Progress on Energy Correlators: Theory, Phenomenology, and Experiments

第三届强子与重味物理理论与实验联合研讨会 2024年4月6日

The R-ratio in e+e- annihilation

 $R = \frac{\sigma(e^+e^- \to X)}{\sigma(e^+e^- \to \mu^+\mu^-)}$

 $\sigma(e^+e^- \to X) = \int d^4x \, e^{iqx} \langle \Omega | J^{\mu}(x) J^{\dagger}_{\mu}(0) | \Omega \rangle$

One of the most important observables in particle physics!

- Cleanest definition in terms of operators. Allows first principle calculation in Lattice QCD
 - Fully inclusive <=> contains less information

Energy Correlators (EECs)

k-point Energy Correlator: Measurement of k-point angular correlation, weighted by product of energy of k particles, inclusive in all-particle combination $\mathbf{\Lambda}$

$$\Sigma(\{n\}) = \int d^4x \, e^{iqx} \langle \Omega | J^{\mu}(x) \mathcal{E}(n_1) \cdots \mathcal{E}(n_k) J^{\dagger}_{\mu}(0) | \Omega \rangle$$
Hadron level observable
Energy operator

Hadron level observable Sufficiently inclusive to allows perturbation calculations using quarks and gluons

Basham, Brown, Ellis, Love, 1977-1978

The trilogy

Community activities

A burst of dedicated workshops in the past and coming years:

- Mainz Institute of Theoretical Physics: Energy Correlators at the Collider Frontier, 2024
- Theory and Gravity, 2024
- Kavli Institute of Theoretical Physics: Frontiers of Quark-Gluon Matter, 2025

Snowmass Theory Frontier Report

learning and artificial intelligence.

• CCNU, Wuhan: One-day workshop on energy-energy correlator in high-energy collisions, 2023 • Simmons Center for Geometry and Physics: Energy Operators in Particle Physics, Quantum Field

• An explosion of theoretical activity in collider phenomenology has led to many new collider observables including many forms of jet substructure and the emerging field of multi-point correlators, employing widespread innovations in computational theory to leverage machine 2211.05772

The Energy Operator

- A local version appears in the construction of wormhole and time travel (Morris, Thorne, 1988)
- In collider context: (Sveshnikov, Tkachov, 1995)

$$\langle \Psi | T_{\mu\nu} | \Psi \rangle \ge 0$$

 $\langle \Psi | \mathcal{E}(n) | \Psi \rangle \ge 0$

• Besides central in collider physics, appears in various other context:

Einstein gravity emergence of causality gravitational shockwave wormholes asymptotic symmetries Quantum chaos modular Hamiltonian anomaly

Analytic Simplicity

EEC is the only event shape observable

Conformal collider and lightray OPE

Hofman, Maldacena, 2008; Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 2019

 $\lim_{n_2 \to n_1} \langle \mathcal{E}(n_1) \mathcal{E}(n_2) \rangle_{\Psi} = ?$

Polchinski: There is a lot of QCD data, can you see this (scaling behavior) there?

5-181105

· IF STANTE

2 - M 7675

47:13 / 1:42:43

But they didn't study the small angles. And I asked him whether they had a good reason for not studying the small angles and they said well we didn't know the resummation formula...

https://online.kitp.ucsb.edu/online/strings09/maldacena/rm/qt.html

H

Courses treeldone

10

Resummation formula in QCD

Evolution for EEC, valid to all orders

$$\frac{d}{d \ln \mu^2} J_N(\theta, \mu) = \int_0^1 dx \, x^N J_N(\theta x^2, \mu) P_T(x, \mu)$$

correlation of observable and convolution variables obstruct complete factorization

reciprocity relation:

Dixon, Moult, HXZ, 2019; H. Chen, Moult, X.Y. Zhang, HXZ, 2020; H. Chen, 2023

conventional DGLAP evolution for parton fragmentation

$$\frac{d}{d\ln\mu^2} D_N(\mu) = D_N(\mu) \int_0^1 dx \, x^N P_T(x,\mu)$$

Basso, Korchemsky, 2006 H. Chen, T.Z. Yang, Y.J. Zhu, HXZ, 2021

 $\gamma_S(N) = \gamma_T(N + 2\gamma_S(N))$

moment of spacelike DGLAP kernel

moment of timelike DGLAP kernel

Theory re-inspire experiments

1994

theorists kick in

"Soon I will be able to answer one of the fundamental questions about the structure of the universe: just how long is a piece of string?"

A re-analysis of LEP data is underway by a **MIT group using tracks**

"Jets elucidate how partons evolve into hadrons"

high p_T

https://cms.cern/news/jets-elucidate-how-partons-evolve-hadrons

see also Komiske, Moult, Thaler, HXZ, 2022

Observation of two scaling region in jet fragmentation for the first time!

