

Exploring the heavy meson light-cone distribution amplitudes from first-principle

Based on arXiv:2403.17492 In collaboration with: Ji Xu, Wei Wang, et. al.

Qi-An Zhang

Beihang University (BUAA)

Apr. 07, 2024 @ 第三届强子与重味物理与实验联合研讨会,武汉

> Motivation

- > Methodology: Two-step factorization connecting lattice QCD and HQET
- Numerical realization
- Results and discussions
- > Summary and outlook

Motivation: Why B-meson LCDAs are important?

- ➢ Weak decays of B meson are critical for:
 - Precise tests of SM
 - Searching for NP
 - Understanding the origins of CPV

 $B \rightarrow \pi \pi$: Phys.Rev.Lett.83,1914(1999), 1422 citations $B \rightarrow \pi K$: Nucl.Phys.B606,245(2001), 1177 citations $B \rightarrow \pi \ell \nu$: Phys.Lett.B633,61(2006), 215 citations $B \rightarrow D \ell \nu$: Phys.Rev.D92,054510(2015), 387 citations

2024-04-05

•

.

Motivation: Why B-meson LCDAs are important?

- ➤ Weak decays of B meson are critical for:
 - Precise tests of SM
 - Searching for NP
 - Understanding the origins of CPV

 $B \rightarrow \pi \pi$: Phys.Rev.Lett.83,1914(1999), 1422 citations $B \rightarrow \pi K$: Nucl.Phys.B606,245(2001), 1177 citations

 $B \rightarrow \pi \ell \nu$: Phys.Lett.B633,61(2006), 215 citations $B \rightarrow D \ell \nu$: Phys.Rev.D92,054510(2015), 387 citations

Factorization: categories by different characteristic scales

2024-04-05

Motivation: Research progresses of light meson LCDAs

Light meson LCDAs have been extensively pursued: (1979-2023)

• Asymptotic LCDAs

G. P. Lepage et.al., Phys. Rev. Lett. 43 (1979) *G. P. Lepage et.al., Phys.Lett.B* 87B(1979)

Quark model

Choi, Phys.Rev.D 75 (2007)

• Dyson-Schwinger Equation

F. Gao, L. Chang et.al. Phys.Rev.D 90 (2014) Craig D.et.al., Prog.Part.Nucl.Phys. (2021)

QCD Sum rules

V.L. Chernyak et. al., Nucl.Phys.B 201 (1982) Vladimir M. Braun et. al., Z.Phys.C 44 (1989) Patricia Ball et. al., JHEP 08 (2007)

• Light-cone sum rule

S. Cheng et.al. Phys.Rev.D 102 (2020)

• Lattice calculation by OPE

G. Martinelli et. al., Phys.Lett.B 190 (1987) RQCD Collaboration, JHEP 11 (2020)

• Lattice calculation by LaMET

Zhang, et. al., Phys.Rev.D 95 (2017) R. Zhang et.al., Phys.Rev.D 102 (2020) J.Hua et.al(LPC)., Pev.Lett.127 (2021) J. Holligan et.al., Nucl.Phys.B 993 (2023)

> The HQET matrix element of heavy meson [Grozin, N

[Grozin, Neubert, 1997; Beneke, Feldmann, 2000]

$$\left\langle 0 \left| \bar{q}_{\beta}(z)[z,0]h_{v\alpha}(0) \right| \bar{B}(v) \right\rangle = -\frac{i\tilde{f}_{B}m_{B}}{8} \left\{ \left[\varphi_{B}^{+}(t,\mu)v_{+}\gamma_{-} + \varphi_{B}^{-}(t,\mu)v_{-}\gamma_{+} \right] \gamma_{5} \right\}_{\alpha\beta}$$

Leading twist

Sub-leading twist

> The HQET matrix element of heavy meson [6]

