WRHD) $(\Lambda \rightarrow n\gamma)$

- Weak radiative decays
 - flavor changing neutral current (FCNC) process ($s \rightarrow d\gamma$ transition)
 - Significant non-perturbative QCD effects
 - A symphony of strong, weak and EM interaction

j.ppnp.2016.07.001

Physics Motivation Effective Theory Point-of-view

• Effective Lagrangian

$$\mathcal{L} = \frac{eG_F}{2} \bar{B}_f \left(a^{\mathbf{PC}} + b^{\mathbf{PV}} \gamma_5 \right) \sigma^{\mu\nu} B_i F_{\mu\nu}$$

• Decay width & decay asymmetry $\Gamma = \frac{e^2 G_F^2}{\pi} \left(|a|^2 + |b|^2 \right) \cdot \left| \vec{k} \right|^3$ $\alpha_{\gamma} = \frac{2\text{Re}(ab^*)}{|a|^2 + |b|^2}$

- Reveal common hyperon properties
 - Decay mechanism
 - EM structure

Physics Motivation Effective Theory Point-of-view

- Unique contribution from "direct photon emission"
 - PV amplitude from direct photon emission:

$$\begin{split} \operatorname{Re}(b)_{\Xi^{0}\Sigma^{0}} &= \sqrt{3}\operatorname{Re}(b)_{\Xi^{0}\Lambda}, \ \operatorname{Re}(b)_{\Lambda n} = -\operatorname{Re}(b)_{\Xi^{0}\Lambda} \\ \operatorname{Re}(b)_{\Sigma^{0}n} &= -\sqrt{3}\operatorname{Re}(b)_{\Xi^{0}\Lambda}, \ \operatorname{Re}(b)_{\Sigma^{+}p} = \operatorname{Re}(b)_{\Xi^{-}\Sigma^{-}=0} \end{split}$$

- Need experiment input from $\Xi^0 \to \Lambda(\Sigma^0)\gamma$ or $\Lambda \to n\gamma$ process
- $\circ\,$ Two quark exchange suppressed $\Xi^-\to\Sigma^-\gamma$ and $\Omega^-\to\Xi^-\gamma$ process
 - Much smaller decay width
 - More sensitive to effective models?

Physics Motivation Physics Beyond the Scope of QCD Phenomenon

- \circ New physics in $B_i \to B_f l^+ l^-$ decay
 - Smoke screen of new physics in $\varSigma^+ \to p \mu^+ \mu^-$ decay (<u>PhysRevLett.94.021801</u>)
 - Experiment results of WRHDs provide SM expectations on such decays narrowing the range for NP! (JHEP10(2018)040, JHEP02(2022)178)
- CP Violation in WRHDs
 - CPV in heavy flavor radiative decays may be significantly enhanced by NP
 - Extensive experimental studies on D and B meson decays
 - Limited studies in baryon sector
 - WRHDs serve as a probe for CPV
 - PhysRevLett.109.171801, JHEP01(2013)027, JHEP04(2017)027, JHEP08(2017)09
 - PhysRevLett.70.2529, PhysRevLett.109.191801, PhysRevLett.118.051801, PhysRevLett.119.191802
 - PhysRevD.51.2271, PhysRevD.65.074038, PhysRevD.105.116001, Commun.Theor.Phys.19.4
 - <u>PhysRevD.105.L051104</u>

Physics Motivation Experiment Research Status

Fixed target experiments govern the results in 1965-2010 (~23 papers from over 5 experiments)

