

JUNO地球中微子与地壳模型 研究进展与展望

中国地质大学(北京)

1. 地球中微子研究背景

2. 全球地壳模型简介

3. 江门中微子实验站 (JUNO) 近场地壳模型

4. 地球中微子与地壳模型研究展望

How much fuel is left to drive Plate Tectonics?

地球中微子的产生与探测

Production of Geo-neutrino

$^{238}\text{U} \longrightarrow ^{206}\text{Pb} + 8\alpha + 6\text{e}^- + 6\bar{\nu}_e$	$+\ 51.698 \mathrm{MeV}$
232 Th $\longrightarrow ^{208}$ Pb + 6 α + 4 e ⁻ + 4 $\bar{\nu}_{e}$	+ 42.652MeV
$^{40}\mathrm{K} \xrightarrow{89.3\%} {}^{40}\mathrm{Ca} + \mathrm{e}^- + \overline{\boldsymbol{\nu}}_{\mathbf{e}}$	$+1.311 { m MeV}$
$^{40}\mathrm{K} + \mathrm{e}^{-} \xrightarrow{10.7\%} {}^{40}\mathrm{Ar} + \nu_{\mathrm{e}}$	$+1.505\mathrm{MeV}$

Detection of Geo-neutrino

地球中微子应用于地学研究

中微子观测站

地球中微子通量计算

- Geophysical models
 - **Density** of source unit
 - Thickness of earth's layers

- Geochemical models
 - U and Th abundances of source unit

近场 vs 远场地壳模型

- LOcalCrust (LOC): a portion of local crust centered in JUNO
- Rest Of Lithosphere (ROL): the remaining crust and CLM

1. 地球中微子研究背景

2. 全球地壳模型简介

3. 江门中微子实验站 (JUNO) 近场地壳模型

4. 地球中微子与地壳模型研究展望

地球物理模型提供的关键

Models	GEMMA	CUB 2.0	CRUST2.0	RMM	CRUST 1.0	LITHO 1.0	ECM 1.0
Author	Negretti et al.	Shapiro and Ritzwoller	Laske et al.	Huang et al.	Laske et al.	Pasyanos et al.	Mooney et al.
Published year	2012	2002	2001	2013	2013	2014	2023
Resolution	0.5°×0.5°	2°×2°	2°×2°	1°×1°	1°×1°	1°×1°	1°×1°
Methods	gravity field data	surface seismic wave data	reflection and refraction seismic data	average of GEMMA, CUB 2.0 and CRUST 2.0	modified from CRUST 2.0	modified from CRUST 1.0 combining surface seismic waves data	adding new published data

				<i>a</i> (U) [µg/g]	<i>a</i> (Th) [µg/g]
, e	Se UC		Sed	1.73 ± 0.09	8.10 ± 0.59
CC	MC Sed W		OC	0.07 ± 0.02	0.21 ± 0.06
LM	LC Moho		UC	2.7 ± 0.6	10.5 ± 1.0
	CLM				
DM				<i>a</i> (U) [µg/g]	<i>a</i> (Th) [µg/g]
			MC	$0.97\substack{+0.58\\-0.36}$	$4.86^{+4.30}_{-2.25}$
EM		EM	LC	$0.16\substack{+0.14\\-0.07}$	$0.96^{+1.18}_{-0.51}$
	СМВ		CLM	$0.03^{+0.05}_{-0.02}$	$0.15\substack{+0.28\\-0.10}$

Huang et al., 2013

1. 地球中微子研究背景

2. 全球地壳模型简介

目录

3. 江门中微子实验站 (JUNO) 近场地壳模型

4. 地球中微子与地壳模型研究展望

Models	GIGJ	JULOC	JULOC-I
Author	Reguzzoni et al.	Gao et al.	Han et al.
Published year	2019	2020	Under review
Area	6°×4°	$10^{\circ} \times 10^{\circ}$	$10^{\circ} \times 11^{\circ}$
Resolution	50×50×0.1 km	0.5°×0.5°×1 km	$0.4^{\circ} \times 0.4^{\circ} \times 1 \text{ km}$
Geophysical model	gravity and seismic data	seismic data	gravity and seismic data
Geochemical model	_		

Inputs: gravity and seismic data

Geophysical model: crustal layers

Inputs: gravity and seismic data

Geophysical model: density

Geophysical inputs: seismic data

Geophysical model

Geochemical inputs: geological map, rock sample data (~2000)

Abundance of each voxel =

$$\sum_{i=1}^{n} Area\%(i) * Abundance(i)$$

i: rock type

Table 1.	U and	Th	abundances	in	geologic	units i	in the	regional	crust	in	the.	3- D	model.
----------	-------	----	------------	----	----------	---------	--------	----------	-------	----	------	-------------	--------

