Searching for tetraquark through weak decays of b-baryons

- Fei Huang
- University of Jinan
 - 济南大学
- Phys. Rev. D 106, 114041 (2022); Eur. Phys. J. C 82, 1075 (2022)
 - 第三届强子与重味物理理论与实验联合研讨会

Introduction • $\Lambda_b \to \Lambda_J^*(pK^-)J/\psi(\ell^+\ell^-)$ • Search for tetraquarks Summary \bigcirc

Introduction

Ş

Lepton Universality

Provide a platform for study of strong interactions

LHCb, PRD108, 032002 (2023)

$$(B \to K^* \mu^+ \mu^-)$$

$$(B \to K^* e^+ e^-)$$

 q^2

Central- q^2

Introduction

Theoretical

✓Quark Model: Light-Front Quark Model **Covariant Quark Model** Nonrelativistic Quark Model....

✓ QCD Sum rules (QCDSR)

✓ Light-Cone Sum rules (LCSR)

✓ Lattice QCD (L

✓ Bethe-Salpeter approach...

 $\Lambda_b \to \Lambda_I^*(pK^-) J/\psi(\ell^+\ell^-)$

Pentaquark production

LHCb, Phys. Rev. Lett. 115, 072001 (2015) LHCb, Phys. Rev. Lett. 122, 222001 (2019)

Introduction • $\Lambda_b \to \Lambda_J^*(pK^-)J/\psi(\ell^+\ell^-)$ • Search for tetraquarks Summary \bigcirc

 $\Lambda_b \to \Lambda_I^*(pK^-) J/\psi(\ell^+\ell^-)$

Figure These resonances give main contributions

Λ_b decays depend on different resonances and their interference terms

LHCb, Phys. Rev. Lett. 115, 072001 (2015)

 $\Lambda_b \to \Lambda_I^*(pK^-) J/\psi(\ell^+\ell^-)$

- $\checkmark \Lambda^*_{1405}$ does not reach the threshold $m_{\Lambda_{1405}^*} < m_p + m_K$
- $\checkmark \Lambda^*_{1800}$ and Λ^*_{1810} are very close They will be treated together
- $\checkmark \Lambda^*_{1690}$ has a tiny contribution Small integrated width

LHCb, Phys. Rev. Lett. 115, 072001 (2015)

 $\Lambda_b \to \Lambda_I^*(pK^-) J/\psi(\ell^+\ell^-)$

 $\mathscr{M}(\Lambda_b \to \Lambda_J^* J/\psi) \propto \langle \Lambda_J^* | (\bar{s}b)_{V-A}^{\mu} | \Lambda_b \rangle \epsilon_{\mu}^* (s_{J/\psi})$ $i\mathscr{M}(\Lambda_J^* \to pK) = \mathscr{A}_J \times D_{S_\Lambda^*,S_p}^{*J_\Lambda^*}(\phi_\Lambda,\theta_\Lambda)$ $i\mathcal{M}(J/\psi \to \ell^+ \ell^-) = 2ieg \times L^{\lambda_{J/\psi}}_{\lambda \to \lambda}(\theta, \phi)$ Extract coupling constant $3\Gamma(J/\psi \rightarrow l^+ l^-) m_{J/\psi}^2$ $g^2 = 4\alpha_{em}(m_{J/\psi}^2 + 2m_{\ell}^2)\sqrt{m_{J/\psi}^2 - 4m_{\ell}^2}$

Angular distributions of $\Lambda_b \to \Lambda_I^*(pK^-)J/\psi(\ell^+\ell^-)$

Spin-1/2 baryon $\langle \Lambda_{I}^{*}(p',s')|\overline{s}\gamma^{\mu}b|\Lambda_{b}(p,s)\rangle$ $= \bar{u}(p',s') \left(\gamma_{\mu} f_1^p + \frac{p_{\Lambda_b}^{\mu}}{m_{\Lambda_b}} f_2^p + \frac{p_{\Lambda_J^*}^{\mu}}{m_{\Lambda^*}} f_3^p \right) u(p,s)$ $\langle \Lambda_{J}^{*}(p',s') | \bar{s} \gamma^{\mu} \gamma_{5} b | \Lambda_{b}(p,s) \rangle$

 $= \bar{u}(p',s') \left(\gamma_{\mu} g_1^p + \frac{p_{\Lambda_b}^{\mu}}{m_{\Lambda_b}} g_2^p + \frac{p_{\Lambda_J^*}^{\mu}}{m_{\Lambda_J^*}} g_3^p \right) \gamma_5 u(p,s)$

