Study of X(3872)'s structure

第三届强子与重味物理理论与实验研讨会, 2024年4月5日-9日

PRD2016, EPJC2017, PRD2022, EPJC2022, PLB2024

Outline

• Line shape of X(3872)

Radiative decay of X(3872)

Introduction

Two concepts: compositeness and CDD pole

- A series of exotic hadron candidate XYZ were and are observed, cannot be accommodated by potential model kinematical effects, molecular, quark-gluon hybrid, et al..
- Typically different scenarios predicts different constituents, in practice, may involve several mechanism
 —> compositeness
- Stay close to threshold of meson pairs: only 2-3 MeV above meson pair threshold
 - \rightarrow effective range expansion (ERE)

Compositeness *X*: weight of two-meson components in the configuration of configuration

$$X = 1 \longleftrightarrow X = 0$$

Compositeness for resonance

- Weinberg compositeness condition: wave function renormalization constant Z=0. In fact, Z = 1 - X, where $X = -\gamma^2 \frac{dG(s_R)}{ds_R}$ quantifies the weight of constituents; γ is the residue for t(s) in the 1st sheet at the pole, and G is the two-point loop function.
- only applied to bound state model-independent relation for deuteron [Weinberg 1963; 1965]
- For resonance case, as long as $\sqrt{\text{Re}E_R^2}$ larger than the lightest threshold, $X = |\gamma^2 \frac{dG(s_R)}{s_R}|$, γ residue in the 2nd sheet [Guo and Oller, PRD2015]
- Adapted to non-relativistic case, criterion: $M_R > M_{th}$, applied to Z_b and Z_c states [Kang, Guo and Oller, PRD2016]

Low's Scattering Equation for the Charged and Neutral Scalar Theories*

L. CASTILLEJOT AND R. H. DALITZ, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

AND

CDD poles

F. J. DYSON, Institute for Advanced Study, Princeton, New Jersey (Received August 3, 1955)

The Low scattering equation is studied in the one-meson approximation with both charged and neutral scalar meson theories. The general solution is found for each of these cases. It has the general character of a Wigner-Eisenbud dispersion formula and contains an infinite number of adjustable parameters. It follows that the Low equation, in this approximation at least, does not determine the scattering, but only expresses a property of the scattering which is independent of the internal structure of the scatterer.

R. Dalitz

F. J. Dyson

分波振幅
$$T_L(s)$$
: $T_L(s) = \frac{N_L(s)}{D_L(s)}$

 $D_L(s)$: 包含右手割线; $N_L(s)$: 左手割线

仅考虑右手割线,从幺正关系得到: $ImD_L = ImT_L^{-1}N_L = -\rho(s)N_L, s > s_{th}$ $ImD_L = 0, s < s_{th}$ $D_L(s) = -\frac{(s-s_0)^{L+1}}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\rho(s')}{(s'-s)(s'-s_0)^{L+1}} + \sum_{m=0}^{L} a_m s^m \left\{ + \sum_{i}^{M_L} \frac{\gamma_i}{s-s_i} \right\}$

• 其中: M_L是CDD极点的数目, 该项来自函数中CDD极点的出现, 求和项与CDD极点一一对应。

- (1) 添加这些CDD极点不违背任何解析性、幺正性的要求
- (2) CDD极点是T振幅的零点
- (3) CDD极点的出现: 与分波振幅有相同量子数的基本粒子相关联

*M*_{CDD} close to *M*_{th}, then small *X*, i.e., containing also other important components, e.g., compact quark-gluon states; *M*_{CDD} far from *M*_{th}, then the two meson constitute dominates

$$T(s) = \left[\sum_{i} \frac{\gamma_i}{s - s_i} + G(s)\right]^{-1}$$

Inclusion of CDD pole and ERE

- Only right-hand cut without crossed-channel effect [Oller and Oset, PRD1999] $t(E) = \left[\sum_{i} \frac{g_i}{E - M_{CDD,i}} + \beta - ik\right]^{-1}$
- ERE: $t(E) = [-1/a + 1/2 r k^2 ik]^{-1}$
- Expansion of Re t(E)⁻¹ in powers of k² is equivalent to ERE, but worry for the small scale [M_{CDD} - M_{th}], which restricts the validity range.
- *M*_{CDD} far away from *M*_{th}, then modulu of *r* is around 1 fm, otherwise *r* is very large.

