Exotic hadron searches at ATLAS

第三届强子与重味物理理论与实验联合研讨会 2024/04/06,华中科技大学,武汉

夸克模型

传统夸克模型:

Hidden charm tetraquark

- X(3872) at Belle, Y(4260) at BABAR, Z_c⁺(3900) at BESIII, and later a number of XYZ states ...
- Charmed Tetraquark (TQ) state is often proposed for these LS
- Is it possible to have a 4-charm TQ?

$X^{\pm}(5568)$ from D0

[Phys. Rev. Lett. 117 (2016) 22003]

- In 2016, D0 claimed a potential resonance at about 5568 MeV in $B_s^0 + \pi^{\pm}$ (5.1 σ), which is ~200 MeV below $B_d^0 + K^{\pm}$ and favors a tetraquark than a molecular interpretation
- Reconstructed B_s^0 from J/ $\psi(\mu\mu)$ + ϕ (KK), and combined with a 3rd track with p_T>0.5 GeV
- To suppress background, required $p_T(B_s^0 \pi^{\pm}) > 10$ GeV, and $\Delta R(B_s^0, \pi^{\pm}) < 0.3$
- However, $X^{\pm}(5568)$ is not confirmed by other experiments

- ATLAS also searched for X(5568) in $B_s^0 + \pi^{\pm}$ spectrum using Run-1 data. Good B_s^0 reconstruction with J/ $\psi(\mu\mu)$ constrained to PDG mass
- Dimuon triggers with p_T thresholds at 4 GeV or 6 GeV
- At least one PV with at least 6 tracks, and PV with smallest d0 is chosen. B_s^0 vertex $\chi^2/N<3$ and decay time t>0.2 ps
- If more than one B_s^0 candidate, the one with smallest χ^2/N is chosen
- One track from the PV satisfying $p_T(B_s^0)>10$ GeV is combined with B_s^0 (but without ΔR cut). About 1.8 $B_s^0 \pi^{\pm}$ candidates per event, all are retained

$X^{\pm}(5568)$ search at ATLAS

- Two main backgrounds are modelled separately
 - 1. $B_s^0 \pi^{\pm}$ candidates containing a fake B_s^0 modelled by data in the B_s^0 mass sidebands having an average mass of B_s^0
 - 2. Events containing a real B_s^0 but do not originate from signal X(5568) modelled by MC with B_s^0 p_T tuned to data
- Signal is modelled by S-wave BW with mass-dependent width, convoluted with resolution. Fit to spectrum of $m(J/\psi KK\pi) m(J/\psi KK) + m(B_s^0)$

• Since no significant signal is observed, 95% CL limits are set on the production ratio $\rho_{\rm X}$ in a range of X mass

$$\rho_X \equiv \frac{\sigma(pp \to X + \text{anything}) \times \mathcal{B}(X \to B_s^0 \pi^{\pm})}{\sigma(pp \to B_s^0 + \text{anything})} = \frac{N(X)}{N(B_s^0)} \times \frac{1}{\epsilon^{\text{rel}}(X)}$$

• Relative efficiency ϵ^{rel} between $B_s^0 \pi^{\pm} + X$ and $B_s^0 + X$ is driven by the extra pion. Obtained $\rho_X < 0.015$ (0.016) for $p_T(B_s^0) > 10$ (15) GeV at 95% CL

All heavy四夸克态

 $(cc)_3 * - (\overline{cc})_3$

L	S	JPC			Mass (GeV)
1	0 1 2	1 ⁻ 0 ⁻ 1 ⁻	 +, 1 ⁻⁺ , 2 ⁻⁺ -, 2 , 3	6.55	
2	0 1 2	2+ 1+ 0+	+ -, 2+-, 3+- +, 1++, 2++	, 3 ⁺⁺ , 4 ⁺⁺	6.78
3	0 1 2	3- 2- 1-	- +. 3 ⁻⁺ . 4 ⁻⁺ -, 2 , 3	, 4, 5	6.98
			$(cc)_{\underline{6}} - \overline{(cc)}_{\underline{6}}$	k	<u> </u>
	L	S	JPC	Mass (GeV)	
	1 2 3	0 0 0	$1^{}$ 2 ⁺⁺ 3	6.82 7.15 7.41	

- 首次提到4c态(6.2 GeV, 1975): Prog. of Theo. Phys. Vol. 54, No. 2
- 首次计算4c态质量(紧凑态模型):Z.
 Phys. C 7 (1981) 317

Fig. 2

Fig.4

和重+轻夸克奇特态系统 很不一样

LHCb initial results

• In 2020, LHCb claimed evidence for a narrow in the di- J/ψ mass spectrum from the 4-muon final state, presumably coming from 4-charm quark state.

