

PFA-oriented Sampling and Crystal Calorimeters: Beamtest Studies and Plans

Yong Liu (IHEP), for CALICE and CEPC Calorimeter teams

CEPC Day, Dec. 27, 2023

Yong Liu (liuyong@ihep.ac.cn)

High granularity calorimetry

- Future Higgs/EW/top factories
 - Requires unprecedented energy resolution for jet measurements
 - A major calorimetry category: highly granular (imaging) + particle flow algorithms (PFA)
- PFA calorimetry: various options explored in the <u>CALICE collaboration</u>
- Focus in this talk: scintillator-SiPM prototypes and new concept on crystal ECAL

CALICE scintillator-calorimeter prototypes

2016-2023

ECAL prototype: scintillator (strip)+SiPM/CuW ScW-ECAL prototype

HCAL prototype: scintillator (tile)+SiPM/iron

- ScW-ECAL prototype: transverse $\sim 20 \times 20 \text{ cm}^2$, 32 sampling layers
 - 6,720 channels, ~350 kg, SPIROC2E (192 chips), developed in 2016-2020
- AHCAL prototype: transverse $72 \times 72 \text{ cm}^2$, 40 sampling layers
 - 12,960 channels, ~5 tons, SPIROC2E (360 chips), developed in 2018-2022

Prototypes developed within CALICE

- China: IHEP, SJTU, USTC
- Japan: U. Shinshu, U. Tokyo
- France: CNRS Omega
- Israel: Weizmann

CERN beamtest in 2022

- First successful beamtest at CERN SPS H8: Oct-Nov, 2022
 - High energy particle beams: muons, positrons and hadrons (10 160 GeV)
 - Collected data sets for detector performance and detailed shower studies
 - Beam purity issue at H8: mixture of positrons and pions/protons

Yuzhi Che, Xin Xia (IHEP)

- Imaging calorimeter: characteristics of hit patterns with $\mu^+/e^+/\pi^+$
- Positron beam: largely dominated by hadrons, barely no positrons >60 GeV
- Hadron beam: a considerably large fraction of positrons (esp. with lower energy)

Prototypes: beamtests in 2023

- CERN SPS-H2
 - μ^- beam (100 GeV): MIP calibration
 - e^- beam (10 250 GeV): calibrations of SiPMs and ASICs, EM performance
 - π^- beam (10 350 GeV): hadronic performance, validation of hadronic shower simulation
- CERN PS-T09
 - 10 GeV μ^- , 1-5 GeV e^- and 1-15 GeV π^- beams

→Overlapped energy points (10-15 GeV) at PS and SPS

Event display with ScECAL+AHCAL

• Characteristics of Fractal Dimension (FD) with different beam particles

• Only possible with imaging calorimeter (high granularity)

Xin Xia (IHEP)

- SPS-H2 beam purity >80% for electron and pion beams >30 GeV
- Significantly better beam purity at H2 than H8
- Noise events now become a dominating factor: ongoing studies

Xin Xia (IHEP)

PID studies with ANN

- PID based on ANN (ResNet): input tensor of energy deposition per AHCAL tile
- ANN results mostly consistent with Fractal Dimension (FD results)
 - Pion beam: difference within 1%; electron beam: within 5%

Siyuan Song (SJTU)

Key performance: first preliminary results

- AHCAL prototype (alone) using data sets after PID selections
 - Energy linearity within $\pm 1.5\%$
 - Energy resolution 56.2%/ $\sqrt{E(GeV)} \oplus 2.5\%$ (expected 60%/ $\sqrt{E(GeV)} \oplus 3\%$)

Critical issues (ongoing studies): non-linearity effects and corrections (SiPMs, ASICs), MC validation with data

Xin Xia (IHEP)

- Ongoing studies to address critical issues
 - Non-linearity effects and corrections: saturations in SiPM and ASIC with large signals
 - MC validation with electron and pion data: to improve MC/data consistency

Plans: ScECAL and AHCAL prototypes

- Further plans: beamtest data analysis within CEPC-Calo team
 - Performance studies with combined ScW-ECAL and AHCAL
 - Validation of Geant4 hadron interaction models, especially in 1-10 GeV
 - **PFA** clustering studies
- ScECAL and AHCAL: further R&D proposals within DRD6
 - R&D more concentrated to address critical issues at circular colliders
 - Front-end ASICs: capable for <u>continuous</u> and <u>high-rate</u> readout
 - Active cooling: optimised for continuous readout