$$1/a = \frac{g_i}{M_{\text{CDD}} - M_{\text{th}}} - \beta, \quad r = -\frac{g_i}{\mu(M_{\text{th}} - M_{\text{CDD}})^2}$$

• X(3872) state

Quantum number of X(3872) state

- First observation from Belle, PRL2003, triggering voluminous amount of papers
- PDG determination:

 $I^{G}(J^{PC}) = 0^{+}(1^{++}),$ $M = 3871.69 \pm 0.17 \text{ MeV}, \Gamma < 1.2 \text{ MeV}, \text{ CL} = 90\%$ $\overline{D}D^{*}: C = + \text{ combination } (D\overline{D}^{*} + \overline{D}D^{*})/\sqrt{2}$ threshold $M_{\text{th}} = 3871.81 \text{ MeV}$

- From now on, all the energy and M_{CDD} are measured respective to M_{th} . X(3872) mass: -0.11 ± 0.17 MeV
- Nature: molecular like virtual state (V) and bound state (B), or preexisting state, etc.

Experimental situation: D⁰D^{*0} channel

- the decay chain: $B \to X(3872)K \to \overline{D}^0 D^{*0}K$
- Left: BaBar2008, Right: Belle2010
- BaBar has total number of $B\bar{B}$ pairs, $N_{B\bar{B}}^{BaBar} = 3.83 \cdot 10^8$, while $N_{B\bar{B}}^{Belle} / N_{B\bar{B}}^{BaBar} = 1.75$

Experimental situation: $J/\psi\pi\pi$ channel

- the decay chain: $B \rightarrow X(3872)K \rightarrow J/\psi \pi^+ \pi^- K$
- Left: BaBar2008, Right: Belle2008
- Data are compatible with each other.

Experimental situation: $J/\psi\pi\pi$ channel continued

- the decay chain: $p\bar{p} \rightarrow X(3872) + \text{ all with } X(3872) \rightarrow J/\psi \pi^+ \pi^-$
- The inset shows an enlargement of the region around the X(3872) peak, with very small bin width of 1.25 MeV.
- "Precision Measurement of the X(3872) in J/ψππ Decays" from CDF2009.

Formalism (1)

- Exp summary: Belle $D\bar{D}\pi$ + BaBar $J/\psi\pi\pi$ + Belle $J/\psi\pi\pi$ + CDF $J/\psi\pi\pi$
- As introduced, scattering amplitude

$$t(E) = \left(\frac{\lambda}{E - M_{\text{CDD}}} + \beta - ik(E)\right)^{-1},$$

more general than ERE

 Removing the extra zeros due to the CDD pole, one ends with the final-state interaction

$$d(E) = \left(1 + rac{E - M_{CDD}}{\lambda}(eta - ik)
ight)^{-1}$$

[Oller PLB2000, Bugg PLB2003]

 When M_{CDD} far, M_{CDD} → ∞ keeping λ/M_{CDD} fixed, one recovers the scattering length approximation

$$t(E) \Longrightarrow f(E) = \frac{1}{-\lambda/M_{CDD} + \beta - ik} = \frac{1}{-\gamma - ik}$$

• The normalized standard non-relativistic mass distribution for a narrow resonance or bound state ($\Gamma_X \rightarrow 0$)

$$rac{d\hat{M}}{dE} = rac{\Gamma_X |d(E)|^2}{2\pi |lpha|^2}$$

- α is a constant, obtained by singling out the pole contribution, in fact, the residue of d(E), d(E) ~ ^α/_{E-E_p}, E_p pole position.
- Normalization integral $\mathcal{N} = \int_{-\infty}^{\infty} dE \frac{d\hat{M}}{dE}$
- For a narrow resonance (including bound state), $\mathcal{N} \approx 1$, but not so when d(E) has a shape strongly departs from a non-relativistic Breit-Wigner, e.g., for a virtual state
- For f(E) (ERE), the integral does not converge, just integrate in the signal region.

Formalism (3): event distribution for $J/\psi\pi\pi$ channel

• For $B \rightarrow KJ/\psi\pi\pi$ channel [simpler]:

$$N_{i} = 2N_{B\bar{B}} \left[\mathcal{B}_{J} \int_{E_{i} - \Delta/2}^{E_{i} + \Delta/2} dE' \int_{-\infty}^{\infty} dER(E', E) \frac{d\hat{M}}{dE} + cbg_{J} \Delta \right]$$

- For $p\bar{p}$ to $J/\psi\pi\pi$ channel: just replace $2N_{B\bar{B}}$ by $\mathcal{L}\sigma_{p\bar{p}\to XAII}$, with \mathcal{L} luminosity, and total cross section σ for $p\bar{p} \to X + AII$.
- R(E', E) is the Gaussian, experimental resolution function
- $\int_{E_i \Delta/2}^{E_i + \Delta/2} dE'$ indicates the integration in the bin width.