$\Sigma^+ o p\gamma$				
时间	实验名或实验方案	分支比(×10 ⁻³)	$lpha_{\gamma}$	
2023	BESIII	$0.996 \pm 0.021 \pm 0.018$	$-0.652 {\pm} 0.056 {\pm} 0.020$	
1995	E761	1.20 ± 0.08	-	
1992	SPEC	-	-0.720 ± 0.086	
1989	CNTR	1.45 ± 0.31	-	
1987	CNTR	1.23 ± 0.20	-	
1985	CNTR	1.27 ± 0.18	-	
1980	HBC	1.09 ± 0.20	-0.53 ± 0.36	
1969	HBC	1.1 ± 0.2	-	
1969	HBC	1.42 ± 0.26	-1.03 ± 0.52	
1965	HBC	1.9 ± 0.4	-	
$\Lambda \to n\gamma$				
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}	
2022	BESIII	$0.846 \pm 0.039 \pm 0.052$	$-0.160 \pm 0.101 \pm 0.046$	
1994	E761	1.75 ± 0.15		
1992	SPEC	1.78 ± 0.24	-	

n			$\Xi^0\to\Lambda\gamma$	
	时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}
	2010	NA48	-	-0.704 ± 0.064
	2004	NA48	1.17 ± 0.09	-0.78 ± 0.18
_	2000	NA48	1.91 ± 0.34	-
	1990	SPEC	1.06 ± 0.18	-0.43 ± 0.44
			$\Xi^0 \to \Sigma^0 \gamma$	
)	时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}
	2010	NA48	-	-0.729 ± 0.076
	2001	KTEV	3.34 ± 0.09	-0.63 ± 0.09
	2000	NA48	3.16 ± 0.76	-
	1989	SPEC	3.56 ± 0.42	0.20 ± 0.32
			$\Xi^-\to \Sigma^-\gamma$	
	时间	实验名或实验方案	分支比(×10 ⁻³)	$lpha_{oldsymbol{\gamma}}$
	1994	E761	0.122 ± 0.023	-
=	1987	SPEC	0.227 ± 0.102	-
_			$\Omega^-\to \Xi^-\gamma$	
	时间	实验名或实验方案	分支比(×10 ⁻³)	$lpha_{\gamma}$
)	1994	E761	< 0.46	-
	1984	SPEC	< 0.22	-
_	1979	SPEC	< 0.31	-

Research Methods Absolute BF Measurement

Double-tag method for BF measurement

- Well constrained kinematics
- Absolute BF measurement
- Canceled ST selection syst. uncertainty

DT reconstruction

Research Methods Decay Parameter Measurement

Uniquely pair-produced hyperons from ψ decay • e.g. $e^+e^- \rightarrow J/\psi \rightarrow \Xi^0(\rightarrow \Lambda\gamma)\overline{\Xi}^0(\rightarrow \overline{\Lambda}\pi^0) \quad \Lambda \rightarrow p\pi^-, \overline{\Lambda} \rightarrow \overline{p}\pi^+$

Decay amplitude (Helicity):

 $\mathcal{W} = \sum_{\mu,\nu=0}^{3} \sum_{\mu'=0}^{3} \sum_{\nu'=0}^{3} C_{\mu\nu} a_{\mu\mu'}^{\Xi} a_{\mu'0}^{\Lambda} a_{\nu\nu'}^{\overline{\Xi}} a_{\nu'0}^{\overline{\Lambda}}$

Helicity angles: $\theta_{\Xi}, \theta_{\Lambda}, \phi_{\Lambda}, \theta_{\overline{\Lambda}}, \phi_{\overline{\Lambda}}, \theta_{p}, \phi_{p}, \theta_{\overline{p}}, \phi_{\overline{p}}$ Decay parameters: $\alpha_{J/\psi}, \Delta \Phi_{J/\psi}, \alpha_{\Xi}, \Delta \Phi_{\Xi}, \alpha_{\overline{\Xi}}, \Delta \Phi_{\overline{\Xi}}, \alpha_{\Lambda}, \alpha_{\overline{\Lambda}}$

