Prospects of LHCb Run-3

Jibo HE/何吉波(UCAS) 第三届强子与重味物理理论与实验联合研讨会 2024年4月5-9日@华中科技大学

- Production
- Electroweak

QCD

Large Hadron Collider

27 km

CMS

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLA

ALICE

Beauty/charm production

- Large production cross-section @ 7 TeV
 - Minibias ~60 mb
 - Charm ~6 mb
 - Beauty $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

Flavour factory!

Predominantly in forward/backward cones

- Compared to minimum bias (background)
 - Relatively high mass \rightarrow high *transverse momentum*
 - Relatively long lifetime \rightarrow large impact parameter (IP)
- Requires excellent vertexing, tracking, particleidentification

The LHCb experiment

The LHCb trigger (2018)

• LO, Hardware

- $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \text{ GeV})^2$
- $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
- $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
- $-E_{\rm T}(\gamma) > 3.0 {
 m GeV}$
- $-E_{\rm T}(h) > 3.7 {
 m GeV}$
- High Level Trigger
 - Stage1, $p_{\rm T}$, IP
 - Stage2, full selection

The LHCb trigger (Run3)

The turbo stream

LHCb luminosity prospects

- Run-3
 - Luminosity: 7 fb⁻¹ (2024) + 7 fb⁻¹ (2025)
 - Yields, compared to Run 1+2
 - Muon modes ~2
 - Hadronic modes ~4 (2 x 2 due to higher trigger eff.)

The upgraded VELO

TDR DOTPRIN

- Hybrid silicon pixel (55 x 55 μ m²)
 - Thinner RF foil, 185 μm
 - − Inner aperture reduced from $5.5 \rightarrow 3.5$ mm
- Incident in 2023, RF foil replaced now

The upgraded RICH

- RICH-1, Aerogel removed; RoC of Spherical mirror increased
 - Cherenkov angle resolution improved
 - Radiator length increased => increased photon yields
- Performance in data
 - Note 2022 required to have higher pile-up
 - Alignment/calibration not-yet the best

[LHCb-FIGURE-2023-019]

Candidates / (5 MeV/ c^2)

Particle with long lifetime, O(ns)

Reconstruction improved w/ VELO matching

Charm mixing

• Mass eigen., superpositions of flavour eigen.

$$|D_{1,2}\rangle = p |D_0\rangle \pm q |\overline{D}_0\rangle$$

Oscillations dynamics defined by

(2023) 041804] [PRL 131

$CKM-\gamma$ combination

 Simultaneous determination of $CKM-\gamma$ & charm mixing parameters

$$- \text{CKM } \gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$

- Charm mixing $x = (0.398^{+0.050}_{-0.049})\%$,

LHCb

Preliminary October 2022

0.6

x [%]

⊧

 δ_D^{K}

180

170

160

5.95

 $r_D^{K\pi}$ [%]

5.9

5.85

5.8

CPV in mixing

CPV in $B_s^0 \to \phi \phi$

- Probe NP in mixing & penguin
- Tiny CPV expected in SM: $\phi_s^{s\bar{s}s} = 0.00 \pm 0.02$ rad

New LHCb results: $\phi_s^{s\bar{s}s} = -0.074 \pm 0.069$ rad, No sign of CPV & results consistent with SM

$$B_{S}^{0} \rightarrow \mu^{+}\mu^{-} \text{ eff. } \tau$$

• $B_{S}^{0} \text{ mixing} \Rightarrow \text{ effective } \tau$
 $\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left[\frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right]$
 $A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv \frac{R_{H}^{\mu^{+}\mu^{-}} - R_{L}^{\mu^{+}\mu^{-}}}{R_{H}^{\mu^{+}\mu^{-}} + R_{L}^{\mu^{+}\mu^{-}}} \quad A_{\Delta\Gamma} = 1 \text{ in SM}$
 $y_{s} = \frac{\Delta\Gamma_{s}}{2\Gamma_{s}}$

• Measured by LHCb, CMS, ALTAS, not-yet sensitive to $A_{\Delta\Gamma}$

 $au_{\mu\mu} = 2.07 \pm 0.29 \pm 0.03$ ps

 $1.83^{+0.23}_{-0.20} \pm 0.04 \text{ ps}$ [CMS, PLB 842 (2023) 137955] $0.99^{+0.42}_{-0.07} \pm 0.17 \text{ ps}$ [ATLAS, JHEP 09 (2023) 199]

 $\rightarrow \mu^+\mu^-$

 ${\cal A}_{\Delta \Gamma}(B_s)$

Branching fraction of $b \rightarrow s \mu^+ \mu^-$

• Pattern of tensions seen, theoretical uncertainty?

15

 $q^2 \,[{\rm GeV}^2/c^4]$

10

[PRL 125 (2020) 011802]

LFU in $b \rightarrow s\ell^+\ell^-$ decays

before Dec 2022

• Deviations from SM seen by LHCb

LFU in $b \rightarrow s\ell^+\ell^-$ decays

after Dec 2022

• Deviations mostly gone

LFU in $b \rightarrow c \ell \nu$ decays

Deviations from SM seen by Babar/Belle/LHCb

Experimental status of DHB

PRL 119 (2017) 112001, PRL 121 (2018) 052002, PRL 121 (2018) 162002, CPC 44 (2020) 022001, JHEP 02 (2020) 049, JHEP 05 (2022) 038

Intrinsic charm?

- Bound to valence quarks, longer time scales
- Z associted with charm

SMOG (System for Measuring Overlap with Gas)

Simultaneous data-taking possible

The LHCb upgrade II

34

[CERN-LHCC-2018-027, 2021-012]

Prospects

• LHCb upgrades

(2025: 23 fb⁻¹, Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins	2				
$\overline{R_K \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}		0.08,0.06,0.18	-	0.02,0.02,0.05	-
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	-	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [606]	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad [44]	$14 \mathrm{mrad}$	_	$4 \mathrm{mrad}$	22 mrad [607]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	-	$9 \mathrm{mrad}$	
$\phi^{sar{s}s}_{s}$, with $B^{0}_{s} ightarrow \phi \phi$	154 mrad [94]	39 mrad	-	$11 \mathrm{mrad}$	Under study [608]
$a_{ m sl}^s$	$33 imes 10^{-4}$ [211]	$10 imes 10^{-4}$	-	$3 imes 10^{-4}$	_
$\left V_{ub} ight /\left V_{cb} ight $	6% [201]	3%	1%	1%	-
$B^0_s, B^0 { ightarrow} \mu^+ \mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	-	10%	21% [609]
$\tau_{B^0_s \to \mu^+ \mu^-}$	22% [264]	8%	_	2%	
$S_{\mu\mu}$		-	-	0.2	-
$b ightarrow c \ell^- ar{ u_l} { m LUV} { m studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	-	0.02	-
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [610]	$1.7 imes 10^{-4}$	$5.4 imes10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	$2.8 imes 10^{-4}$ [240]	$4.3 imes10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes 10^{-5}$	-
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	$3.2 imes 10^{-4}$	$4.6 imes10^{-4}$	$8.0 imes 10^{-5}$	_
$x \sin \phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	-

Summary

- LHCb is almost ready for Run-3 data-taking, and will continue delivering world-leading measurements on
 - Rare decays
 - CP violation
 - Spectroscopy ...
- Your continued and strong support always appreciated