Task/Subtask	Sensitive Material/ Absorber	DRDTs	Target Application	Current Status			
Task 1.1: Highly pixelised electromagnetic section							
Subtask 1.1.4: Sc-Ecal	Scintillating plastic strips/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed			
Task 1.2: Hadr	onic section with optical tiles						
Subtask 1.2.1: AHCAL	Scintillating plastic tiles/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed			

Table extracted from ECFA DRD6 proposal

Side Remarks

- ALL current prototypes equipped with ASICs designed for linear colliders
- Passive cooling in current prototypes

- High-granularity calorimetry with PFA
 - Requires Boson Mass Resolution <4%
- Electromagnetic calorimeter
 - Crystal option: 3D-positioning and timing
 - To improve EM energy resolution from $\sim 16\%/\sqrt{E}$ (CEPC-CDR) to $\sim 3\%/\sqrt{E}$

Hadron calorimeter

- Scintillating glass (dense and bright): in the form factor of tiles for high granularity (PFA-compatible)
- To improve hadron energy resolution from $\sim 60\%/\sqrt{E}$ (CEPC-CDR) to $30\%\sim 40\%/\sqrt{E}$

CEPC: the 4th Conceptual Detector Design

Calorimeters: crystal ECAL and ScintGlass HCAL

Higgs physics benchmarks

Baohua Qi, Dan Yu (IHEP); Zhiyu Zhao (SJTU)

Flavor physics potentials

- Crystal ECAL
 - Higher sensitivity to photons and much better EM resolution
- Potentials for π^0/γ in flavor physics

<u>B0 to pipi @CEPC(CEPC Flavor Physics/New Physics/Detector</u> <u>Technology Workshop, Fudan, 2023), Yuexin Wang</u>

ECAL Resolution	σ_{m_B} (MeV)	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$
$17\%/\sqrt{E}\oplus 1\%$	170	$\sim 1.2\%$	$\sim 21\%$
$3\%/\sqrt{E}\oplus 0.3\%$	30	$\sim 0.4\%$	$\sim 4\%$

Crystal calorimeter: designs and specs

Key Parameters	Value
MIP light yield	~200 p.e./MIP
Dynamic range	$1 - 10^5$ p.e.
Energy threshold	~0.1 MIP
Timing resolution	1ns (→100 ps?)
Response non-uniformity	<1%
Temperature stability	Stable at $\sim 0.05~^\circ\mathrm{C}$
Gap tolerance	~100 μm

- Designs and specifications
 - Based on Geant4 simulation and digitisation for crystal-SiPM
 - Stringent requirement on dynamic range
 - Need further validation with data

Crystal calorimeter: the first module

Baohua Qi (IHEP)

Uniformity along a crystal bar

- First crystal module: successful development
 - To address key issues on system integration
 - Along with test stands for crystal uniformity studies
 - To evaluate EM performance with beam data

First crystal module: 2023 CERN beamtest

Baohua Qi (IHEP)

CERN beamtest: parasitic runs at PS-T09 (May 16-23, 2023)

Combined beamtests with CEPC calorimeter prototypes

Beam particles Glass Tiles DESY Table CEPC Motorised Table for prototypes

MIP calibration with muons

- Beamtest of the first crystal module
 - 15 GeV muons for MIP calibration
 - 1-5 GeV electrons for EM shower studies
 - Data sets for validation of simulation + digitisation

DESY beamtest in October 2023

Fangyi Guo, Baohua Qi (IHEP)

- DESY TB22 electron beam (1-6 GeV) to study new prototype and key components
 - Physics Prototype of Crystal Calorimeter $(21X_0)$: system integration, EM performance
 - Long crystal bars (40/60cm): timing resolution
 - The 2nd batch of tiles from the "Glass Scintillator Collaboration" (4x4x1cm): MIP signals
 - A new SiPM-ASIC (32-ch): single photon spectrum, dynamic range

0.0

7.5

10.0 -15

-10

DESY beamtest: preliminary results

Zhiyu Zhao (SJTU)

- Long crystal bars tested with 5GeV electrons
 - Timing resolution (MIP level) vs beam hit positions: ~1.8 ns (two ends) \rightarrow ~1.3ns (single end)
 - Timing resolution vs signal amplitude (upstream crystals as pre-shower): ~0.7 ns (single end for large signals)