Reconstruction of 4μ vertex at ATLAS

- We first find vertices of J/ψ candidates and geometrically fit the 4 tracks of a J/ψ pair to a common vertex. We revertex two J/ψ tracks with a mass constraint, improving the 4μ mass resolution from ~95 MeV to ~20 MeV
- Use sum of χ²/N of two charmonia and 4µ vertices to select the best 4µ candidate per event

Signal and Backgrounds

- Signal process
 - Signal samples for process: $pp \rightarrow X \rightarrow di J/\psi \rightarrow 4\mu$

- TQ mass = 6.9 GeV, width = 0.1 GeV, spin = 0 with JHU

- Background processes:
 - Prompt di- J/ψ background: Single Parton Scattering (SPS), Double Parton Scattering (DPS) with Pythia8
 - Non prompt di- J/ψ background: $b\bar{b} \rightarrow J/\psi J/\psi$ with Pythia8
 - Single J/ψ background
 - Prompt or nonprompt J/ψ , plus fake muons from the primary vertex
 - Non-peaking background containing no real J/ψ candidates

Single J/ψ background and non-peaking background are collectively called "others", and are estimated from data by reversing one muon's ID

SPS and DPS backgrounds

• Both color singlet and color octet processes are included for di-charmonium SPS, dominated by gluon–gluon interactions. As a result, the two J/ ψ 's from SPS are highly correlated

- DPS populates the reatively low-p_T region, and becomes more important with larger collider energy, as the parton density increases at small x
- If neglecting correlations between partons (effective cross section approximation):

$$\sigma_{\rm eff} = \frac{1}{2} \frac{\sigma_{J/\psi}^2}{\sigma_{\rm DPS}^{J/\psi, J/\psi}}$$

DPS: μ^+ $\mu^ \mu^+$ $\mu^ \mu^+$ μ^-

Event selection

Signal region	Control region	Non-prompt region				
Di-muon or tri-muon triggers, oppositely charged muons from each charmonium, <i>loose</i> muons, $p_T^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons, $m_{J/\psi} \in [2.94, 3.25]$ GeV, or $m_{\psi(2S)} \in [3.56, 3.80]$ GeV, Loose vertex requirements $\chi^2_{4\mu}/N < 40$ ($N = 5$) and $\chi^2_{di-\mu}/N < 100$ ($N = 2$),						
Vertex $\chi^2_{4\mu}/N < 3$, $L^{4\mu}_{xy} < 0.2$ mm, $ L^{\text{di-}\mu}_{xy} < 0.3$ mm, $m_{4\mu} < 11$ GeV, Vertex $\chi^2_{4\mu}/N > 6$,						
$\Delta R < 0.25$ between charmonia	$\Delta R \ge 0.25$ between charmonia	$ $ or $ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$				

• Signal region cuts:

- di-µ or tri-µ triggers per year for maximum efficiency
- 4 muons with minimum p_T of 3 GeV within accepance
- Vertex χ^2/N cut, J/ ψ mass window cuts
- L_{xy} (distance between J/ ψ and PV vertices) cut
- $\Delta R < 0.25$ of two J/ ψ 's
- SPS and DPS are estimated by MC, and are kinematically corrected by SPS and DPS enriched 4μ mass sidebands (SPS and DPS CRs)
- Non-prompt J/ ψ background is estimated with data by reversing the L_{xy} or χ^2 /N cut

SPS and DPS CRs in di-J/ ψ channel

- Discrepancies in some kinematics distributions are resolved by event reweighting in the SPS and DPS CRs without ΔR cut
 - ✓ SPS CR: 7.5 GeV < $m_{4\mu}$ < 12.0 GeV
 - ✓ DPS CR: 14.0 GeV < $m_{4\mu}$ < 24.5 GeV
- After reweighting, other kinematic distributions are also improved