MCN model

 $f(M_{pK}^2) = (a_0 + a_2 p_{\Lambda}^2 + a_4 p_{\Lambda}^4) \exp\left(-\frac{6m_q^2 p_{\Lambda}^2}{2m_{\Lambda}^2 (\alpha_{\Lambda}^2 + \alpha_{\Lambda*}^2)}\right)$

Λ^*_{1600}			
Form factor	a_0	a_2	a_4
f_{1}^{+}	0.467	0.615	0.0568
f_2^+	-0.381	-0.2815	-0.039
f_3^+	0.0501	-0.0295	-0.0016
g_1^+	0.114	0.300	0.0206
g_2^+	-0.394	-0.307	-0.044
g_{3}^{+}	-0.0433	0.0478	0.00566
	$lpha_{\Lambda*(1600)}$ =	= 0.387	

Int. J. Mod. Phys. A 27, 1250016 (2012)

Angular distributions of $\Lambda_b \to \Lambda_I^*(pK^-)J/\psi(\ell^+\ell^-)$

Spin-3/2 baryon:helicity-base

$$\begin{split} \langle \Lambda_{1520}^{*}(p',s') | \bar{s} \gamma^{\mu} b | \Lambda_{b}(p,s) \rangle &= \\ \bar{u}_{\lambda}(p',s') \left(f_{0}^{3/2} \frac{m_{\Lambda_{1520}^{*}}}{s_{p+}} \frac{(m_{\Lambda_{b}} - m_{\Lambda_{1520}^{*}}) p^{\lambda} q^{\mu}}{q^{2}} \right. \\ &+ f_{+}^{3/2} \frac{m_{\Lambda_{1520}^{*}}}{s_{p-}} \frac{(m_{\Lambda_{b}} + m_{\Lambda_{1520}^{*}}) p^{\lambda} (q^{2}(p^{\mu} + p'^{\mu}) - q^{\mu}(m_{\Lambda_{b}}^{2} - m_{\Lambda_{1520}^{*}}^{2}))}{q^{2} s_{p+}} \\ &+ f_{\perp}^{3/2} \frac{m_{\Lambda_{1520}^{*}}}{s_{p-}} \left(p^{\lambda} \gamma^{\mu} - \frac{2p^{\lambda}(m_{\Lambda_{b}} p'^{\mu} + m_{\Lambda_{1520}^{*}} p^{\mu})}{s_{p+}} \right) \\ &+ f_{\perp'}^{3/2} \frac{m_{\Lambda_{1520}^{*}}}{s_{p-}} \left(p^{\lambda} \gamma^{\mu} - \frac{2p^{\lambda} p'^{\mu}}{m_{\Lambda_{1520}^{*}}} + \frac{2p^{\lambda}(m_{\Lambda_{b}} p'^{\mu} + m_{\Lambda_{1520}^{*}} p^{\mu})}{s_{p+}} + \frac{s_{p-} g^{\lambda\mu}}{m_{\Lambda_{1520}^{*}}} \right) \Big) u(p,s) \end{split}$$

vector

LQCD

 $f(M_{\nu K}^2) = F + A(\omega - 1)$

Lattice QCD					
Form factor	F	A			
$f_0^{3/2}$	3.54(29)	-14.7(3.3)			
$f_{\pm}^{3/2}$	0.0432(64)	1.63(19)			
$f^{3/2}$	-0.068(18)	2.49(35)			
$f_{1}^{3/2}$	0.0461(18)	-0.161(27)			
$g_{0}^{3/2}$	0.0024(38)	1.58(17)			
$q_{\perp}^{3/2}$	2.95(25)	-12.2(2.9)			
$g_{\perp}^{3/2}$	2.92(24)	-11.8(2.8)			
$q_{\perp}^{3/2}$	-0.037(14)	0.09(25)			

Phys. Rev. D 105, 054511 (2022)

 $\Lambda_b \to \Lambda_J^*(pK^-) J/\psi(\ell^+\ell^-)$

$$A_{\rm FB}^{\Lambda} = \frac{\left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_{\Lambda} \frac{d^2\Gamma}{dM_{pK}^2 d\cos\theta_{\Lambda}}}{\left[\int_0^1 + \int_{-1}^0\right] d\cos\theta_{\Lambda} \frac{d^2\Gamma}{dM_{pK}^2 d\cos\theta_{\Lambda}}}$$

$$\frac{dA_{\rm FB}^{\Lambda}}{dM_{pK}^2} \propto \sum_{s_{\Lambda_b}, s_{\Lambda_J^*} = \pm \frac{1}{2}} (2\hat{m}_{\ell}^2 + 1) \mathcal{R}_e(H_{s_{\Lambda_b}, s_{\Lambda_J^*}}^{\frac{3}{2}} H_{s_{\Lambda_b}, s_{\Lambda_J^*}}^{\frac{1}{2}*})$$

neglect Λ^*_{1600} contribution

$$\frac{dA_{\rm FB}^{\Lambda}}{dM_{pK}^2} \propto \mathcal{R}_e(L_{\Lambda_{1520}^*}L_{\Lambda_{1800}^*}) \qquad s_0^1 = 2.$$

$$\mathcal{R}_e(L_{\Lambda_{1520}^*}L_{\Lambda_{1800}^*}^*) \sim (M_{pK}^2 - m_{\Lambda_{1520}^*}^2)(M_{pK}^2 - m_{\Lambda_{1800}^*}^2) = 0.$$

