

Studies on Higgs Boson Yukawa Couplings and Self-coupling at ATLAS Experiment

刘彦麟 山东大学

北京大学核物理前沿与交叉专题, 2023.12.11

What's the fundamental building block of matter? And what's the origin of mass?

A Long Time Ago...

- Our Chinese ancestors: Fire, Water, Wood, Metal and Earth are the Five Elements (referred as "Wuxing")
- Greek philosophers: everything is composed of "uncuttable" elementary particles
- After going through a long Dark Ages, then followed by the Renaissance and Scientific Revolution...

Modern Science Came

- J. Dalton proposed the atom theory in the 19th century
- In 1897 J.J. Thomson discovered electron

Nobel prize in 1906

- E. Rutherford discovered the nucleus in 1911
- Later Bohr model was proposed to describe the structure of atom Nobel prize in 1922
- Proton was discovered in 1917
- J. Chadwick discovered neutron in 1932

Nobel prize in 1935

 Nucleus was found to consist of protons and neutrons at the center of atom

Then Particle Accelerators Came

- A large variety of particles were discovered through the collisions (referred as "particle zoo")
- To classify these particles, M. Gell-Mann* and G. Zweig proposed the "quark model" [*Nobel Prize in 1969]
 - Later quantum chromodynamics (QCD) was developed to describe the strong interactions [Nobel Prize in 2004]
- S. Glashow, A. Salam and S. Weinberg developed the electroweak theory to unify electromagnetic and weak forces [Nobel Prize in 1979]
 - > W and Z bosons discovered in 1983

[Nobel Prize in 1984]

Standard Model

- Describe the elementary particles and their interactions
- The cornerstones of the SM:
 - Gauge invariance (based on SU(3)×SU(2)×U(1)): depicting strong and electroweak interactions
 - Higgs mechanism: trigger the EWSB; W, Z bosons and fermions acquire masses through EWSB; predicts the Higgs boson

Standard Model of Elementary Particles

The "God Particle" Higgs boson discovered at the LHC in 2012!

Nobel Prize in Physics in 2013

Photo: A. Mahmoud François Englert Prize share: 1/2

Photo: A. Mahmoud Peter W. Higgs

Prize share: 1/2

July 4th, 2022: 10th Anniversary of Higgs Discovery

A Big Discovery in Particle Physics

Not just a discovery of another particle

• The Higgs discovery to particle physics is like the DNA discovery to biology

It's Not the End...

- A New Chapter: measuring Higgs boson properties including couplings is crucial for our understanding on origin of mass and new physics probe
 - Does it also couple to all the massive particles (including fermions) as predicted by the SM ?
 - > What are its mass, width, rate, and other quantum numbers (spin and parity)?
 - > Is it an elementary or composite particle ?
 - > Will it decay to other final states not predicted by the SM ?
 - > How to access the structure of the Higgs potential?
 - ≻ ...

Higgs Production and Decay at LHC

Higgs Yukawa Couplings and Self-coupling

- Higgs boson couples to fermions through Yukawa interactions
 - Giving masses to guarks and leptons
 - Coupling strength is proportional to fermion's mass
- Higgs potential: $V(h) = \frac{1}{4}\lambda h^4 + \lambda v h^3 + \lambda v^2 h^2$ > In SM, $\lambda \approx 0.13$ give m_H ≈ 125 GeV
- HH productions provide directly access to Higgs self-coupling κ_{λ} ($\lambda_{HHH}/\lambda_{SM}$)

- CP Property of the Top-quark Yukawa Coupling via ttH/tH ($H \rightarrow \gamma \gamma$): Yukawa coupling to 3rd generation fermion
- Search for SM H \rightarrow µµ: Yukawa coupling to 2nd generation fermion
- $HH \rightarrow bb\tau\tau$ and HH(+H) combination: Higgs boson trilinear self coupling

Our "Camara": ATLAS Detector

did you say cheese?

Particle Identifications at ATLAS

The main final-state particles used for the physics analysis: electron, muon, tau, jet, b-jet, and missing transverse energy E_T^{miss}

Different types of particles interact with certain sensitive subdetectors and give different responses in the experiments

Run 2 Dataset

CP Property of the Top-quark Yukawa Coupling via ttH/tH ($H \rightarrow \gamma \gamma$)

Why Doing This?