Formalism (4): event distribution for $\overline{D}^0 D^{*0}$ channel

• For $B \to K \overline{D}{}^0 D^{*0}$ channel [taking into account the small width of D^* , $\Gamma_* \approx 65$ KeV]

$$N_{i} = 2N_{B\bar{B}} \int_{E_{i}-\Delta/2}^{E_{i}+\Delta/2} dE' \int_{0}^{\infty} d\mathcal{E}' R(E',\mathcal{E}') \sqrt{\mathcal{E}'}$$

$$\times \left[\frac{\mathcal{B}_{D}\Gamma_{*}}{\sqrt{2}\pi \left(\sqrt{E_{X}^{2}+\Gamma_{*}^{2}/4}-E_{X}\right)^{1/2}} \int_{-\infty}^{\infty} dE \frac{d\hat{M}}{dE} \frac{1}{|\mathcal{E}'-E-i\Gamma_{*}/2|^{2}} + \operatorname{cbg}_{D} \right]$$

• Pole position $E_X - i\Gamma_X/2$, with E_X relative to $\overline{D}^0 D^{*0}$ (reduced mass $\mu \approx 1 \text{GeV}$) threshold, momentum at pole position k_X .

Fit strategy

- *B_D*, *B_J*, cbg_D, cbg_J, overall constants and background are always free parameters
- As mentioned, for bound state, B can be justified as branching ratio, otherwise not.
- M_{CDD} , λ , β characterize the line shape of d(E).
- Braaten et al has also used ERE (only scattering length), but fit separately
- C. Hanhart et al used ERE including the effective range.
- One should use more general d(E), other than ERE!
- Maximize likelihood fit, data errors are asymmetric.

- Case i): using ERE, which is a pure bound state, making combined fits to all the existing data
- Case ii): imposing t(E) has a virtual state, one can express λ and β from E_R and M_{CDD}.
- Case iii): taking into account the coupled channel effect, <u>E_R</u> determines the shape of t(E): Quadratic equation: two solutions with case iii). I and case iii).II

Results

Results

Cases	Pole position [MeV]	X	Residue [GeV ²]	Y_{D1} Y_{D2} Y_J Y_J Y_J
1	$-0.19^{+0.01}_{-0.01} - i \ 0.0325$	1.0	$14.78^{+0.38}_{-0.14}$	$7.49^{+0.71}_{-0.41}$ $6.45^{+0.32}_{-0.47}$ $79.03^{+5.65}_{-6.11}$ $5.23^{+0.01}_{-0.11} \times 10^{3}$
2.I	$-0.36^{+0.08}_{-0.10} - i \ 0.18^{+0.01}_{-0.02}$ $-0.70^{+0.11}_{-0.13} + i \ 0.17^{+0.02}_{-0.01}$	gher-order po	$-47.48_{-12.40}^{+9.75} - i \ 66.06_{-13.50}^{+10.87}$ 82.69 ^{+14.84} i 66.03 ^{+13.50} i 66.03^{+13.50} i 68	$83.13^{+22.42}_{-16.15}$ $40.13^{+11.86}_{-7.25}$ $8.44^{+3.64}_{-2.59} \times 10^{3}$ $5.78^{+2.29}_{-2.59} \times 10^{5}_{-1.50}$
2.11	$-0.33^{+0.04}_{-0.03} - i \ 0.31^{+0.02}_{-0.04} \text{Of}$ $-0.84^{+0.07}_{-0.05} + i \ 0.77^{+0.03}_{-0.04}$ $-1.67^{+0.10}_{-0.08} - i \ 0.49^{+0.02}_{-0.02}$	S-matrix	$6.24^{+2.80}_{-2.20} - i 1.41^{+0.14}_{-0.10} \times 10^{2}$ $(2.32^{+0.16}_{-0.21} - i 1.77^{+0.11}_{-0.08}) \times 10^{2}$ $(-3.26^{+0.22}_{-0.16} + i 3.18^{+0.18}_{-0.25}) \times 10^{2}$	$5.78^{+1.65}_{-1.65} \times 10^{9}$ $79.75^{+22.46}_{-19.81}$ $42.20^{+9.18}_{-8.02}$ $9.23^{+1.60}_{-1.57} \times 10^{3}$ $6.23^{+0.71}_{-0.41} \times 10^{5}$
3.1	-0.50 ^{+0.04} -0.68 ^{+0.05} 出现在相 Morgan	0.061 ^{+0.003} 目邻黎曼面, 判据	$1.52_{-0.01}^{+0.01}$ $2.72_{-0.04}^{+0.02}$	$25.45^{+4.05}_{-4.15}$ $12.29^{+1.32}_{-1.89}$ $80.14^{+5.67}_{-5.19}$ $5.26^{+0.12}_{-0.08} \times 10^{3}$
3.II	$-0.51^{+0.03}_{-0.01} \\ -1.06^{+0.05}_{-0.02}$	$0.158\substack{+0.001\\-0.001}$	$3.96_{-0.08}^{+0.03}$ $7.56_{-0.20}^{+0.08}$	$22.90^{+2.94}_{-3.02}$ $11.03^{+1.40}_{-0.77}$ $80.07^{+5.14}_{-5.36}$ $5.28^{+0.05}_{-0.17} \times 10^{3}_{-0.17}$

