Probing hyperon EDM at BESIII and STCF

傅金林 中国科学院大学

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744 X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834 J. Fu *et al.* Phys.Rev.D108,L091301(2023)

第三届强子与重味物理理论与实验联合研讨会 2024年4月5-9日

Electric Dipole Moments

Quantum system: ensemble of particles, Λ , Σ , Ξ ...

$$\begin{split} \boldsymbol{\delta} &= d\,\mu_{\scriptscriptstyle B}\,\frac{\mathbf{s}}{2} & \boldsymbol{\mu} = g\,\mu_{\scriptscriptstyle B}\,\frac{\mathbf{s}}{2} \\ \text{Spin polarization vector:} \quad \boldsymbol{s} &= \mathrm{Tr}\left[\rho\boldsymbol{\sigma}\right] = \frac{2}{\hbar}\langle\hat{\boldsymbol{S}}\rangle \\ \text{Magneton:} \quad \mu_{\mathrm{B}} \\ \text{Gyro-electric(magnetic) factor:} \quad \boldsymbol{d} \mid \boldsymbol{g} \mid \end{split}$$

Non relativistic Hamiltonian

$$\mathcal{H} = -oldsymbol{\mu} \cdot oldsymbol{B} - oldsymbol{\delta} \cdot oldsymbol{E}$$
 $\mathcal{H} \xrightarrow{\mathrm{P,T}} \mathcal{H} = -oldsymbol{\mu} \cdot oldsymbol{B} + oldsymbol{\delta} \cdot oldsymbol{E}$

EDM violates P and T, thus CP through CPT theorem

Why EDM

CPV is a necessary condition to explain the matter dominated universe (Sakahrov condition), but CKM mechanism not sufficient and New Physics (NP) is required

EDM is extremely small in SM. NP at the weak scale, TeV scale and beyond can also induce EDMs.

$$d \approx (10^{-16} e \,\mathrm{cm}) \left(\frac{v}{\Lambda}\right)^2 (\sin \phi_{\mathrm{CPV}}) (y_f F)$$

For hyperon, strange quark may have a special interaction with NP, resulting in large EDM effect

Fundamental parameters and EDM

Status of EDM measurements

How to access EDM

Direct approach – spin procession $\frac{d\mathbf{s}}{dt} = \mathbf{s} \times \mathbf{\Omega} \qquad \mathbf{\Omega} = \mathbf{\Omega}_{\mathrm{MDM}} + \mathbf{\Omega}_{\mathrm{EDM}} + \mathbf{\Omega}_{\mathrm{TH}}$

$$\boldsymbol{\Omega}_{\mathrm{MDM}} = \frac{\underline{g}\mu_B}{\hbar} \left(\mathbf{B} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{B}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{E} \right)$$
$$\boldsymbol{\Omega}_{\mathrm{EDM}} = \frac{\underline{d}\mu_B}{\hbar} \left(\mathbf{E} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{E}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{B} \right)$$

Sizable polarized particle source

Enough lifetime to process

Significant challenge for short-lived fermions

How to access EDM

Indirect approach

i.e. measure time-like dipole form factor ($q^2 \neq 0$)

$$L_{\text{dipole}} = i \frac{d_{\Lambda}}{2} \bar{\Lambda} \sigma_{\mu\nu} \gamma_5 \Lambda F^{\mu\nu}$$
$$L_{c-\Lambda} = -\frac{2}{3M^2} e d_{\Lambda} (p_1^{\mu} - p_2^{\mu}) \bar{c} \gamma_{\mu} c \bar{\Lambda} i \gamma_5 \Lambda$$

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744 X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

Benefits from BESIII experiment

 10^{6} hyperon anti-hyperon pairs reconstructed from $10^{10} J/\psi$ decays Typically with a purity exceeding 95% The statistics increased by several orders of magnitude at future STCF

J/ψ production

 $\Box J/\psi$ polarization with unpolarized beam

 $P_L = (\rho_{++} - \rho_{--})/(\rho_{++} + \rho_{--}) \quad \rho_{m,m'} \text{ spin density matrix for } J/\psi$

$$P_L = \mathcal{A}_{LR}^0 = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{-\sin^2 \theta_W^{\text{eff}} + 3/8}{2\sin^2 \theta_W^{\text{eff}} \cos^2 \theta_W^{\text{eff}}} \frac{M_{J/\psi}^2}{m_Z^2}$$