Research Methods Decay Parameter Measurement

C: polarization and spin correlation matrix *a*: decay matrices of hyperons of $B\overline{B}$

$$\begin{split} C_{00} &= 2(1 + \alpha_{\Psi} \cos^{2} \theta_{\Xi^{0}}), & C_{20} = -C_{02}, \\ C_{02} &= 2\sqrt{1 - \alpha_{\Psi}^{2}} \sin \theta_{\Xi^{0}} \cos \theta_{\Xi^{0}} \sin(\Delta \Phi_{\Psi}), & C_{22} = \alpha_{\Psi} C_{11}, \\ C_{11} &= 2\sin^{2} \theta_{\Xi^{0}}, & C_{31} = -C_{13}, \\ C_{13} &= 2\sqrt{1 - \alpha_{\Psi}^{2}} \sin \theta_{\Xi^{0}} \cos \theta_{\Xi^{0}} \cos(\Delta \Phi_{\Psi}), & C_{33} = -2(\alpha_{\Psi} + \cos^{2} \theta_{\Xi^{0}}), \end{split}$$

BESIII observation of non-zero $\Delta \Phi_{\Psi}$

• Transverse polarization and spin-correlation between hyperon pairs (<u>Nat. Phys. 15, 631–634 (2019</u>)

衰变道	$lpha_{\psi}$	$\Delta \Phi_\psi$	最大极化率(%)
$J/\psi ightarrow \Lambda ar{\Lambda}$	$0.475 \pm 0.002 \pm 0.003$	$0.752 \pm 0.004 \pm 0.007$	24.7
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	$-0.508 \pm 0.006 \pm 0.004$	$-0.270 \pm 0.012 \pm 0.009$	16.4
$J/\psi \to \Xi^- \bar{\Xi}^+$	$0.586 \pm 0.012 \pm 0.010$	$1.213 \pm 0.046 \pm 0.016$	30.1
$J/\psi \to \Xi^0 \bar{\Xi}^0$	$0.514 \pm 0.006 \pm 0.015$	$1.168 \pm 0.019 \pm 0.018$	32.1

$$\beta = \sqrt{1 - \alpha^2} \sin(\Delta \Phi), \gamma = \sqrt{1 - \alpha^2} \cos(\Delta \Phi)$$
• For $\frac{1^+}{2} \rightarrow \frac{1^+}{2} + \mathbf{0}^- \operatorname{decay} (\mathbf{\Xi}^0 \rightarrow \Lambda \mathbf{\pi}^0)$

$$a_{h}^{\Xi} = \begin{pmatrix} 1 & 0 & 0 & \alpha \\ \alpha \cos \phi \sin \theta & \gamma \cos \theta \cos \phi - \beta \sin \phi & -\beta \cos \theta \cos \phi - \gamma \sin \phi & \sin \theta \cos \phi \\ \alpha \sin \theta \sin \phi & \beta \cos \phi + \gamma \cos \theta \sin \phi & \gamma \cos \phi - \beta \cos \theta \sin \phi & \sin \theta \sin \phi \\ \alpha \cos \theta & -\gamma \sin \theta & \beta \sin \theta & \cos \theta \end{pmatrix}$$
• For $\frac{1^+}{2} \rightarrow \frac{1^+}{2} + \mathbf{1}^- \operatorname{decay} (\mathbf{\Xi}^0 \rightarrow \Lambda \gamma)$

$$a_{r}^{\Xi} = \begin{pmatrix} 1 & 0 & 0 & -\alpha \\ \alpha \cos \phi \sin \theta & 0 & 0 & -\sin \theta \cos \phi \\ \alpha \sin \theta \sin \phi & 0 & 0 & -\sin \theta \sin \phi \\ \alpha \cos \theta & 0 & 0 & -\cos \theta \end{pmatrix}$$

Decay parameters fitted from amplitude

 Sensitivity multiplicated by ~10 times (<u>Chin. Phys.</u> <u>C 47, 093103 (2023)</u>)

$\Lambda \rightarrow n\gamma$ Analysis Analysis Method Highlights

Kinematic fit with missing particle/energy

- Hypothesis: $\overline{\Lambda}(\rightarrow \overline{p}\pi^+)\gamma + n$ (missing particle)
- Hypothesis: $\Lambda(\rightarrow p\pi^{-})\gamma + \overline{n}$ (missing energy)
- Superiority of well-constrained kinematics