- Large matter-antimatter asymmetry in universe: crucial to look for additional CP violation sources
- Yukawa couplings provide an unambiguous and more sensitive probe of a CP-mixed state compared to Higgs-gauge-boson couplings
- First direct probe to the CP property of the top-Higgs Yukawa coupling (strongest one) using ttH/tH at tree level
 - > Lagrangian written as: $\mathcal{L} = -\frac{m_t}{v} \{ \bar{\psi}_t \kappa_t [\cos(\alpha) + i \sin(\alpha)\gamma_5] \psi_t \} H$ <u>J. Ellis et al.</u>
 - > κ_t (>0): Yukawa coupling strength; α : CP-mixing angle
 - > In SM, $\kappa_t = 1$, $\alpha = 0$ (CP is purely even)

How to Probe this?

- The presence of a CP-odd component in the t-H coupling have impact on:
 - rate and kinematics of ggF process
 - > rate of $H \rightarrow \gamma \gamma$ decay
 - rate and kinematics of ttH and tH processes

 Measure the rate of ttH/tH processes and shapes of observables sensitive to the CP nature of the t-H coupling

<u>Why in $H \rightarrow \gamma \gamma$ Channel?</u>

- γγ channel: small rate, but clean signature and good resolution; solid bkg. estimation from data sideband → most sensitive channel to study ttH process
- $\gamma\gamma$ selection: two isolated photons with p_T > 35/25 GeV; 105 GeV < $m_{\gamma\gamma}$ < 160 GeV
- ttH/tH selection: ≥1 b-tagged jet
 - "Lep" region (≥1 top decay leptonically): ≥ 1 isolated electron or muon with p_T > 15 GeV
 - > "Had" region (both tops decay hadronically): 0 selected lepton, ≥ 3 jets

Analysis Methodology

- In each region, trained two BDTs:
 - > Bkg. rejection BDT: separate ttH-like events from $\gamma\gamma$ +jets/tt $\gamma\gamma$ bkg.
 - CP BDT: separate CP-even and CPodd couplings using ttH/tH
- Categorize events based on 2D BDTs: 12 categories in Had and 8 in Lep
- Signal extraction: simultaneous fit to m_{γγ} spectra in all 20 categories

Background Rejection BDT

- Trained with low-level input variable like 4 vector info of γ, j, l, and MET
- Good separation power between ttH/tH and background, no strong dependence on CP mixing angle

Training variables: p_T/η of $\gamma\gamma$ system and two top candidates (t1, t2); $\phi_{\gamma\gamma,t1}$ and $\phi_{\gamma\gamma,t2}$; $\Delta\eta_{t1t2}$ and $\Delta\phi_{t1t2}$; $m_{\gamma\gamma,t1}$, m_{t1t2} , etc

Signal Significance for $ttH(\rightarrow \gamma \gamma)$

 Assuming CP-even coupling, the measured signal strength (μ=σ_{obs}/σ_{SM}) for ttH via H→γγ is:

 $\mu = 1.43 \quad \frac{+0.33}{-0.31} (stat.) \quad \frac{+0.21}{-0.15} (sys.)$

 The background-only hypothesis is rejected with an observed (expected) significance of 5.2σ (4.4σ) → ttH observation in single Higgs decay channel

ttH/tH Signal Yield Parametrization

- ttH/tH yields parametrized into κ_t and α in each category
- ttH following the form: $A\kappa_t^2 \cos^2(\alpha) + B\kappa_t^2 \sin^2(\alpha) + E\kappa_t^2 \sin(\alpha) \cos(\alpha)$
- tH: $A\kappa_t^2 \cos^2(\alpha) + B\kappa_t^2 \sin^2(\alpha) + C\kappa_t \cos(\alpha) + D\kappa_t \sin(\alpha) + E\kappa_t^2 \sin(\alpha) \cos(\alpha) + F$
 - > Need to consider the interference between t-H and W-H couplings

Results on CP Constraint

 $H \rightarrow \gamma \gamma/ggF$ loops constrained by the Higgs combination result (<u>link</u>)

The measurements consistent with the SM prediction, and no sign of CP violation in the top-Yukawa interaction observed

Exclusions for CP-odd Component

- Likelihood scan of α with κ_t floating in the fit
- |α|>43° is excluded at 95%
 C.L.
- Pure CP-odd hypothesis is excluded at 3.9σ → stringent exclusion result for CP-odd component in the top-Yukawa interaction to date