 \Box With longitudinally polarized electron beam P_e at STCF

$$\xi = \frac{\sigma_R (1 + P_e)/2 - \sigma_L (1 - P_e)/2}{\sigma_R (1 + P_e)/2 + \sigma_L (1 - P_e)/2} = \frac{\mathcal{A}_{LR}^0 + P_e}{1 + P_e \mathcal{A}_{LR}^0} \approx P_e$$

dominated by P_e

provides a way for precise measurement of beam polarization

 γZ

B

e+

Amplitude for J/ψ decay to hyperon pair

 \square Polarization effects encoded in hyperon anti-hyperon pair (Λ,Σ,Ξ) spin density matrix

$$R(\lambda_1, \lambda_2; \lambda'_1, \lambda'_2) \propto \sum_{m,m'} \rho_{m,m'} d^{j=1}_{m,\lambda_1 - \lambda_2}(\theta) d^{j=1}_{m',\lambda'_1 - \lambda'_2}(\theta) \times \mathcal{M}_{\lambda_1,\lambda_2} \mathcal{M}^*_{\lambda'_1,\lambda'_2} \delta_{m,m'},$$

Lorentz invariance introduces P and CP violating form factors in helicity amplitude

$$\mathcal{M}_{\lambda_1,\lambda_2} = \epsilon_{\mu} (\lambda_1 - \lambda_2) \bar{u}(\lambda_1, p_1) (F_V \gamma^{\mu} + \frac{\imath}{2M_{\Lambda}} \sigma^{\mu\nu} q_{\nu} H_{\sigma} + \gamma^{\mu} \gamma^5 F_A + \sigma^{\mu\nu} \gamma^5 q_{\nu} H_T) v(\lambda_2, p_2).$$

X.G.He, J.P. Ma, Bruce McKellar, Phys.Rev.D47(1993)1744

X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

Form factor H_T and F_A

Phys.Rev.D47(1993)1744 Phys.Lett.B 839(2023)137834

Take hyperon EDM as the major source for H_T

Neglect q dependence, d_B for hyperon EDM

 \Box Primarily from Z-boson exchange between $c\overline{c}$ and light quark pairs

$$F_{A} \approx -\frac{1}{6} Dg_{V} \frac{g^{2}}{4 \cos^{2} \theta_{W}^{\text{eff}}} \frac{1 - 8 \sin^{2} \theta_{W}^{\text{eff}}/3}{m_{Z}^{2}} \approx -1.07 \times 10^{-6}$$

Form factor F_V and H_{σ}

Hyperon polarization parameters

 \Box $|G_1|$ can be extracted from the measurement of $\Gamma(J/\psi \rightarrow B\overline{B})$

Angular distribution

$$\frac{d\sigma}{d\Omega} \propto \sum_{[\lambda]} R(\lambda_1, \lambda_2; \lambda'_1, \lambda'_2)$$

$$D^{*j=1/2}_{\lambda_1, \lambda_3}(\phi_1, \theta_1) D^{j=1/2}_{\lambda'_1, \lambda'_3}(\phi_1, \theta_1) \mathcal{H}^*_{\lambda_3} \mathcal{H}_{\lambda'_3}$$

$$D^{*j=1/2}_{\lambda_2, \lambda_4}(\phi_2, \theta_2) D^{j=1/2}_{\lambda'_2, \lambda'_4}(\phi_2, \theta_2) \bar{\mathcal{H}}^*_{\lambda_4} \bar{\mathcal{H}}_{\lambda'_4}$$

$$D^{*j=1/2}_{\lambda_3, \lambda_5}(\phi_3, \theta_3) D^{j=1/2}_{\lambda'_3, \lambda_5}(\phi_3, \theta_3) \mathcal{F}^*_{\lambda_5} \mathcal{F}_{\lambda_5}$$

$$D^{*j=1/2}_{\lambda_4, \lambda_6}(\phi_4, \theta_4) D^{j=1/2}_{\lambda'_4, \lambda_6}(\phi_4, \theta_4) \bar{\mathcal{F}}^*_{\lambda_6} \bar{\mathcal{F}}_{\lambda_6}$$

 \mathcal{H} and \mathcal{F} parameterize dynamics of weak decay i.e. $\Xi \to \Lambda \pi$ and $\Lambda \to p\pi$

Type I decay obtained by retaining only $heta_{1,2}$ and $\phi_{1,2}$

Type I

$$e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda} \qquad \Lambda \rightarrow p\pi^-$$

 $e^+e^- \rightarrow J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^- \qquad \Sigma^+ \rightarrow p\pi^0$

Type II

$$e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+ \quad \Xi^- \rightarrow \Lambda \pi^-$$

 $e^+e^- \rightarrow J/\psi \rightarrow \Xi^0\overline{\Xi}^0 \quad \Xi^0 \rightarrow \Lambda \pi^0$

