大科学装置与大模型交叉科学研讨会

华南岩石圈热结构模型及构造意义

姜光政 习宇飞 王亚奇 胡圣标

成都理工大学

中国地质科学院水文地质环境地质研究所

中国科学院地质与地球物理研究所

2024年1月·开平

报告提纲

- 一、地球内部的热结构和放射性生热
- 二、华南三维综合地热模型构建
- 三、华南地热与深部动力过程
- 四、地热模型的优势和局限性

岩石圈热结构

地球是个巨大的热库-不仅储热而且生热

Temperature

L: Lithosphere (0-80 km) A: Asthenosphere (80-220 km)

2000

TZ: Transition Zone (220-670 km)

400 km: Phase transition olivine-spinel

670 km⁻ Phase transition spinel-perovskite

T (K)

3000

D": D" layer (2741-2891 km)

Solidus

4000

6000

5000

4000

3000 ^s (km)

2000

1000

5000

Radius

放射性生热对地表热流贡献

"回剥法"计算壳、幔热流:

$$q_s = q_c + q_m$$

地表可测 与岩石圈底界埋深
相关/1300等温面
 $q_c = \sum_{i=1}^{n} (A_i \cdot D_i)$

qs地表热流,qc地壳热流,qm地幔热流 Ai、Di分别表示第i层生热率和厚度

地表大地热流

以<mark>传导的形式</mark>单位时间内通过单 位地球表面积的热量:

q=K×(dT/dz) 热流=热导率×地温梯度

Data is collected from wireline logging tools lowered into the wellbore

Monitoring data is gathered about the near wellbore environment.

全球热流测点分布图

Heat flow (mW/m²)

目前全球热流数据70000 条,且逐年增加

全球热流测点分布图

放射性生热

岩石放射性生热率是指单位体积的岩石在单位时间内由其所 含的放射性元素衰变而产生的热量即为岩石放射性生热率, 单位µW/m³。

$$^{238}U \rightarrow ^{206}Pb + 8\alpha + 6e^{-} + 6\bar{\nu}_{e} + 51.7 MeV,$$

 $^{232}Th \rightarrow ^{208}Pb + 6\alpha + 4e^{-} + 4\bar{\nu}_{e} + 42.7 MeV,$
 $^{40}K \rightarrow ^{40}Ca + e^{-} + \bar{\nu}_{e} + 1.31 MeV_{\circ}$

生热率: $A = 10^{-5} \rho (9.25 C_U + 2.56 C_{Th} + 3.48 C_K)$

生热率及垂向分布模型

生热率及垂向分布模型

生热率及垂向分布模型

报告提纲

- 一、地球内部的热平和放射性生热
- 二、华南三维综合地热模型构建
- 三、综合地热模型的优势和局限性

报告提纲

- 一、地球内部的热结构和放射性生热
- 二、华南三维综合地热模型构建
- 三、华南地热与深部动力过程
- 四、地热模型的优势和局限性

三维温度场数值模拟:

控制方程:

 $\frac{\delta}{\delta x} \left(k \frac{\delta T}{\delta x}\right) + \frac{\delta}{\delta y} \left(k \frac{\delta T}{\delta y}\right) + \frac{\delta}{\delta z} \left(k \frac{\delta T}{\delta z}\right) + A(x, y, z) = 0$

上温度边界: *T*(*x*, *y*, 0)=*T*₀(*x*, *y*)

左右绝热边界:
$$\frac{\delta T}{\delta x}(x_1,z) = \frac{\delta T}{\delta y}(y_1,z) = \frac{\delta T}{\delta z}(x_2,z) = 0$$

下热流边界: $T_b(x, y, zb)$ =Tm

COMSOL 5.4a

14

 $A = 10^{-2} \rho (9.52 C_{U} + 2.56 C_{Th} + 3.48 C_{K})$

模型输入

物理模型

执	巴茲	•	K
72.2	$\neg \uparrow \neg \neg$	٠	

生热率: A (地表) → 密度: ρ → 丰度: C_U、C_{Th}、C_K

华南地区大地热流分布

16

华南地区花岗岩类生热率

Tectonic unit	Heat-flow(mW/m^2)	(uW/m^3)
Louxiao-Yunkai arc-basin system	68.0 ± 11.6	5.73 ± 2.73
Cathaysia Block	75.7 ± 6.5	4.53 ± 2.18
The southeast coastal magmatic arc	65.9 ± 11.8	3.91 ± 1.24
Hainan Block	71.7 ± 6.7	