Asymptotic freedom in your face

 $slope = \alpha_s(p_T \langle \theta \rangle) + \mathcal{O}(\alpha_s^2)$ **Reduction of slope at higher energy => asymptotic freedom!**

Strong coupling from energy correlators

jet-mass distribution. We find that quark jets and gluon jets have similar sensitivity to α_s , and emphasize that experimentally distinguishing quark and gluon jets is not required for an α_s measurement. We conclude that measuring α_s to the 10% level is feasible now, and with improvements in theory a 5% level measurement is possible. Getting down to the 1% level to be competitive with other state-of-the-art measurements will be challenging.

Hannesdottir, Pathak, Schwartz, Stewart, 2022

 $\alpha_s(m_Z) = 0.1229^{+0.0014}_{-0.0012} (\text{stat})^{+0.0030}_{-0.0033} (\text{theo})^{+0.0023}_{-0.0036} (\text{exp})$

Matt Schwartz

Congratulations on the α s measurement. 4% uncertainty seems shockingly small... was there much discussion after the talk?

Energy correlators for top physics

Energy correlators for spin physics

Spin correlation is mostly conveniently measured using Energy Correlators

perturbative calculable + No ambiguity in definition of angle

The nucleon EEC: new angle to hadron structure

inclusive DIS

increasing in detecting techniques

nEEC probing the angular (transverse) structure of nucleon

H.Y. Liu, X.H. Liu, J.C. Pan, F. Yuan, H.X. Zhu, 2023

A Different Angle on the Color Glass Condensate **APS Synopsis**

June 12, 2023 • Physics 16, s89

New Method Could Explore Gluon Saturation at the Future Electron-Ion Collider DOE Science Highlight

Theorists propose nucleon energy-energy correlator as a probe to the gluon saturation phenomena at the future electron-ion collider.

Connecting nEEC to TMD PDFs

Nucleon Energy Correlator

 $\int dy^- e^{-ixy^-P^+} \langle P, s | \bar{\psi}(y^-) \mathcal{E}(\Omega) \frac{\Gamma}{2} \psi(0) | P, s \rangle$

(quark) TMD PDF

$$\int dy^- e^{-ixy^-P^+} \langle P, s | \bar{\psi}(y^-, \mathbf{y}_\perp) \frac{\Gamma}{2} \psi(0) | P, s \rangle$$

The transverse gauge link leads to interesting physics

the Sivers effect $\vec{s} \times \vec{y}_{\perp}$

Connecting nEEC to TMD PDFs

(quark) TMD PDF

$$\int dy^- e^{-ixy^-P^+} \langle P, s | \bar{\psi}(y^-, \mathbf{y}_\perp) \frac{\Gamma}{2} \psi(0) | P, s \rangle$$

The transverse gauge link leads to interesting physics

the Sivers effect $\vec{s} \times \vec{y}_{\perp}$

Covering the full 4π angle at EIC

Full phase space coverage in e+eexhibit rich dynamics.

Now the same can be done for DIS!

Theorizing the track measurement

Asymmetric EEC on tracks J DELPHI **Charged Particles** 0.100 **LO** Y.B. Li et al., 2021 0.010 Q = 91.2 GeV0.001 0.0040 on 0.0035 0.0030 10^{-4} AEE 0.0025 0.0020 -0.30 -0.28 -0.26 -0.24 -0.220.0 -0.8 -0.4 -0.2 -1.0 -0.6 cosx

First NLO calculation with tracks!

track function: probability for finding charged hadrons with total momentum fraction x

$$T_q(x) = \int \mathrm{d}y^+ \mathrm{d}^{d-2} y_\perp e^{\mathrm{i}k^- y^+/2} \sum_X \delta\left(x - \frac{P_R^-}{k^-}
ight) \frac{1}{2N_c} \mathrm{tr}\left[rac{\gamma^-}{2} \langle 0|\psi(y^+, 0, y_\perp)|X
angle \langle X_\perp | x \rangle \right]$$

Chang, Procura, Thaler, Waalewijn, 2013

21

Energy correlators for future colliders

e+e- below 10 GeV: explore the transition from quarks to hadrons in unprecedented details

e+e- above 200 GeV: open up the perturbative window for numerous precision measurements

Conclusion

- Energy correlators bridge the gap between quark/gluon and hadron dynamics
- Significant progress in the past few years. It has been transformed from a theoretical concept to actual measurements in experiment
- Many interesting aspects not covered: its numerous roles in formal theory; heavy ion collisions; non-perturbative corrections, ...
- Many exciting opportunities to be explored!

Thank you for your attention!