Phys. Rev. Lett. 125 (2020) 061802

Search for SM $H \rightarrow \mu\mu$

What We've Learned about the Higgs

Physics Motivation

- $H \rightarrow \mu\mu$: most promising channel to explore Yukawa coupling to the 2nd generation fermions
 - > $H \rightarrow cc$ not very sensible under the current luminosity
- Major challenge for H→µµ: low branching ratio and large irreducible background from Drell-Yan

Overview of Analysis Strategy

- Sig. signatures: two isolated muons with opposite charge
- BDT-based categorization to enhance signal sensitivity
 - Driven by the different Higgs boson production modes
- Data driven approach used for bkg. estimation
- Sig.+Bkg. PDF used to fit the observed $m_{\mu\mu}$ spectra simultaneously in all the categories to extract the signal
 - Sig. and bkg. modeled by analytic functions

<u>Event Selection for H→µµ</u>

• Single muon trigger with p_T threshold of 26 or 50 GeV

	Selection
Common preselection	Primary vertex Two opposite-charge muons Muons: $ n < 2.7$, $p_{ead}^{lead} > 27$ GeV, $p_{ead}^{sublead} > 15$ GeV (except VH 3-lepton)
Fit Region	$110 < m_{\mu\mu} < 160 \text{GeV}$
Jets	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.4 or with $p_{\rm T}$ > 30 GeV and 2.4 < $ \eta $ < 4.5
$t\bar{t}H$ Category VH 3-lepton Categories VH 4-lepton Category ggF +VBF Categories	at least one additional e or μ with $p_{\rm T} > 15$ GeV, at least one b -jet (85% WP) $p_{\rm T}^{\rm sublead} > 10$ GeV, one additional e (μ) with $p_{\rm T} > 15(10)$ GeV, no b -jets (85% WP) at least two additional e or μ with $p_{\rm T} > 8, 6$ GeV, no b -jets (85% WP) no additional μ , no b -jets (60% WP)

Selected events sorted into 20 categories in total, which are mutually exclusive and in the order of ttH(1) \rightarrow VH(3) \rightarrow VBF(4) \rightarrow ggF(12)

ttH Categorization

- Target semi/dileptonic decays of top pair
 - > ≥1 extra e/ μ and ≥1 b-tagged jet
 - Two highest-p_T muons with opposite charge as the Higgs candidate
- BDT trained to distinguish ttH sig. from all bkgs. (ttbar, ttZ, diboson, etc)
 - Training variables: p_T of e/µ, invariant masses of leptons/tops, as well as N_{jet} and N_{b-jet}, and H_T

0.1

2

3

8

9

VH Categorization

- Target WH/ZH in leptonic decays: 1/2 additional leptons except muon pair
- Two BDTs trained for WH and ZH using invariant mass and angular variables of lepton systems as well as E_T^{miss} and N_{jet}

Training variables: $p_T^{\mu\mu}$, $y_{\mu\mu}$, $\cos\theta^*$, p_T and η of jets, p_T^{jj} , y_{jj} , $\Delta\phi_{jj,\mu\mu}$, m_{jj} , N_{track}^{j} , etc

VBF/ggF Categorization (2)

Signal and Background Modeling

- Signal: double-sided Crystal Ball containing a Gaussian core and power-law tails (σ_{CB} ranging from 2.6-3.2 GeV)
- Background: a "core function" multiplied by an "empirical function"
 - Core function: Drell-Yan mass shape convoluted with Gaus. function
 - Empirical function: correct for distortions of the mass shape and smaller bkg.
 - Potential bkg. mis-modeling treated as sys. unc. ("spurious signal")

- A simultaneous maximum-likelihood fit performed to the observed m_{µµ} spectra in 20 categories
- The measured signal strength is:

Combined $\mu = 1.17 \pm 0.58(Stat.) + 0.18 (sys.) - 0.13 (sys.)$

- Results are statistical uncertainty dominated
- The obs. (exp.) significance is 2.0 (1.7) σ

Phys. Lett. B 812 (2021) 135980 Phys. Rev. Lett. 119 (2017) 051802

Higgs Couplings

- Up to now, five main production channels and five main decay channels observed and being used for measurements
- Global signal strength: 1.05±0.06