[Grozin, Neubert, 1997; Beneke, Feldmann, 2000]

$$\left\langle 0 \left| \bar{q}_{\beta}(z)[z,0]h_{v\alpha}(0) \right| \bar{B}(v) \right\rangle = -\frac{i\tilde{f}_{B}m_{B}}{8} \left\{ \begin{bmatrix} \varphi_{B}^{+}(t,\mu)v_{+}\gamma_{-} + \varphi_{B}^{-}(t,\mu)v_{-}\gamma_{+} \end{bmatrix} \gamma_{5} \right\}_{\alpha\beta}$$

$$\text{Leading twist} \qquad \text{Sub-leading twist}$$

- Diverge at $t \to 0 \Leftrightarrow \underline{\text{No local limit}}$
- Non-negative moments ∫ dk kⁿφ₊(k) for n=0,1,2,... are not related to OPE, and actually they <u>diverge</u>
- Cannot obtain φ_B from lattice QCD through their moments.

> How about simulating the **heavy meson quasi DAs** in the framework of **LaMET**?

Ji, PRL110(2013), RMP93(2021), ...

Lorentz boost

> How about simulating the **heavy meson quasi DAs** in the framework of **LaMET**?

Ji, PRL110(2013), RMP93(2021), ...

- LaMET provides a connection between equal-time correlator and light-cone one.
- ➤ A brute-force way: <u>boost the HQET correlator</u>

$$\varphi_B^+(\xi,\mu) \propto \int_{-\infty}^{+\infty} \frac{d\tau}{2\pi} e^{in_z \cdot v\xi\tau} \left\langle 0 \left| \left(\bar{q}W_c \right) (\tau n_z) \eta_z \gamma_5 \left(W_c^\dagger h_v \right) (0) \right| \bar{B}(v) \right\rangle$$

Xu et· al·,

FF'

[PRD102(2020)011502, PRD103(2021)054022, PRD106(2022)114019, PRD106(2022)011503, PRD109(2024)034001, 2401.04291]

2024-04-05

Unifficult to realize the boosted HQET field on lattice QCD.

➤ A brute-force way: <u>boost the HQET correlator</u>

$$\varphi_B^+(\xi,\mu) \propto \int_{-\infty}^{+\infty} \frac{d\tau}{2\pi} e^{in_z \cdot v\xi\tau} \left\langle 0 \left| \left(\bar{q}W_c \right) (\tau n_z) \eta_z \gamma_5 \left(W_c^\dagger h_v \right) (0) \right| \bar{B}(v) \right\rangle$$

Xu et· al·,

[PRD102(2020)011502, PRD103(2021)054022, PRD106(2022)114019, PRD106(2022)011503, PRD109(2024)034001, 2401.04291]

2024-04-05

Methodology: Two-step factorization to access heavy meson LCDA

➤ A multi-scale processes:

- 1. LaMET requires Λ_{QCD} , $m_H \ll P^z$ and finally integrate out P^z ;
- 2. bHQET requires $\Lambda_{\text{QCD}} \ll m_H$ and integrate out m_H ;
- \Rightarrow Hierarchy $\Lambda_{\rm QCD} \ll m_H \ll P^z$.

Methodology: Two-step factorization to access heavy meson LCDA

 \Rightarrow Hierarchy $\Lambda_{\rm QCD} \ll m_H \ll P^z$: A big challenge for lattice simulation

At this stage, the heavy meson could be D, but by no means be the B meson!

2024-04-05

Numerical realization

- > A fine CLQCD ensemble for the lattice QCD verification of *D* meson LCDAs:
 - H48P32, $n_s^3 \times n_t = 48^3 \times 144$, a = 0.05187fm;
 - Coulomb gauge fixed grid source with grid = $1 \times 1 \times n_s$; 549 configurations × 8 measurements;
 - $m_{\pi} \simeq 317 \text{MeV}, m_{\eta_s} = 700 \text{MeV};$
 - Determine the charm quark mass by tuning $m_{I/\psi}$ to its physical value, then $m_D \simeq 1.90$ GeV;
 - Boost momenta $P^z = \{2.99, 3.49, 3.98\}$ GeV, spatial separation $z = 0 \sim 12a$.