 $\Lambda_b \to \Lambda_I^*(pK^-) J/\psi(\ell^+\ell^-)$

Normalized polarized decay width Ş

s = +1/2 is larger than s = -1/2 at small invariant mass

mainly contributed by the interference of vector and axial-vector

polarized decay width is an important observable for studying hadron matrix element

Introduction • $\Lambda_b \to \Lambda_J^*(pK^-)J/\psi(\ell^+\ell^-)$ • Search for tetraquarks Summary

BESIII Collaboration PRL 110. 252001 (2013)

First observation of charged $Z_c(3900)^{\pm}$ Confirmed by Belle and CLEO-c

PRL 110. 252002 (2013); PLB 727. 366 (2013)

BESIII Collaboration PRL 115. 112003 (2015)

First observation of neutral $Z_c(3900)^0$

Hadronic molecules

Fetraquark

Hadroquarkonia

flavor SU(3) analysis

$$\begin{split} \Lambda_{b}^{0} & \Xi_{b}^{0} \\ 0 & \Xi_{b}^{-} \\ -\Xi_{b}^{-} & 0 \end{split}$$
 $(\mathcal{Z}_{c})_{i}^{j} = \begin{pmatrix} \frac{Z_{c\pi^{0}}}{\sqrt{2}} + \frac{Z_{c\eta_{8}}}{\sqrt{6}} & Z_{c\pi^{+}} & Z_{cK^{+}} \\ Z_{c\pi^{-}} & -\frac{Z_{c\pi^{0}}}{\sqrt{2}} + \frac{Z_{c\eta_{8}}}{\sqrt{6}} & Z_{cK^{0}} \\ Z_{cK^{-}} & Z_{c\overline{K}}^{0} & -\frac{2Z_{c\eta_{8}}}{\sqrt{6}} \end{pmatrix}$ $(\mathcal{Z}_{c})_{i}^{j} = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda^{0} & \Sigma^{+} & p \\ \Sigma_{b}^{-} & \frac{\Xi_{b}^{'}}{\sqrt{2}} \\ \Sigma_{b}^{-} & \frac{\Xi_{b}^{'}}{\sqrt{2}} \\ \frac{\Xi_{b}^{'}}{\sqrt{2}} & \Omega_{b}^{-} \end{pmatrix}$ $T_{8} = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda^{0} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda^{0} \end{pmatrix}$

Ş The anti-triplet B-baryons decay into an octet tetraquark and a light baryon

 $\mathcal{H}_{eff} = a_1(\mathcal{B})^{ij}(H_3) \times (T_8)^l_j + a_1^{ij}$ $+a_4(\mathcal{B})^{ij}(\mathcal{B})$

For the sextet B-baryons, the effective Hamiltonian reads

$$\mathcal{H}_{eff} = b_1(\mathcal{C})^{ij}(H_3)_{ik}(\mathcal{Z}_c)^k_l(T_8)^l_j + b_2(\mathcal{C})^{ij}(H_3)_{il}(\mathcal{Z}_c)^k_j(T_8)^l_k + b_3(\mathcal{C})^{ij}(H_3)_{kl}(\mathcal{Z}_c)^k_i(T_8)^l_j$$

$$\begin{split} \Gamma(\Xi_b^- \to Z_{c\pi^0} \Sigma^-) &= \Gamma(\Xi_b^- \to Z_{c\pi^-} \Sigma^0) \,, \\ \Gamma(\Lambda_b^0 \to Z_{c\overline{K}}{}^{0}n) &= \Gamma(\Lambda_b^0 \to Z_{cK^-}p) \,, \\ \Gamma(\Lambda_b^0 \to Z_{c\pi^0}n) &= \frac{1}{2} \Gamma(\Lambda_b^0 \to Z_{c\pi^-}p) \,, \\ \Gamma(\Xi_b^0 \to Z_{c\pi^+} \Sigma^-) &= \Gamma(\Xi_b^0 \to Z_{c\overline{K}}{}^{0}n) \,, \\ \Gamma(\Xi_b^0 \to Z_{c\overline{K}}{}^{0}\Lambda^0) &= \Gamma(\Xi_b^- \to Z_{cK^-}\Lambda^0) \,, \\ \Gamma(\Lambda_b^0 \to Z_{c\pi^+} \Sigma^-) &= \Gamma(\Lambda_b^0 \to Z_{c\pi^0} \Sigma^0) \\ &= \Gamma(\Lambda_b^0 \to Z_{c\pi^-} \Sigma^+) \,, \\ \Gamma(\Lambda_b^0 \to Z_{cK^+} \Sigma^-) &= 2\Gamma(\Lambda_b^0 \to Z_{cK^0} \Sigma^0) \\ &= \Gamma(\Xi_b^- \to Z_{cK^-}n) \,, \end{split}$$