Nature 607, 52-59 (2022)

Search for $HH \rightarrow bb\tau\tau$

Higgs Potential Not Determined Yet

- New physics (e.g. first order electroweak phase transition) can cause a significant deviation away from SM predicted Higgs potential
- Measurements of Higgs self-coupling can provide discrimination between different scenarios/models

Tadpole-Induced Higgs

Ref: Phys. Rev. D 101, 075023 (2020)

HH Production

- SM non-resonant HH: σ_{HH}^{ggF} = 31.05 fb, σ_{HH}^{VBF} = 1.72 fb
 - > Direct access to Higgs self-coupling (κ_{λ}) and potential
 - > VBF: unique process to probe HHVV coupling (κ_{2V})

- Various BSM theories predict heavy resonances decaying into HH
 - Narrow width approximation
 - > 2HDM as benchmark model

bbττ Final State

- $bb\tau\tau$: moderate BR, relatively clean signature
- Split into two channels depending on τ decay: $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$

 $au_{
m had}^{
m vis}$

Event Selection

• Signal signature: two b-jets (DNN-based tagger, 77%) and $\tau_{had}\tau_{had}/\tau_{lep}\tau_{had}$ with opposite charge

Signal region	Tau/Lepton	Trigger
$ au_{had} au_{had}$	2 hadronic τ	Single or Di-tau Trigger (STT/DTT)
$ au_{lep} au_{had} SLT$	1 hadronic τ + 1 e/µ	Single lepton trigger (SLT)
$ au_{lep} au_{had} LTT$	1 hadronic τ + 1 e/µ	Lepton+tau trigger (LTT)

- Trigger-dependent thresholds on $e/\mu/\tau_{had}$ and jets
- e/ μ veto for $\tau_{had}\tau_{had}$; exactly 1 e/ μ for $\tau_{lep}\tau_{had}$
- $m_{\tau\tau}^{MMC}$ > 60 GeV for all channels; m_{bb} < 150 GeV for $\tau_{lep}\tau_{had}$

ggF vs VBF Categorization BDT

- BDT trained to separate ggF HH from VBF HH on events with 4 jets (two VBF-jet candidates + two H→bb)
- Input variables: m_{jj}^{VBF} , ΔR_{jj}^{VBF} , $\eta_{j1} \times \eta_{j2}$, etc
- BDT cuts optimized in each SR to achieve the best limit on HH as well as constraint for κ_{λ} and κ_{2V}

Discriminant BDTs

- In each SR, BDTs trained in low m_{HH}, high m_{HH} and VBF categories respectively and used as final discriminants
 - > Input variables: m_{HH} , m_{bb} , $m_{\tau\tau}^{MMC}$, $\Delta R(b,b)$, $\Delta R(\tau,\tau)$, E_T^{miss} , etc

Discriminant BDTs in $\tau_{lep} \tau_{had}$

Background Estimation

- ttbar and Z+heavy-flavor processes: shape from simulation, normalizations determined from the control region
- Single Higgs and other processes: estimated from simulation
- Jets → fake τ_{had} background: estimated with data-driven approach (including fake factor a.k.a. ABCD method and scale factor method)

Upper Limit on Non-resonant HH XS

- No significant excess seen above the SM prediction (µ=1)
- Obs. (exp.) limit on HH XS is 5.9 (3.1) $\times \sigma_{SM}$
 - The exp. limit represents the best constraint on HH XS in single channel
- Obs. limit higher than exp. due to a statistical fluctuation in the $\tau_{\rm lep} \tau_{\rm had}$ SLT high m_{HH} region

Major uncertainties coming from data/MC statistics as well as theory unc. on top and single Higgs processes

Constraints for κ_{λ} and κ_{2V}

ATLAS-CONF-2023-071

Resonant Signal Extraction

- Parametrized neural networks (PNN) used as discriminant
 - > Parametrized in mass of scalar ($\theta = m_X$)
 - Training variables same as non-resonant
- It provides near-optimal sensitivity and continuity over the entire range

<u>Resonant HH→bbττ Results</u>

Obs. (exp.) upper limits: 920-23 fb (840-12 fb) depending on the mass region Local (global) significance for 1 TeV is 3.0σ (2.0σ)