Zb 数值结果

◆ 共振态不变质量分布的拟合图像

 $M_{CDD} = m_{th}$: 组分系数的值最小

BB^{*} 结构在*Z*_b(10610)共振态中,比例系数X=0.39;

B^{*} ^B* 结构在Z_b(10650)共振态中,比例系数X=0.36;

X=1: 对实验数据的描述十分近似

◆ 两个Z_b共振态组分系数的变化范围0.4~1.0

C. Y. Cui, Y. L. Liu and M. Q. Huang, PRD 85, 074014 (2012): both a $B^*\overline{B}$ molecular state and a $[bd][\overline{b}\overline{u}]$ tetraquark state coincide with Z_b (10610).

Radiative decay of X(3872) in the covariant light-front quark model (CLFQM)

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

Nature of X(3872) from its radiative decay

Shuo-Ying Yu^a, Xian-Wei Kang^{a,b,^D,*}

^a Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

^b Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China

Overall blueprint: Assuming X(3872) as a pure $c\overline{c}$ resonance, considering the decay $X(3872) \rightarrow \gamma J/\psi$ and $\gamma \psi'$ at the same footing

Conclusion: their partial width can not reconcile with each other.

........

$$I^{G}(J^{PC}) = 0^{+}(1^{++})$$

also known as X(3872)

 $\begin{array}{l} {\sf Mass} \ m = \ 3871.65 \pm 0.06 \ {\sf MeV} \\ {m_{\chi_{c1}(3872)}} - {m_{J/\psi}} = \ 775 \pm 4 \ {\sf MeV} \\ {\sf Full \ width} \ {\Gamma} = 1.19 \pm 0.21 \ {\sf MeV} \quad ({\sf S} = 1.1) \end{array}$

VALUE (N	MeV)	CL%	EVTS	DOCUMENT ID	TECN	COMMENT		
$\textbf{1.19} \pm \textbf{0.21}$		OUR AVERAGE Error includes scale factor of 1.1.						
$1.39\pm0.$	$.24\pm0.10$		15.6k	1 AAU	2020AD LHCB	$p \ p \to J/\psi \pi^+\pi^- X$		
$0.96 \ ^{+0.1}_{-0.1}$	$^{9}_{8}\pm 0.21$		4.2k	² AAIJ	2020S LHCB	$B^+ \to J/\psi \pi^+ \pi^- K^+$		
Γ ₂₃	$\gamma J/\psi$				$(8\pm4) imes10^{-3}$			
Γ ₂₄	$\gamma \chi_{c1}$				$< 9 imes 10^{-3}$	CL=90%		
Γ_{25}	$\gamma \chi_{c2}$				< 3.2%	CL=90%		
Γ ₂₆	$\gamma\psi(2S)$				$(4.5\pm2.0)\%$	26		

Feynman rule for light-front quark model

1. Momentum variables expressed in the light front coordinates

2. Wave function of the (axial-vector, vector, scalar, pseudo-scalar) meson encodes the bound state nature of $\overline{q}q$

3. Vertex comes from the SM, Melosh transformation:
The connection between *spin states in the rest frame and infinite momentum* frame Or between spin states in the conventional equal
time dynamics and the light-front dynamics