 \square Based on different valence quark components, taking Z_c^{\pm} as $Z_{c\pi^{\pm}}$ and Z_c^0 as $Z_{c\pi^0}$. Ignoring the mass difference between final state baryons. \mathbf{V} The SU(3) symmetry breaking in bottom quark decay is pretty small.

$$\begin{split} \Gamma(\Xi_b^0 \to Z_{c\pi^0} \Lambda^0) &= \Gamma(\Xi_b^0 \to Z_{c\eta_8} \Sigma^0) \\ &= \frac{1}{2} \Gamma(\Xi_b^- \to Z_{c\pi^-} \Lambda^0) \\ &= \frac{1}{2} \Gamma(\Xi_b^- \to Z_{c\eta_8} \Sigma^-), \\ \Gamma(\Xi_b^0 \to Z_{c\overline{K}^0} \Sigma^0) &= \frac{1}{2} \Gamma(\Xi_b^0 \to Z_{cK^-} \Sigma^+) \\ &= \frac{1}{2} \Gamma(\Xi_b^- \to Z_{c\overline{K}^0} \Sigma^-) \\ &= \Gamma(\Xi_b^- \to Z_{cK^-} \Sigma^0). \end{split}$$

Adopt the factorized ansatz to compute the decay width.

$$\mathcal{M}\left(\Lambda_{b}^{0} \to \Lambda^{0} Z_{c}^{0}(3900)\right) = \frac{G_{F}}{\sqrt{2}} V_{cb} V_{cs}^{*} a_{2} R_{Z_{c}} f_{Z_{c}} M_{Z_{c}} X_{c} \times \left(\Lambda^{0} \left| (\bar{s}b)_{V-A}^{\mu} \right| A_{b}^{\nu} \right) \epsilon_{\mu}^{*}(s_{Z_{c}}) \times \left(\Lambda^{0} \left| (\bar{s}b)_{V-A}^{\mu} \right| A_{b}^{\nu} \right) + \left(\Lambda^{0} \left| (\bar{s}b)_{V-A}^{\mu} \right| A_{b}^{\nu} \right) \epsilon_{\mu}^{*}(s_{Z_{c}}) \times \left(\Lambda^{0} \left| (\bar{s}b)_{V-A}^{\mu} \right| A_{b}^{\nu} \right) \epsilon_{\mu}^{*}(s_{Z_{c}}) \times \left(\Lambda^{0} \left| (\bar{s}b)_{V-A}^{\mu} \right| A_{b}^{\nu} \right) + \left(\Lambda^{0} \left| (\bar{s}b)_{V-A}^{\mu} \right| A_{b}^{\nu} \right) + \left(\Lambda^{0} \left| (\bar{s}b)_{V-A}^{\mu} \right| A_{b}^{\nu} \right) + \left(\Lambda^{0} \left| (\bar{s}b)_{V-A}^{\mu} \right| A_{b}^{\nu} \right) +$$

 0 GeV,

Solution States of States appear in the final states.

Channel	Branching fraction	Channel	Branching fract
$\Xi_b^- \to \Sigma^- Z_c^0(3900)$	2.01×10^{-8}	$\Xi_b^- \to \Sigma^0 Z_c^-(3900)$	2.01×10^{-8}
$\Xi_b^- \to \Lambda^0 Z_c^-(3900)$	1.26×10^{-8}	$\Xi_b^- \to \Sigma^- Z_{c\eta_8}$	1.26×10^{-8}
$\Xi_b^0 \to \Lambda^0 Z_c^0(3900)$	5.94×10^{-9}	$\Xi_b^0 \to \Sigma^0 Z_{c\eta_8}$	5.94×10^{-9}
$\Lambda_b^0 \to \Lambda^0 Z_c^0(3900)$	1.93×10^{-7}		

with three resonances.

 \mathbf{M} Our analysis can improve our understanding on $Z_c(3900)$.

We presented numerical predictions for the partial decay widths and branching fractions of various channels.

Thank you for your attention!

We have derived the angular distribution of Lambda b decay

Backup