HH(+H) Combination

HH Combination

- Performed statistical combination for different HH decay channels to maximize sensitivity to HH production
- Considered three major channels: $HH \rightarrow bb\tau\tau$, $HH \rightarrow bb\gamma\gamma$ and $HH \rightarrow bbbb$
- Systematics correlated where appropriate (like luminosity, flavor tagging, signal theory uncertainties, etc)

<u>κ_λ Constraint from Single Higgs</u>

• κ_{λ} also can be probed through NLO EW correction of single Higgs processes (e.g. in the production, decay, Higgs self-energy)

- Combination of HH and single Higgs is expected to provide the most sensitive results of κ_λ

Results from HH+H Combination

Obs. (exp.) κ_{λ} constraint: $-0.4 \le \kappa_{\lambda} \le 6.3$ (-1.9 $\le \kappa_{\lambda} \le 7.6$)

The best constraints on HH signal strength and κ_{λ} to date

Resonant HH Combination Result

- Presented the Yukawa couplings and self-coupling studies based on the Run 2 dataset
- The measurements are in line with the SM prediction, and the most stringent results obtained at ATLAS
- The LHC Run 3 is expected to provide more room for exploring the Yukawa couplings and Higgs self-coupling
 - ➢ Possible evidence for H→µµ at ATLAS, observation combining ATLAS and CMS analyses

To Be Continued...

HL-LHC Projection

ATL-PHYS-PUB-2022-053

	Significance $[\sigma]$				Combined signal	
Uncertainty scenario	$bar{b}\gamma\gamma$	$bar{b} au^+ au^-$	bbbb	Combination	strength precision [%]	
No syst. unc.	2.3	4.0	1.8	4.9	-21/+22	
Baseline	2.2	2.8	0.99	3.4	-30/+33	
Theoretical unc. halved	1.1	1.7	0.65	2.1	-47/+48	
Run 2 syst. unc.	1.1	1.5	0.65	1.9	-53/+65	

Uncertainty scenario	<i>κ</i> _λ 68% CI	κ _λ 95% CI
No syst. unc.	[0.7, 1.4]	[0.3, 1.9]
Baseline	[0.5, 1.6]	[0.0, 2.5]
Theoretical unc. halved	[0.3, 2.2]	[-0.3, 5.5]
Run 2 syst. unc.	[0.1, 2.4]	[-0.6, 5.6]

We Were Doing Better than Projection

Higgs Pair Production in the $H(\rightarrow \tau\tau)H(\rightarrow b\bar{b})$ channel at theHigh-Luminosity LHCATL-PHYS-PUB-2015-046

ing SM background and SM signal, we expect to set an upper limit of the cross section for the di-Higgs production of $4.3 \times \sigma (HH \rightarrow b\bar{b}\tau^+\tau^-)$ at 95% Confidence Level. Using an effective Lagrangian for the Higgs potential, and allowing its trilinear self-coupling to vary, we can project an exclusion of $\lambda_{HHH}/\lambda_{SM} \leq -4$ and $\lambda_{HHH}/\lambda_{SM} \geq 12$.

We Were Doing Better than Projection

Higgs Pair Production in the $H(\rightarrow \tau\tau)H(\rightarrow b\bar{b})$ channel at theHigh-Luminosity LHCATL-PHYS-PUB-2015-046

ing SM background and SM signal, we expect to set an upper limit of the cross section for the di-Higgs production of $4.3 \times \sigma (HH \rightarrow b\bar{b}\tau^+\tau^-)$ at 95% Confidence Level. Using an effective Lagrangian for the Higgs potential, and allowing its trilinear self-coupling to vary, we can project an exclusion of $\lambda_{HHH}/\lambda_{SM} \leq -4$ and $\lambda_{HHH}/\lambda_{SM} \geq 12$.