4. Fermion internal line denotes a spin-1/2 propagator as usual

5. quark masses as parameters, but fixed for all calculations

$$\begin{aligned} \varphi' &= \varphi'(x_2, p'_{\perp}) = 4 \left(\frac{\pi}{\beta'^2}\right)^{\frac{3}{4}} \sqrt{\frac{dp'_z}{dx_2}} \exp\left(-\frac{p'^2_z + p'^2_{\perp}}{2\beta'^2}\right), \\ \varphi'_p &= \varphi'_p(x_2, p'_{\perp}) = \sqrt{\frac{2}{\beta'^2}} \varphi', \qquad \frac{dp'_z}{dx_2} = \frac{e'_1 e_2}{x_1 x_2 M'_0}. \end{aligned}$$

Parameter β characterizing the size of hadron, will be fixed by decay constant

However, the wave function can be solved by e.g., relativistic quark model in the quasi-potential approach.

Semileptonic decays of D and D_s mesons in the relativistic quark model $^{\#15}$

R.N. Faustov (Unlisted, RU), V.O. Galkin (Unlisted, RU), Xian-Wei Kang (Beijing Normal U.) (Nov 19, 2019)

Published in: Phys.Rev.D 101 (2020) 1, 013004 • e-Print: 1911.08209 [hep-ph]

FIG. 1: Feynman diagrams for radiative transitions. The uppercase P' and P'' denote the four-momentum of the initial and final meson, respectively. The lower case $p_{1,2}$ is the momentum of the spectator quark, and other momenta with prime or double prime in the superscript correspond to the active quarks involving a photon emission shown by a wavy line.

The transition amplitude for $X(3872) \rightarrow J/\psi \gamma, \psi' \gamma$ can be written as

$$A(X(3872) \to \psi\gamma) = \epsilon^{*\alpha}(q)\epsilon'^{\mu}(P')\epsilon''^{*\nu}(P'')\mathcal{A}_{\alpha\mu\nu}$$

The polarization vectors in order are the ones for photon, X(3872), and J/ψ .

$$\mathcal{A}_{\alpha\mu\nu} = \varepsilon_{\alpha\nu\beta\eta} P^{\beta} q^{\eta} P_{\mu} f_m(q^2) + \varepsilon_{\alpha\mu\beta\eta} P^{\beta} q^{\eta} P_{\nu} f_p(q^2) + \varepsilon_{\alpha\mu\nu\rho} q^{\rho} f_6(q^2).$$

Independent from factors $f_m(q^2)$, $f_p(q^2)$, $f_6(q^2)$

$$\begin{split} f_m^a(q^2) &= \frac{2e}{3} \frac{N_c}{16\pi^3} \int dx_2 d^2 p'_\perp \frac{h'_A h''_V}{x_2 \hat{N}'_1 \hat{N}''_1} (-4) \left\{ \frac{1}{w'_A} [(m'_1 - m''_1)(A_3^{(2)} - A_4^{(2)}) \\ &\quad + (m'_1 + m''_1 - 2m_2) \times (A_2^{(2)} - A_3^{(2)}) + m'_1 (A_2^{(1)} - A_1^{(1)})] + A_2^{(2)} - A_3^{(2)} \\ &\quad - \frac{1}{w'_A w''_V} (2A_2^{(3)} - 2A_1^{(3)}) \right\}, \\ f_p^a(q^2) &= \frac{2e}{3} \frac{N_c}{16\pi^3} \int dx_2 d^2 p'_\perp \frac{h'_A h''_V}{x_2 \hat{N}'_1 \hat{N}''_1} (-4) \left\{ \frac{1}{w'_V} [(m'_1 - m''_1)(A_3^{(2)} + A_4^{(2)} \\ &\quad - A_2^{(1)}) + (m'_1 + m''_1 + 2m_2) \times (A_2^{(2)} + A_3^{(2)} - A_1^{(1)}) - m'_1 (A_1^{(1)} + A_2^{(1)} \\ &\quad - 1)] + A_1^{(1)} - A_2^{(2)} - A_3^{(2)} - \frac{1}{w'_A w''_V} (2A_1^{(3)} + 2A_2^{(3)} - 2A_1^{(2)}) \right\}, \\ f_6^a(q^2) &= \frac{2e}{3} \frac{N_c}{16\pi^3} \int dx_2 d^2 p'_\perp \frac{h'_A h''_V}{x_2 \hat{N}'_1 \hat{N}''_1} (-4) \left\{ \frac{1}{w'_A} (m'_1 + m''_1 - 2m_2) A_1^{(2)} \\ &\quad + \frac{1}{w''_V} (m'_1 + m''_1 + 2m_2) A_1^{(2)} - \frac{1}{4} (1 - 2A_2^{(1)}) [-q^2 + \hat{N}'_1 + \hat{N}''_1 \\ &\quad + (m'_1 - m''_1)^2] - A_2^{(1)} (m''_1 m_2 - m'_1 m_2) - m'_1 m_2 \right\}. \end{split}$$