SPS and DPS CRs in J/ ψ + ψ (2S) channel

- Larger "others" background due to smaller signal/background ratio for $\psi(2S)$
- SPS and DPS are also corrected through reweighting method (after "others" corrections in its dedicated CR – J/ψ mass sidebands)

Control region

- The control region has the same cuts as the signal region, but with $\Delta R > 0.25$ between two J/ ψ 's. It serves two purposes
 - ✓ Correct and validate the SPS 4 μ mass shape. Pythia8 *pT0timesMPI* parameter is first tuned to data in SPS CR in $m_{4\mu}$ > 7.5 GeV, and validate n the control region with $m_{4\mu}$ < 7.5 GeV
 - ✓ The total background yields in the CR are used in the fit to constrain the background yields in the signal region

Maximum Likelihood

- Unbinned maximum likelihood fits are made to extract the signal information from data in the 4µ mass spectra
- The likelihood reads:

$$\mathcal{L} = \mathcal{L}_{SR}\left(\vec{\alpha}, \vec{\beta}\right) \cdot \mathcal{L}_{CR}\left(\vec{\alpha}\right) \cdot \prod_{j=1}^{K} G\left(\alpha'_{j}; \alpha_{j}, \sigma_{j}\right),$$

$$\mathcal{L}_{SR} = \frac{(s+b)^{N}}{N!} e^{-(s+b)} \prod_{i=1}^{N} \left[\frac{s}{s+b} f_{s}(x_{i}; \vec{\alpha}, \vec{\beta}) + \frac{b}{s+b} f_{b}(x_{i}; \vec{\alpha}) \right], \quad \mathcal{L}_{CR} = \frac{b_{CR}^{N_{CR}}}{N_{CR}!} e^{-b_{CR}}, \text{ with } b_{CR} = b \cdot t(\alpha_{t}),$$

 β are the parameters of interest, α are the nuisance parameters (NP) accounting for systematics shared between the two regions

- Each NP has a Gaussian constraint with a subsidiary measurement α'_j , a mean α_j and a width σ_j
- In the di-J/ ψ channel, feed-down from J/ ψ + ψ (2S) is included as an additional background

Fit models

• The signal probability density function (PDF) in L_{SR} consists of several interfering S-wave Breit-Wigner (BW) peaks convoluted with a mass resolution function

$$f_s(x) = \left| \sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\alpha),$$

• In general, the BW function for orbital angular momentum L is (F_L is the Blatt-Weisskopf form factor, $R = 3 \text{ GeV}^{-1}$)

$$BW(x;m_0,\Gamma_0) = \frac{\left(\frac{q}{q_0}\right)^L \frac{F_L(Rq)}{F_L(Rq_0)}}{m_0^2 - x^2 - im_0\Gamma(x)}, \qquad \Gamma(x) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{m_0}{x} \frac{F_L^2(Rq)}{F_L^2(Rq_0)}.$$

• For S-wave, this is simplified to

$$BW(x;m_0,\Gamma_0) = \frac{1}{m_0^2 - x^2 - im_0\Gamma(x)} = \frac{1}{m_0^2 - x^2 - im_0\Gamma_0\frac{m_0}{x}\sqrt{\frac{x^2 - 4m_{J/\psi}^2}{m_0^2 - 4m_{J/\psi}^2}}}$$

Fit models in di-J/ ψ channel

- In the di-J/ ψ channel, two models are considered
 - Model A with three interfering S-wave resonances

$$f_s(x) = \left| \sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta)$$

where z_1 is fixed to unity with zero phase, and R is the mass resolution function that the BWs convolute with

• Model B with two S-wave resonances. The first interferes with SPS, while the second is standalone

$$f(x) = \left(\left| \frac{z_0}{m_0^2 - x^2 - im_0\Gamma_0(x)} + A(x)e^{i\phi} \right|^2 + \left| \frac{z_2}{m_2^2 - x^2 - im_2\Gamma_2(x)} \right|^2 \right) \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\theta)$$

where $|A(x)|^2$ reproduces the non-interfering SPS background from the MC prediction