Obs. (exp.) limit on HH: 4.7 (3.9) × σ_{SM} Obs. (exp.) κ_{λ} constraint: -2.4 ≤ κ_{λ} ≤ 9.2 (-2.0 ≤ κ_{λ} ≤ 9.0) The HL-LHC projection (3 ab⁻¹) in 2015 was surpassed with just 139 fb⁻¹ data

Prediction normalized to SM

Event Categorization

• Categorization is done in Had and Lep regions separately

 The boundaries are chosen to achieve a strong separation between CP-even and CP-odd signals, as well as a good sensitivity to ttH process

$$\begin{aligned} c_g^2 &= \mu_{gg} &\simeq \kappa_t^2 + 2.6\tilde{\kappa}_t^2 + 0.11\kappa_t(\kappa_t - 1), \\ c_\gamma^2 &= \mu_{\gamma\gamma} &\simeq (1.28 - 0.28\kappa_t)^2 + (0.43\tilde{\kappa}_t)^2. \end{aligned}$$

Categorization Performance (1)

Category	Data	$S_{ m SM}$	S	В	S/\sqrt{B}	S/B~[%]	$\sigma~[{\rm GeV}]$
VBF Very High	15	2.81 ± 0.27	3.3 ± 1.7	14.5 ± 2.1	0.86	22.6	3.0
VBF High	39	3.46 ± 0.36	4.0 ± 2.1	32.5 ± 2.9	0.71	12.4	3.0
VBF Medium	112	4.8 ± 0.5	5.6 ± 2.8	85 ± 4	0.61	6.6	2.9
VBF Low	284	7.5 ± 0.9	9 ± 4	273 ± 8	0.53	3.2	3.0
2-jet Very High	1030	17.6 ± 3.3	21 ± 10	1024 ± 22	0.63	2.0	3.1
2-jet High	5433	50 ± 8	58 ± 30	5440 ± 50	0.77	1.0	2.9
2-jet Medium	18311	79 ± 15	90 ± 50	18320 ± 90	0.66	0.5	2.9
2-jet Low	36409	63 ± 17	70 ± 40	36340 ± 140	0.37	0.2	2.9
1-jet Very High	1097	16.5 ± 2.4	19 ± 10	1071 ± 22	0.59	1.8	2.9
1-jet High	6413	$46~\pm~7$	54 ± 28	6320 ± 50	0.69	0.9	2.8
1-jet Medium	24576	90 ± 11	100 ± 50	24290 ± 100	0.67	0.4	2.7
1-jet Low	73459	125 ± 17	150 ± 70	73480 ± 190	0.53	0.2	2.8
0-jet Very High	15986	59 ± 11	70 ± 40	16090 ± 90	0.55	0.4	2.6
0-jet High	46523	99 ± 13	120 ± 60	46190 ± 150	0.54	0.3	2.6
0-jet Medium	91392	119 ± 14	140 ± 70	91310 ± 210	0.46	0.2	2.7
0-jet Low	121354	79 ± 10	90 ± 50	121310 ± 280	0.26	0.1	2.7
VH4L	34	0.53 ± 0.05	0.6 ± 0.3	24 ± 4	0.13	2.6	2.9
VH3LH	41	1.45 ± 0.14	1.7 ± 0.9	41 ± 5	0.27	4.2	3.1
VH3LM	358	2.76 ± 0.24	3.2 ± 1.6	347 ± 15	0.17	0.9	3.0
$t\bar{t}H$	17	1.19 ± 0.13	1.4 ± 0.7	15.1 ± 2.2	0.36	9.2	3.2

Calculated in the 120-130GeV region Major sensitive ones are VBF, ggF 2-jet and 1-jet categories

Background Model Selection Criteria

- $P(\chi 2) > 1\%$ for background only fits with
 - > Data sideband
 - Full simulation
 - Fast simulation (before and after reweighing to the data sidebands)
- SS within 20% of the signal statistical unc. normalized to data statistics
- Smallest degree of freedom
- Smallest SS value

In the order of priority decreasing

- Fake τ_{had} from ttbar in $\tau_{had}\tau_{had}$ channel estimated using simulation
- SFs used to correct τ_{had} misidentification eff.: determined by fitting m_T^W distribution of MC to data in ttbar CR of $\tau_{lep}\tau_{had}$ SLT category
 - 1 prong: close to 1 below 40 GeV, ~0.6 above 70 GeV
 - 3 prong: ~20% larger than the 1 prong SFs

Signal Acceptance × Efficiency

- The acceptance times efficiency for the non-resonant ggF+VBF evaluated w.r.t. targeted τ decay modes
 - > $\tau_{had} \tau_{had}$: 4.0%, $\tau_{lep} \tau_{had}$ SLT: 4.0%, $\tau_{lep} \tau_{had}$ LTT: 1.0%
- Around factor 2 improvement on signal acceptance compared with previous publication*
- Driven by improved reconstruction and identification of τ_{had} and bjets**