MVA-based fake photon suppression

 $\circ~ arepsilon_{bkg}=3.1\%$, $arepsilon_{sig}=50.1\%$

Λ → *nγ* Analysis Analysis Results

$\Sigma^+ \rightarrow p\gamma$ Analysis Analysis Method Highlights

Utilize joint decay length to discriminate short-lived baryons from signals

$\Sigma^+ \rightarrow p\gamma$ Analysis Analysis Results

Significantly improved accuracy
BF: 78%
α_γ: 34%

Σ⁺ → **pγ** Analysis CP Asymmetry Test

Potential *CP* asymmetry sources:

• Loop diagram contribution:

 Other terms - strong phase dependent on QCD models:

$$\begin{split} S &= \sum_{j} S_{j} e^{i(\xi_{j}^{S} + \frac{\delta_{2I}^{S}}{\delta_{2I}})} \\ P &= \sum_{j} P_{j} e^{i(\xi_{j}^{P} + \frac{\delta_{2I}^{P}}{\delta_{2I}})} \end{split}$$

First Measurement of CP asymmetry of $\Sigma^+ \rightarrow p\gamma$ decay

- Statistical uncertainty dominated
- Need more statistics to reach the precision of theory predictions

$$\Delta_{CP} = \frac{\mathcal{B}_{+} - \mathcal{B}_{-}}{\mathcal{B}_{+} + \mathcal{B}_{-}} = 0.006 \pm 0.011_{\text{stat.}} \pm 0.004_{\text{syst.}},$$
$$A_{CP} = \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}} = 0.095 \pm 0.087_{\text{stat.}} \pm 0.018_{\text{syst.}}.$$

	Δ_{CP}	A _{CP}
PhysRevD.51.2271	$10^{-5} - 10^{-4}$	
Commun. Theor. Phys. 19.475		$10^{-5} - 10^{-4}$
arxiv:2312.17568	2×10^{-5}	

Summary & Prospects

Since 2022, BESIII experiment has provided fresh results to the field

Inconsistency between exp. results and theory predictions still exist

More results with higher precision expected

$\Lambda o n \gamma$ (Phys.Rev.Lett. 129 (2022))			$\Xi^{0} ightarrow \Lambda \gamma ~({ t BAM-760})$		
	BF (× 10 ⁻³)	$lpha_\gamma$	Experiment	BF (×10 ⁻³)	$lpha_{\gamma}$
2022, BESIII	0.846±0.039±0.052	-0.160±0.101±0.046	2024, BESIII	XXX	xxx
PDG	1.75 <u>+</u> 0.15		PDG	1.17 <u>±</u> 0.07	-0.70 <u>+</u> 0.07
$\Sigma^+ o p \gamma$ (Phys. Rev. Lett. 130, 211901 (2023))			$\Xi^0 o \Sigma^0 \gamma$		
Experiment	BF (×10 ⁻³)	$lpha_\gamma$	Experiment	BF (x 10 ⁻³)	$lpha_\gamma$
2022, BESIII	0.996±0.021±0.018	-0.652±0.056±0.020	BESIII	XXX	xxx
PDG	1.23 <u>+</u> 0.05	-0.76 <u>+</u> 0.08	PDG	3.33 <u>+</u> 0.10	-0.69 <u>+</u> 0.06
Significantly improved precision				Competitive preci	ision

Summary & Prospects

Studies on $\Xi^-\to\Sigma^-\gamma$ and $\Omega^+\to\Xi^-\gamma$ decays undergoing

"The last piece of the puzzle"

$\Xi^- ightarrow \Sigma^- \gamma$				
Experiment	BF (×10 ⁻³)	α_{γ}		
BESIII	?	?		
PDG	1.27 <u>±</u> 0.23			
$\Omega^+ o \Xi^- u$				
Experiment	BF (x 10⁻³)	α_{γ}		
BESIII	?			
PDG <0.46				

Special thanks to Prof. L.-S. Geng and Dr. R.-X. Shi