CPV in hyperon decay

$$\mathbf{P}_{d} = \frac{\left(\alpha_{Y} + \mathbf{P}_{Y} \cdot \hat{\mathbf{p}}_{d}\right) \hat{\mathbf{p}}_{d} + \beta_{Y} \mathbf{P}_{Y} \times \hat{\mathbf{p}}_{d} + \gamma_{Y} \hat{\mathbf{p}}_{d} \times \left(\mathbf{P}_{Y} \times \hat{\mathbf{p}}_{d}\right)}{\left(1 + \alpha_{Y} \mathbf{P}_{Y} \cdot \hat{\mathbf{p}}_{d}\right)}$$

$$\alpha_Y = \frac{2 \operatorname{Re} \left(S^* P \right)}{|S|^2 + |P|^2}$$
$$\beta_Y = \frac{2 \operatorname{Im} \left(S^* P \right)}{|S|^2 + |P|^2}$$
$$\gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

$$\beta_Y = \sqrt{1 - \alpha_Y^2} \sin \phi_Y$$
$$\gamma_Y = \sqrt{1 - \alpha_Y^2} \cos \phi_Y$$

CPV observables

$$A_{CP}^{Y} = (\alpha_{Y} + \bar{\alpha}_{Y})/(\alpha_{Y} - \bar{\alpha}_{Y})$$

$$\Delta \phi_{CP}^{Y} = (\phi_{Y} + \bar{\phi}_{Y})/2$$

Sensitivity studies

- Sensitivity assessed from 500 psudoexperiments generated and fitted by using a probability density function based on the full angular distribution
- C Expected yields, Form Factors and decay parameters are fixed to known values for generation: G_1 , $\alpha_{J/\psi}$, $\Delta \Phi$, F_A , H_T , α_B , $\alpha_{\overline{B}}$, ϕ_B and $\phi_{\overline{B}}$

 $\square P_L \sim 10^{-4}$ (80%) for unpolarized (longitudinally polarized) electron beam

Decay Channel	$J/\psi ightarrow \Lambda ar{\Lambda}$	$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	$J/\psi \to \Xi^- \bar{\Xi}^+$	$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$
$B_{tag}/(\times 10^{-4})$ [29]	7.77	2.78	3.98	4.65
$\epsilon_{tag} / \% \ [22, 28, 30, 31]$	40	25	15	7
$\overline{N_{tag}^{evt}/(\times 10^5)}$ (BESIII)	31.3	7.0	6.0	3.3
$N_{tag}^{evt}/(\times 10^8)(\text{STCF})$ [17]	10.6	2.4	2.0	1.1

Sensitivity for EDM

Phys.Rev.D108,L091301(2023)

Sensitivity for F_A and $\sin^2 \theta_W^{\text{eff}}$

Phys.Rev.D108,L091301(2023)

(c)Sensitivity of $|F_A|$ and $\sin^2 \theta_W^{\text{eff}}$

SM:
$$F_A \sim 10^{-6}$$

 $\sin^2 \theta_W^{\text{eff}} \sim 0.235$

STCF:

Weak mixing angle at $Q = M_{J/w}$ can be determined at the level of 8×10^{-3}

Sensitivity for P_L and $\sin^2 \theta_W^{\text{eff}}$

Phys.Rev.D108,L091301(2023)

reminder:
$$P_L = \mathcal{A}_{LR}^0 = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{-\sin^2 \theta_W^{\text{eff}} + 3/8}{2\sin^2 \theta_W^{\text{eff}} \cos^2 \theta_W^{\text{eff}}} \frac{M_{J/\psi}^2}{m_Z^2}$$

(d)Sensitivity of P_L

SM:
$$P_L \sim 10^{-4}$$

 $\sin^2 \theta_W^{\text{eff}} \sim 0.235$

STCF:

Weak mixing angle at $Q = M_{J/\psi}$ can be determined at the level of 2×10^{-2}

Improved sensitivity for $\sin^2 \theta_{W_P}^{\text{eff}}$

Phys.Rev.D108,L091301(2023)

Weak mixing angle shared by F_A and P_L

Sensitivity improved at the level 5×10^{-3}

Figure 1

(a) $\sin^2 \theta_W(\mu)_{\overline{\text{MS}}}$ (29) with an updated atomic parity violation (APV) result. (b) $\sin^2 \theta_W(Q^2)$, a one-loop calculation dominated by $\gamma - Z^0$ mixing (52). The red and green curves represent the boson and fermion contributions, respectively.

K.S.Kumar et al, Ann.Rev.Nucl.Part.Sci. 63 (2013) 237-267

Sensitivity for CPV in hyperon decays Phys.Rev.D108,L091301(2023)

(b) Sensitivity of A^B_{CP} and $\Delta \phi^B_{CP}$

SM: $10^{-4} \sim 10^{-5}$

STCF:

SM prediction can be reached and further improved with a longitudinally polarized electron beam

Summary

Develop a full angular analysis to probe hyperon EDMs systematically

 $10^{-19} e cm @ BESIII$ $10^{-21} \sim 10^{-20} e cm @ STCF$

 \Box Test CPV in hyperon decay at the level of $~10^{-5} \sim 10^{-4}~$ at STCF

 \Box Weak mixing angle $\sin^2 \theta_W^{\text{eff}}$ at $q = M_{J/\psi}$ can be determined at STCF

Thank you!