Expressions of form factors. In fact, we only concern the values at $q^2=0$

The decay width can be calculated by

$$\begin{split} \Gamma &=\; \frac{|\boldsymbol{q}|}{8\pi M'^2} \left(|A_{+0-}|^2 + |A_{-0+}|^2 + |A_{0--}|^2 + |A_{0++}|^2 \right) \\ &=\; \frac{|\boldsymbol{q}|^3}{\pi} \left(\frac{f_6 + 2M' |\boldsymbol{q}| f_p}{4M''^2} + \frac{f_6^2}{4M'^2} + \frac{f_6 f_m |\boldsymbol{q}|}{M'} + f_m^2 |\boldsymbol{q}|^2 \right). \end{split}$$

In the helicity basis:

 $A_{\lambda'\lambda''\lambda_{\gamma}}$, with λ' , λ'' , λ_{γ} denoting the helicity of X(3872), J/ψ (or ψ'), the photon, respectively.

$$A_{+0-} = -i \frac{M'|\mathbf{q}|}{M''} (f_6 + 2M'|\mathbf{q}|f_p),$$

$$A_{0++} = i|\mathbf{q}| (f_6 + 2M'|\mathbf{q}|f_m),$$

$$A_{-0+} = -A_{+0-}, \quad A_{0--} = -A_{0++}.$$

 $|q| = \frac{M'^2 - M''^2}{2M'}$, M' is the mass of X(3872), M" is the mass of J/ψ

Wave function of J/ψ and ψ'

$$\Gamma(V \to e^+ e^-) = \frac{4\pi}{3} \frac{4}{9} \alpha^2 \frac{f_V^2}{M'},$$
(25)

where α is the fine structure constant, f_V is the decay constant, M' is the mass of vector meson. Taking Br $(J/\psi \rightarrow e^+e^-) = (5.971 \pm 0.032)\%$, Br $(\psi' \rightarrow e^+e^-) = (7.93 \pm 0.17) \times 10^{-3}$, $\Gamma(J/\psi) = (92.6 \pm 1.7)$ keV and $\Gamma(\psi(2S)) = (294 \pm 8)$ keV [22], we obtain the decay constants $f_{J/\psi} = 415.49$ MeV and $f_{\psi'} = 294.35$ MeV as our central values. The uncertainties are very small. The formula for the decay constant of vector mesons in the LFQM is given by [27]

$$f_V = \frac{N_c}{4\pi^3 M'} \int dx d^2 p'_{\perp} \frac{h'_V}{x(1-x)(M'^2 - M_0'^2)} \left[x M_0'^2 - m_1'(m_1' - m_2) - p'_{\perp}^2 + \frac{m_1' + m_2}{M_0' + m_1' + m_2} p'_{\perp}^2 \right], \quad (26)$$

from which we fix the parameters $\beta_{J/\psi} = 0.631$ GeV and $\beta_{\psi'} = 0.487$ GeV.

Experimental width $\Gamma(X(3872) \rightarrow J/\psi\gamma) = (3.2 \pm 1.6) \times 10^{-3} \text{ MeV}$

X(3872) as 2P state: Exp width of $\Gamma(X(3872) \rightarrow \psi'\gamma) \Longrightarrow \beta_{X(3872)} = 0.56^{+0.04}_{-0.03} \text{GeV}$ $\implies \Gamma(X(3872) \rightarrow J/\psi\gamma) = 0.91^{+0.17}_{-0.15} \text{ MeV}$

X(3872) as 1P state: excluded by its mass value

Consequently, the scenario of a pure charmonium assignment for X(3872) will encounter difficulty to reconcile the widths to $J/\psi \gamma$ and $\psi' \gamma$.

Or stated differently, the probability that X(3872) is a pure $c\overline{c}$ resonance is rather tiny

Main points

 The current line shape data is not enough to pin down the structure of X(3872). Both the virtual state and bound state are possible scenarios.

• The radiative decay analysis basically excludes the pure ccbar scenarios.