边界条件与初始值

模拟地表热流值

优化放射性元素垂向分布

温度为桥梁的多学科数据约束

不同深度温度

Crustal heat flow contribution

$$q_c = \sum_{1}^{n} (\mathbf{A_i} \cdot D_i)$$

地幔热流贡献

Moho flux in South China Block

 $q_{\rm m} = q_{\rm s} - q_{\rm c}$

For the Moho flux with heat flow measurements

Yangtze Block: 16.0 ± 5.6 mW/m²

Wuyi-Yunkai Orogen: 18.0 ± 8.1 mW/m²

地幔热流贡献

Discussions about Moho flux

Yangtze Block: 16.0±5.6 mW/m²

11-18 mW/m² for Precambrian terrains or stable continents (Jaupart et al,2015). Estimated from:

- surface heat flux and crustal heat production.
- condition of no melting in the lower crust at the time of stabilization.
- geothermobarometry on mantle xenoliths.

Wuyi-Yunkai Orogen: 18.0±8.1mW/m²

11-21 mW/m² for Paleozoic-Mesozoic orogens (Jaupart et al,2015), estimated from surface heat flux and crustal heat production.

Table 7	Various	estimates	of	the	heat	flux	at	Moho	in	stable
continental regions										

Location	Heat flux (mW m ⁻²)	Reference
Norwegian Shield	11 <i>ª</i>	Swanberg et al. (1974) and Pinet and Jaupart (1987)
Baltic Shield	7 - 15ª	Kukkonen and Peltonen (1999)
Siberian craton	10–12 ^ª	Duchkov (1991)
Dharwar Craton (India)	11 <i>ª</i>	Roy and Rao (2000)
Kapuskasing (Canadian Shield)	11–13 ^ª	Ashwal et al. (1987) and Pinet et al. (1991)
Grenville (Canadian Shield)	13 <i>ª</i>	Pinet et al. (1991)
Abitibi (Canadian Shield)	10–14 ^{<i>a</i>}	Guillou et al. (1994)
Trans-Hudson orogen (Canadian Shield)	11–16 ^b	Rolandone et al. (2002)
Slave province (Canada)	12–24 <i>°</i>	Russell et al. (2001)
Vredefort (South Africa)	18 <i>ª</i>	Nicolaysen et al. (1981)
Kalahari Craton (South Africa)	17 - 25°	Rudnick and Nyblade (1999)

综合地热模型

- ▶ 以热传导理论(能量守恒)为基础,综合地球物理(分层)、地球化学(U-Th含量)和地热数据 (地表热通量)三类数据,构建了华南地热模型。
- ▶ 地热模型包含了地球物质、能量信息,是具有代表性的综合模型
- 通过U-Th放射性生热建立U-Th含量(丰度和地壳中厚度)和地热模型的联系,从而约束地壳中高放射性元素含量,最终为中微子通量计算提供约束

地质模型

地热模型

报告提纲

- 一、地球内部的热结构和放射性生热
- 二、华南三维综合地热模型构建
- 三、华南地热与深部动力过程
- 四、地热模型的优势和局限性

热泉分布与火成岩区

中国大陆热流分布的深部动力过程

报告提纲

- 一、地球内部的热结构和放射性生热
- 二、华南三维综合地热模型构建
- 三、华南地热与深部动力过程
- 四、地热模型的优势和局限性

优势和局限性

优势:

- 综合了地球物理、地球化学、地热学多学科的数据,反映了地球内部能量的平衡,能为垂向生热率提供多维度约束;
- > 提供的放射性元素分布不确定性比单一方法的可信度更高;
- ▶ 可以作为多参数 (地震、重力、地热、地化) 联合反演的桥梁。

局限性:

- 地表热流数据依赖于已有钻井(通常大于500米),数据分布 稀少且不均匀;
- > 三维模型计算优化话费大量计算时间,寻找的最优解可能是局 部最优解。

Thanks!