DESY beamtest: preliminary results

Fangyi Guo, Baohua Qi (IHEP); Zhiyu Zhao (SJTU)

- Crystal ECAL prototype: EM performance in 1-5 GeV
 - Significant impacts from momentum uncertainty of electron beam
- Short crystal bars: validation of simulation + digitisation
 - Digitisation of SiPM-crystal: the dominant factor from SiPM saturation
 - MC can well reproduce SiPM-crystal response in data (a full range of 1-5 GeV)

项目编

Plans: crystal ECAL R&D in future

- MOST Phase-3 (MOST3) project: 5-year support (Dec. 2023 Nov. 2028)
 - Task-3 in MOST3: "Homogeneous electromagnetic calorimetry"
 - To address key issues: PFA performance, optimal design, technological prototype, etc.
- ECFA DRD-on-Calorimetry (DRD6) proposal: Subtask 3.1.1 ("High-Granularity Crystal Calorimeter")

号:	2023YFA1606300	密	級:	公开
	国家重点研发计划 项目任务书			

坝日名称:	向肥重加逐奋大键技术研九		
所属专项:	大科学装置前沿研究		
指南方向(榜单任务):	1.7 高能量加速器关键技术研究(共性关键技术)		
创新分类:	基础研究		
项目管理专业机构:	科学技术部高技术研究发展中心		
推荐单位:	中国科学院		
项目牵头承担单位:	中国科学院高能物理研究 所	(公章)	
项目负责人:	王建春		
执行期限:	2023年12月至2028年11月		

课题名称:	全吸收型电磁量能器技术		
所属项目:	高能量加速器关键技术研究		
所属专项:	大科学装置前沿研究		
项目牵头承担	单位: 中国科学院高能物理研究所		
课题承担单位	上海交通大学		
课题负责人:	• 杨海军		
执行期限:	2023年12月至2028年11月		

国家重点研发计划

课题任务书

中华人民共和国科学技术部制 2023 年 12 月 20 日

中华人民共和国科学技术部制 2023 年 12 月 18 日

- MOST3 leader: Prof. Jianchun Wang (IHEP)
- Task-3 leader: Prof. Haijun Yang (SJTU)
- 4 institutions involved
 - IHEP, SIC, SJTU, UTSC

Extracted from ECFA DRD6 proposal

Project	Calorimeter type	Scintillator/WLS	Photodetector	\mathbf{DRDTs}	Target	
Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters						
HGCCAL	EM / Homogeneous	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-	
MAXICC	EM / Homogeneous	PWO, BGO, BSO	SiPMs	6.1, 6.2	e^+e^-	
Crilin	EM / Quasi-Homog.	PbF_2 , PWO-UF	SiPMs	6.2, 6.3	$\mu^+\mu^-$	

5.2.1 Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters

• Subtask 3.1.1: The *H*igh-*G*ranularity *C*rystal *Cal*orimeter (**HGCCAL**) [15] is a homogeneous calorimeter with high transverse and longitudinal segmentation based on $1 \times 1 \times 40$ cm³ crystal bars arranged in a grid structure with double-ended SiPM readout. The calorimeter is optimised for event reconstruction based on particle flow algorithms (PFA) to achieve about a $3\%\sqrt{E}$ resolution for electromagnetic showers and a $30\%\sqrt{E}$ energy resolution for jets, crucial for the physics programs of future e⁺e⁻ colliders.

Key R&D required: Mechanical design and integration, development of an EM shower-scale prototype.

Acknowledgements

- Successful beam test campaigns with strong teamwork
- A big Thank You to CALICE and CEPC calorimeter teams
- Enormous and substantial support received from CERN, CALICE and DESY

CERN SPS-H2, May 2023

CALICE spokesperson's visit

CERN PS-T9, May 2023

DESY TB22, Oct. 2023

- CEPC scintillator-based calorimeter prototypes
 - Successful beam test campaigns at CERN (SPS-H2, H8 and PS-T9) during 2022-2023
 - Collected decent statistics of data samples in the wide energy range
 - Invaluable for detector performance evaluation and shower studies
- Preliminary results look promising, detailed studies under way
 - Key performance: energy linearity and resolution
 - PID and particle-flow studies
 - Validation of Geant4 hadronic models
- High-granularity crystal calorimeter: a new option for CEPC
 - Steady progress in several aspects: simulation, optimization and prototyping
 - Combined beamtests at CERN and dedicated beamtest at DESY in 2023
 - MOST3 support: more progress and results would be expected