Quasi DA from lattice QCD calculation

Bare quasi DA matrix elements:

 $\tilde{M}_{\Gamma}^{0}\left(z,P^{z}\right) = \frac{\left\langle 0\left|\bar{q}(z)\Gamma W_{c}(z,0)Q(0)\right|H\left(P^{z}\right)\right\rangle}{\left\langle 0\left|\bar{q}(0)\Gamma Q(0)\right|H\left(P^{z}\right)\right\rangle}$

renormalized in ratio scheme

 $\tilde{M}(z, P^z) = \tilde{M}^0_{\gamma^z \gamma_5} (z, P^z) / \tilde{M}^0_{\gamma^t \gamma_5} (z, 0)$

- To avoid <u>operator mixing</u>, choose $\Gamma = \gamma^{z} \gamma_{5}$ for $\widetilde{M}_{\Gamma}^{0}(z, P^{z})$ with large P^{z} .
- Use $\Gamma = \gamma^t \gamma_5$ for the zero-momentum matrix elements.
- <u>Ratio scheme</u>: renormalize the bare matrix elements by corresponding zero-momentum matrix elements.

2024-04-05

Matching I: from quasi DAs to LCDAs in QCD

> Quasi DA $\tilde{\phi}(x, P^z)$, include the scales $\Lambda_{\rm QCD} \ll m_H \ll P^z$

$$\tilde{\phi}(x,P^z) = \int \frac{dz}{2\pi} e^{-ixP^z z} \tilde{M}(z,P^z)$$

Matching formula in LaMET: [PRD99(2019)094036, 2403.17492]

$$\tilde{\phi}(x,P^z) = \int_0^1 C\left(x,y,\frac{\mu}{P^z}\right)\phi(y,\mu) + \mathcal{O}\left(\frac{m_H^2}{(P^z)^2},\frac{\Lambda_{\rm QCD}^2}{(xP^z,\bar{x}P^z)^2}\right)$$

This matching integrate out P^{z} , obtain the LCDAs in QCD.

2024-04-05

LCDAs in QCD

Heavy meson LCDAs in QCD

$$\phi(y,\mu) = \frac{1}{if_H} \int_{-\infty}^{+\infty} \frac{d\tau}{2\pi} e^{iyP_H\tau n_+} \\ \times \langle 0 | \bar{q}(\tau n_+) \not n_+ \gamma_5 W_c(\tau n_+, 0) Q(0) | H(P_H) \rangle$$

- The peak position dominated by m_H and μ ;
- At very large scale $\mu \gg m_H$, asymptotic form;

2024-04-05

LCDAs in QCD

Heavy meson LCDAs in QCD

$$\begin{split} \phi(y,\mu) = & \frac{1}{if_H} \int_{-\infty}^{+\infty} \frac{d\tau}{2\pi} e^{iyP_H \tau n_+} \\ & \times \langle 0 \left| \bar{q}(\tau n_+) \not{n}_+ \gamma_5 W_c(\tau n_+,0) Q(0) \right| H(P_H) \rangle \end{split}$$

- The peak position dominated by m_H and μ ;
- At very large scale $\mu \gg m_H$, asymptotic form;
- For the scale $\mu \leq m_Q$,
 - ⇒ Light quark carries small momentum fraction $y \sim \Lambda/m_H$ ⇒ peak region, related to the HQET LCDA; [JHEP09(2023)066]
 - $\Rightarrow y \sim 0(1)$ region be <u>suppressed</u> in LCDA:

 P_q is soft-collinear, $\ll P_Q$, only contribute through power corrections;

SCET renormalized matrix element in this region contain only hard-collinear physics, and starts at the one-loop level.