		<u>l-S1</u>	<u>gma</u>		<u>1-sigma</u>					
Geologic Unit	U mean	+	-	Ν	Th mean	+	-	n		
Granite	5.4	5.6	2.7	2200	23.7	16.2	9.6	2200		
Intra-plate basalt	0.7	0.7	0.5	255	3.7	3.2	1.8	255		
MORB	0.7	0.8	0.4	332	2.6	1.8	1.2	332		
Siliciclastic rocks	2.7	1.2	0.8	391	11.1	12.8	5.9	391		
Carbonites	0.9	0.5	0.3	31	3.6	2.9	1.6	31		
Upper crust basement	3.0	2.1	1.2	57	15.4	10.7	6.3	57		
Middle crust	0.6	0.4	0.4	10	1.9	1.4	1.4	10		
Lower crust	0.04	0.08	0.03	55	0.1	0.3	0.08	55		
Oceanic crust	0.7	0.8	0.4	332	2.6	1.8	1.2	332		

		<u>l-S1</u>	<u>gma</u>		<u>1-sigma</u>					
Geologic Unit	U mean	+	-	Ν	Th mean	+	-	n		
Upper crust basement	3.0	2.1	1.2	57	15.4	10.7	6.3	57		
Middle crust	0.6	0.4	0.4	10	1.9	1.4	1.4	10		
Lower crust	0.04	0.08	0.03	55	0.1	0.3	0.08	55		

Geophysical model from joint inversion

Data source

WGM2012 Global satellite Bouguer gravity anomaly data

陆区地物模型

Empirical relations between the seismic velocity and density

 $V_{\rm p}({\rm km/sec}) = 0.9409 + 2.0947V_{\rm s} - 0.8206V_{\rm s}^2$ $\rho({\rm g/cm}^3) = 1.6612V_{\rm p} - 0.4721V_{\rm p}^2$ $+ 0.2683V_s^3 - 0.0251V_s^4.$

Eqn. 6, 8 Broche Key 5.0 5.10 (2) Eqn. 7, Castagna et al. (1985) Aver. of crystalline rocks (Christensen, 1996) Key 3.67 4.5 Aver. of sed. rocks (Mavko et al., 1998) Aver. of crystalline rocks (Christensen, 1996) 3.06 Quartzite Individual lab. measurement (Calif.) 4.0 Aver. of sed. rocks (Mavko et al., 1998) Ludwig et al. Egn. 11, Individual lab. measurement (Non-Calif.) 2.69 Brocher (1970) Individual lab. measurement (Calif.) empirical fit · Individual borehole measurement (Calif.) 2.45 Individual lab. measurement (Non-Calif.) 0.4 3.5 USGS 30-m VSP (Boore, 2003) Ratio Individual borehole measurement (Calif.) Egn. 8, 2.27 (s/w) 3.0 2.5 2.0 * USGS 30-m VSP (Boore, 2003) Serpentinite Mafic line. Eqn. 8, Mafic line, 2.14 Mafic and Poisson's Mafic and 2.03 **SA/dA** This paper Calcium-rich Calcium-rich rocks rocks Serpentinite (11) •(1 Brocher et al. (1997a) 0.3 1.87 1.5 $\lambda > \mu$ 1.81 Ean. 12. 1.76 1.0 Ludwig $\lambda = \mu$ empirical fit 1.71 0.5 $\lambda < \mu$ This paper 1.67 Quaternary alluvium (10) (12) 1.63 0.0 -2.5 2.7 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 1.5 1.7 1.9 2.1 2.3 2.9 3.1 3.3 3.5 Vp (km/s) Density (gm/cm³)

+ $0.0671V_{\rm p}^3$ - $0.0043V_{\rm p}^4$ + $0.000106V_{\rm p}^5$.

陆区地化模型: Sun et al., 2022, JGR-SE

· 利用贝叶斯公式和波速的限制,计算出了每个网格里不同岩石类型的占比。

陆区地化模型

Rock U-Th abundance

U and Th abundance data: rock sample data collected from literature and measured in lab.

陆区地化模型

Abundance of each voxel = $\sum_{i=1}^{n} Proportion\%(i) * Abundance(i)$

25

过渡带和洋壳简化模型

Surface heat flow map

Crustal heat production

Mantle flux

Jiang et al., 2019, Tectonophysics

Calculated based on JULOC-I model

1. 地球中微子研究背景

2. 全球地壳模型简介

目录

3. 江门中微子实验站 (JUNO) 近场地壳模型

4. 地球中微子与地壳模型研究展望

• 地球物理模型的更新

• 分区域的地球化学模型

・ 海区模型的建立

・ 陆区模型的优化

•

.

- 花岗岩 (极富U、Th) 延伸深度
- 地壳岩石U、Th丰度垂向变化
- 机器学习等新技术在数据处理和建 模中的应用

地球中微子与地壳模型研究展望

- ・ 2024取数在即
 - 对数据的解释
 - 学科交叉应用

Thank you!