Backup

CERN beamtests: logistics and preparations

Calorimeters in flight

<image>

Before cabling

- Successful transportation from China to CERN in Sep. 2022
- First transported to SPS beam area H8C (PPE168)
 - Two prototypes (ScW-ECAL and AHCAL) + motorised stage
 - Impressions: cubic meters and ~10 tons
- Stored at CERN for beamtests at SPS-H2 and PS-T09 in 2023

Final transportation back to China

- Loading at CERN on June 7, 2023
- Successfully transported back to China (Hefei) on June 17, 2023

Hadronic showers in ECAL+HCAL at PS

• Hadronic showers with 10 GeV pions Test Beam AHCAL E Dep @57 MeV Multiple MIP tracks from 10 GeV muons ANN Predicts: mu 18.0 14.4 Test Beam Test Beam 10.8 AHCAL E Dep @442 MeV AHCAL E Dep @363 MeV ANN Predicts: pion 7.2 ANN Predicts: pion 3.6 18.0 0.0 18.0 14.4 40 14.4 10.8 30 10.8 0.0 3.6 7.2 10.8 14.4 18.0 7.2 20 7.2 3.6 10 3.6 0.0 0 0.0 40 40 30 0.0 3.6 7.2 10.8 14.4 18.0 30 20 0.0 3.6 7.2 10.8 Test Beam 20 10 Test Beam Test Beam AHCAL E Dep @78 MeV 10 0 AHCAL E_Dep @329 MeV ANN Predicts: mu AHCAL E Dep @443 MeV .d 14.4 18.0 ANN Predicts: pion ANN Predicts: pion 0 18.0 18.0 18.0 14.4 14.4 14.4 10.8 10.8 10.8 7.2 7.2 7.2 3.6 3.6 3.6 0.0 0.0 0.0 40 40 40 30 0.0 3.6 7.2 10.8 14.4 18.0 30 30 0.0 3.6 7.2 10.8 14.4 18.0 20 2.0 3.6 7.2 10.8 14.4 18.0 0.0 20 20 10 10 10 0 0 0

• Temperature and humidity at SPS-H2

Scintillator glass calorimeter

Sampling scintillator-steel structure: a la CALICE-AHCAL

-5

- To replace plastic scintillator with glass
- In the same form factor of tiles: fine segmentation for PFA compatibility
- Simulation studies: promising improvement in hadron energy resolution
 - Design specs: glass density, thickness; energy threshold, signal time window

Glass Scintillator R&D

- R&D within the <u>Glass Scintillator Collaboration</u>
- Targets
 - 6 g/cm³, 2000 ph/MeV, 100 ns
- Best glass sample in mm scale
 - 5.9 g/cm³, 1058 ph/MeV, 352 ns
- a³ ¹/_aboration</sub> 加乐玻璃合作组 ass Scintillator Collaboration

- Challenges
 - Increase density while keeping high light yield and transparency
 - Synthesizing large cm-scale glass tiles with good scintillation and optical properties

Scintillator glass tiles: CERN beamtest in 2023

- Successful beamtest with scintillator glass tiles
 - Combined tests with CEPC calorimeter prototypes
 - 11 pieces of large-area glass tiles: the first batch produced by the "Glass Scintillator Collaboration"
 - Clear MIP signals in all 11 glass samples with 15 GeV muons
 - 3 glass tiles showed promising MIP response

Glass scintillator (#3): 66 p.e./MIP ($29.8 \times 28.1 \times 10.2 \text{ mm}^3$)

DESY beamtest results: MIP responses

- Observed clear (quasi-)MIP signals in all glass samples
 - Typical MIP response: 70 95 p.e./MIP
 - Showed generally relatively good uniformity
- Quasi-MIP energy spectrum (5GeV electrons)
 - Different shape from CERN muon beam; also observed some structures
 - Further studies with Geant4 full optical simulation

Fractal Dimension

Particle Identification

- **Cut-based PID:** FD vs $< E_{Hit} >$. FD = $\left\langle \frac{\log(R_{\alpha,1})}{\log(\alpha)} \right\rangle$, where $R_{\alpha,1} = N_1/N_{\alpha}$
 - N_{lpha} : number of hits scaled by lpha
 - $\cdot < E_{Hit} > = E_{dep} / N_{hit}$

Oct 26, 2023

Self-similar pattern of particle showers in transverse direction