Fit result in di-J/ ψ channel

di- J/ψ	model A	model B		
m_0	$6.41 \pm 0.08^{+0.08}_{-0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$		
Γ_0	$0.59 \pm 0.35^{+0.12}_{-0.20}$	$0.44 \pm 0.05 ^{+0.06}_{-0.05}$		
m_1	$6.63 \pm 0.05^{+0.08}_{-0.01}$			
Γ_1	$0.35 \pm 0.11^{+0.11}_{-0.04}$	—		
m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$		
Γ_2	$0.11 \pm 0.05 \substack{+0.02 \\ -0.01}$	$0.15 \pm 0.03 \pm 0.01$		
$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$	_		

Fit models in J/ ψ + ψ (2S) channel

- In the J/ ψ + ψ (2S) channel, two models are also considered
 - Model α with two resonances. The first is the same as Model A in di-J/ ψ channel (parameters fixed), and second is standalone

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{m_i^2 - x^2 - im_i \Gamma_i(x)} \right|^2 + \left| \frac{z_3}{m_3^2 - x^2 - im_3 \Gamma_3(x)} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\theta)$$

- Model β with a single resonance
- The feed-down background normalization is obtained as

$$N_{\rm fd} = \frac{\mathcal{B}'\epsilon'}{\mathcal{B}\left(\psi(2S) \to \mu\mu\right)\epsilon} N$$

where $\mathcal{B}' = [\mathcal{B}(\psi(2S) \to J/\psi + X) + \mathcal{B}(\psi(2S) \to \gamma \chi_{cJ}) \mathcal{B}(\chi_{cJ} \to \gamma J/\psi)] \mathcal{B}(J/\psi \to \mu \mu)$

Reconstruction systematics largely cancel each others in the ratio. The only significant systematics comes from the fitted error on signal yields N in the J/ ψ + ψ (2S) channel

Fit result in J/ ψ + ψ (2S) channel

Systematics

Since normalizations are freely floating, only systematics affecting the signal and background shapes are considered:

- muon momentum
- J/ ψ mass resolution
- MC simulation statistics
- SPS theory and di-charmonium p_T
- background transfer factor
- "others" non-closure
- P and D-wave BW
- Feed-down

Systematic	di- J/ψ		J/ψ + ψ (2S)	
Uncertainties (MeV)	m_2	Γ_2	m_3	Γ_3
Muon calibration	±6	±7	<1	±1
SPS model parameter	±7	±7	<1	
SPS di-charmonium $p_{\rm T}$	±7	± 8	<1	
Background MC sample size	±7	± 8	±1	<1
Mass resolution	±4	-3	-1	+2 -4
Fit bias	-13	+10	+9 -10	+50 -16
Shape inconsistency	<1		±4	± 6
Transfer factor			±5	±23
Presence of 4th resonance	<1			
Feed-down	$+4 +6 \\ -1 -2$			
Interference of 4th resonance	_		-32	-11
P and D-wave BW	+9	+19	<1	±1
ΔR and muon $p_{\rm T}$ requirements	+3	+6 -4	+1 -2	-2
Lower resonance shape	—		+3 -7	+31 -34

Tetraquark in Heavy Ion collisions?

 Comparing exotic hadron production rates in pp and Pb-Pb collisions, one can infer the size of the exotic hadron and its stability, since states with large size tend to be melted by the quark matter

Summary

- ATLAS is not only a discovery machine for high energy physics, but can also make low energy hadron measurements owing to its excellent tracking
- Hadron colliders are important for new hadron searches and for understanding QCD. New states should better be checked in different experiments. One example is X(5568) which was excluded by ATLAS
- ATLAS seached for potential $cc\bar{c}\bar{c}$ tetraquarks decaying into a pair of J/ ψ 's, or into J/ ψ + ψ (2S), in the 4 μ final state
 - Two models are used to fit the significant excess in the di-J/ψ channel, one of which is consistent with X(6900) by LHCb and CMS
 - ✓ Two models are used to fit the excess in the J/ ψ + ψ (2S) channel. More data is needed to measure its parameters
- We look forward to new results combing Run-3 of LHC