*<u>Phys. Rev. Lett. 121, 191801</u>

**<u>ATL-PHYS-PUB-2017-003</u>, <u>ATL-PHYS-PUB-2017-013</u>, <u>ATL-PHYS-PUB-2019-033</u>

<u>κ_λ-dependence of XS and BR</u>

BSM Physics in HH Processes

Anomalous κ_{λ} would result in enhanced HH XS and modified kinematics of the process due to different contributions and interference of diagrams

• ggF HH cross section depends on κ_{λ} and κ_t

• Any $(\kappa_{\lambda}, \kappa_t)$ can be obtained via a linear combination of three basis samples at different κ_{λ} values with $\kappa_t = 1$

$$\begin{aligned} \operatorname{sample}(\kappa_{\lambda},\kappa_{t}) &= \kappa_{t}^{2} \left[\left(\kappa_{t}^{2} + \frac{\kappa_{\lambda}^{2}}{20} - \frac{399}{380} \kappa_{\lambda} \kappa_{t} \right) \cdot \operatorname{sample}(0,1) \right. \\ &+ \left(\frac{40}{38} \kappa_{\lambda} \kappa_{t} - \frac{2}{38} \kappa_{\lambda}^{2} \right) \cdot \operatorname{sample}(1,1) \\ &+ \left(\frac{\kappa_{\lambda}^{2} - \kappa_{\lambda} \kappa_{t}}{380} \right) \cdot \operatorname{sample}(20,1) \right] \end{aligned}$$

- VBF HH XS depends on $\kappa_{2V},\,\kappa_{\lambda}\,and\,\kappa_{V}$
- A linear combination of 6 samples with different (κ_{2V} , κ_{λ} , κ_{V}) values
- Rank 1 basis used

$$\begin{pmatrix} \frac{\kappa_{2V}^2}{5} - \frac{\kappa_{2V}\kappa_V^2}{5} - \frac{\kappa_{2V}\kappa_V\kappa_\lambda}{10} + \frac{\kappa_V^3\kappa_\lambda}{10} \end{pmatrix} \times \sigma(3,1,1) + \\ \begin{pmatrix} \frac{4\kappa_{2V}^2}{5} - \frac{4\kappa_{2V}\kappa_V^2}{5} - \frac{12\kappa_{2V}\kappa_V\kappa_\lambda}{5} + \frac{12\kappa_V^3\kappa_\lambda}{5} \end{pmatrix} \times \sigma\left(\frac{1}{2},1,1\right) + \\ \begin{pmatrix} -\frac{5\kappa_{2V}\kappa_V^2}{4} + \frac{5\kappa_{2V}\kappa_V\kappa_\lambda}{4} + \frac{\kappa_V^3\kappa_\lambda}{8} - \frac{\kappa_V^2\kappa_\lambda^2}{8} \end{pmatrix} \times \sigma(1,2,1) + \\ \begin{pmatrix} -\kappa_{2V}\kappa_V^2 + \kappa_{2V}\kappa_V\kappa_\lambda + \kappa_V^4 - \kappa_V^3\kappa_\lambda \end{pmatrix} \times \sigma(0,0,1) + \\ \begin{pmatrix} \frac{\kappa_{2V}\kappa_V^2}{36} - \frac{\kappa_{2V}\kappa_V\kappa_\lambda}{36} - \frac{\kappa_V^3\kappa_\lambda}{72} + \frac{\kappa_V^2\kappa_\lambda^2}{72} \end{pmatrix} \times \sigma(1,10,1) + \\ \begin{pmatrix} -\kappa_{2V}^2 + \frac{29\kappa_{2V}\kappa_V^2}{9} + \frac{5\kappa_{2V}\kappa_V\kappa_\lambda}{18} - \frac{29\kappa_V^3\kappa_\lambda}{18} + \frac{\kappa_V^2\kappa_\lambda^2}{9} \end{pmatrix} \times \sigma(1,1,1) \end{cases}$$

Flavor Tagging Improvement

τ Identification Improvement

RNN ID shows 2x improvement compared with BDT Moved from "medium" to "loose" WP Per-tau efficiency: 1-prong: $75\% \rightarrow 85\%$ 3-prong: $60\% \rightarrow 75\%$