2024-04-05

Matching II: connecting LCDAs in QCD and HQET

Leading twist heavy meson LCDA in HQET

$$\varphi^{+}(\omega,\mu) = \frac{1}{i\tilde{f}_{H}(\mu)m_{H}} \int_{-\infty}^{+\infty} \frac{d\eta}{2\pi} e^{i\omega n_{+}\cdot v\eta} \\ \times \langle 0 |\bar{q}(\eta n_{+})/n_{+}\gamma_{5}W_{c}(\eta n_{+},0)h_{v}(0)|H(v) \rangle$$

connected with the QCD LCDA through a multiplicative factorization in the <u>peak region</u>: [JHEP09(2023)066]

$$\phi\left(y,\mu;m_{H}\right) = \frac{\tilde{f}_{H}}{f_{H}} J_{\text{peak}} m_{H} \varphi^{+}\left(\omega,\mu\right) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_{H}}\right)$$

2024-04-05

Tails of HQET LCDA

> The tail region of HQET LCDA is perturbative:

PRD72(2005)094028

$$\varphi_{\text{tail}}^{+}(\omega,\mu) = \frac{\alpha_s C_F}{\pi\omega} \left[\left(\frac{1}{2} - \ln \frac{\omega}{\mu} \right) + \frac{4\bar{\Lambda}}{3\omega} \left(2 - \ln \frac{\omega}{\mu} \right) \right]$$

where $\overline{\Lambda} \equiv m_H - m_Q^{\text{pole}}$ reflect the power correction, and usually be chosen as 400~600MeV.

NPB426(1994)301

• We use the difference between the lines to estimate the power correction.

The final results of HQET LCDA will merge the peak (from LQCD) and tail region (from 1-loop calculation).

2024-04-05

Comparison with phenomenological models

Several commonly used models: NPB898,563(2015), JHEP07,154(2018), JHEP05,024(2022)......

2024-04-05

> The first inverse moment

$$\lambda_B^{-1}(\mu) = \int_{-\infty}^{\infty} d\omega \frac{\varphi^+(\omega,\mu)}{\omega}$$

- The current numerical results are unable to accomplish the integration over full- ω range;
- We determine the λ_B^{-1} by fitting the parameterization forms of different model.

First inverse moment

 \succ The first inverse moment

$$\lambda_B^{-1}(\mu) = \int_{-\infty}^{\infty} d\omega \frac{\varphi^+(\omega,\mu)}{\omega}$$

Models	I	II	III	IV	V
Parameters	$\omega_0=0.433(23){ m GeV}$	$\omega_0=0.682(45){\rm GeV}$		$\omega_0=0.427(21){ m GeV}$	$\omega_0=0.449(42){ m GeV}$
		$\sigma_B^{(1)} = 2.78(48)$			
fit range	$\omega \in [0.2, 1.4] \mathrm{GeV}$	$\omega \in [0.2, 1.4] \mathrm{GeV}$		$\omega \in [0.4, 0.8] \mathrm{GeV}$	$\omega \in [0.2, 1.4] \mathrm{GeV}$
$\chi^2/{ m d.o.f}$	1.4	1.2		2.1	1.0

- The current numerical results are unable to accomplish the integration over full- ω range;
- We determine the λ_B^{-1} by fitting the parameterization forms of different model.

2024-04-05

Summary and outlook

- \checkmark We propose a set of feasible scheme to calculate the heavy meson LCDAs in both QCD and HQET;
- ✓ We use the finest CLQCD ensemble (H48P32) to validate the feasibility of our scheme;
- \checkmark We have glanced the heavy LCDAs in HQET from the first principle for the first time.

Finally we got the heavy meson LCDA that works, but not quite good enough.....

□ More systematic lattice QCD calculations:

Larger P^z and m_H , nonperturbative renormalization, continuum and physical mass extrapolation, operator mixing effects,

□ More reliable theoretical frameworks:

Power corrections, RG resummation, more reliable method to merge the peak and tail regions,

□ Realize the HQET quasi DA on lattice QCD directly?

