# Next-to-next-to-leading-order QCD corrections to pion electromagnetic form factors

Based on arXiv: 2403.04762

#### Wen Chen

#### South China Normal University



#### in collaboration with Long-bin Chen (GZHU), Feng Feng (CUMTB), Yu Jia (IHEP)

Apr. 07, 2024 @ HUST (Wuhan)

メロト スポト メヨト メヨト 二日

# Contents



2 Calculation of hard-scattering kernel

#### Operation of the second sec



# Introduction

<ロト イクト イミト イミト ミークへで 3/21

# Introduction

### Electromagnetic form factor

$$\pi^{+}(P')|J^{\mu}_{\rm em}|\pi^{+}(P)\rangle = F_{\pi}(Q^{2})(P^{\mu} + P'^{\mu}).$$
(1)



Figure: Measurements of the pion form factor.

For the lattice-QCD calculations, see Ding's talk.

#### Introduction

Collinear factorization hard scattering kernel (perturbative)

$$F_{\pi}(Q^2) = \iint dx \, dy \, \Phi_{\pi}^*(x, \mu_F) T(x, y, \frac{\mu_R^2}{Q^2}, \frac{\mu_F^2}{Q^2}) \Phi_{\pi}(y, \mu_F) \,. \tag{2}$$

Light-cone distribution amplitude (LCDA) Wilson line

$$\Phi_{\pi}(x,\mu_F) = \int \frac{dz^-}{2\pi i} e^{iz^- xP^+} \left\langle 0 \left| \bar{d}(0)\gamma^+ \gamma_{5} \mathcal{W}(0,z^-) u(z^-) \right| \pi^+(P) \right\rangle .$$
(3)

Efremov-Radyushkin- Brodsky-Lepage (ERBL) evolution equation

$$\frac{d\Phi_{\pi}(x,\mu_F)}{d\ln\mu_F^2} = \int_0^1 dy \, V(x,y) \, \Phi_{\pi}(y,\mu_F) \,. \tag{4}$$

#### <ロト < 団ト < 臣 > < 臣 > 三 のへで 5/21

We focus on the next-to-next-to-leading order calculation of the hard-scattering kernel.

History

• Leading order

Chernyak et al.(1977)JETPL, Farrar&Jackson(1979)PRL, Chernyak&Zhitnitsky(1980)SJNP, Lepage&Brodsky(1979)PRL, (1980)PRD, Efremov&Radyushkin(1980)PLB, Duncan&Mueller(1980)PRD

• Next-to-leading order

Field et al.(1981)NPB, Dittes&Radyushkin(1981)SJNP, Sarmadi(1984)PLB, Braaten&Tse(1987)PRD, Melic et al.(1999)PRD

photon-pion form factor

Gao et al. (2022) PRL, Braun et al. (2021) PRD

# Calculation of hard-scattering kernel

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > 7/21

# Calculation of hard-scattering kernel

#### The hard-scattering kernel is insensitive to the long-distance physics.



Figure: Sample parton-level Feynman diagrams for the reaction  $\gamma^*\pi(P) \to \pi(P')$  at various perturbative orders.

### Modern techniques on Feynman amplitude calculations



#### Differential-equation method



Boundary conditions

$$I_i = \sum_a y^{\lambda_a} I_{i,a} \,. \tag{7}$$

The boundary integrals  $I_{i,a}$  can be reduced in the parametric representation Chen (2020) JHEP, (2020) EPJC, (2021) EPJC Single-scale boundary integrals can be calculated recursively in the parametric representation. Chen, Luo, Yang, Zhu (2024) JHEP

#### Renormalization

$$\Phi(x|u) = \int dy Z(x,y) \Phi_{\text{bare}}(y|u) = Z(x,u).$$
(8)

$$Z(x,y) = \delta(x-y) + \sum_{k=1}^{\infty} \frac{1}{\epsilon^k} Z_k(x,y) \,. \tag{9}$$

$$\alpha_s \frac{\partial Z_{n+1}}{\partial \alpha_s} = \alpha_s \frac{\partial Z_1}{\partial \alpha_s} \otimes Z_n + \beta(\alpha_s) \frac{\partial Z_n}{\partial \alpha_s} \,. \tag{10}$$

$$V(x,y) = -\alpha_s \partial Z_1 / \partial \alpha_s \,. \tag{11}$$

<ロ>・ロ>・日>・モー>・モー>・モー> しつへで 11/21

# Perturbative matching

$$F(u,v) = F^{(0)}(u,v) + \frac{\alpha_s}{\pi} F^{(1)}(u,v) + \left(\frac{\alpha_s}{\pi}\right)^2 F^{(2)}(u,v) + \cdots;$$
(12)

$$T = T^{(0)} + \frac{\alpha_s}{\pi} T^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 T^{(2)} + \dots;$$
(13)

$$\Phi(x|u) = \Phi^{(0)}(x|u) + \frac{\alpha_s}{\pi} \Phi^{(1)}(x|u) + \left(\frac{\alpha_s}{\pi}\right)^2 \Phi^{(2)}(x|u) + \cdots$$
 (14)

$$\begin{aligned} Q^{2}F^{(0)}(u,v) = & T^{(0)}(u,v); \\ Q^{2}F^{(1)}(u,v) = & T^{(1)}(u,v) + \Phi^{(1)}(x|u) \underset{x}{\otimes} T^{(0)}(x,v) + \Phi^{(1)}(y|v) \underset{y}{\otimes} T^{(0)}(u,y); \\ & (16) \\ Q^{2}F^{(2)}(u,v) = & T^{(2)}(u,v) + \Phi^{(2)}(x|u) \underset{x}{\otimes} T^{(0)}(x,v) + \Phi^{(2)}(y|v) \underset{y}{\otimes} T^{(0)}(u,y) \\ & + \Phi^{(1)}(x|u) \underset{x}{\otimes} T^{(1)}(x,v) + \Phi^{(1)}(y|v) \underset{y}{\otimes} T^{(1)}(u,y) \\ \end{aligned}$$

$$+\Phi^{(1)}(x|u) \mathop{\otimes}\limits_{x} T^{(0)}(x,y) \mathop{\otimes}\limits_{y} \Phi^{(1)}(y|v) \,.$$

12/21

$$\Phi_{\pi}(x,\mu_F) = \frac{f_{\pi}}{2\sqrt{2N_c}} \sum_{n=0}^{\prime} a_n(\mu_F)\psi_n(x),$$
(18)

$$\psi_n(x) = 6x\overline{x} C_n^{3/2} (2x - 1).$$
(19)

Gegenbauer polynomial

$$Q^{2}F_{\pi}(Q^{2}) = \frac{2C_{F}\pi^{2}(e_{u} - e_{d})f_{\pi}^{2}}{3} \sum_{k=0}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{k+1} \sum_{m,n}^{\prime} a_{n}(\mu_{F})a_{m}(\mu_{F})\mathcal{T}_{mn}^{(k)}, \quad (20)$$
$$\mathcal{T}_{mn}^{(k)} = \frac{1}{e_{u} - e_{d}}\psi_{m}(x) \underset{x}{\otimes} T^{(k)}\left(x, y, \frac{\mu_{R}^{2}}{Q^{2}}, \frac{\mu_{F}^{2}}{Q^{2}}\right) \underset{y}{\otimes} \psi_{n}(y). \quad (21)$$

<ロ > < 合 > < 言 > < 言 > こ 差 < う へ () 13/21

#### Results

$$\mathcal{T}_{mn}^{(0)} = 9;$$
 (22)

$$\mathcal{T}_{00}^{(1)} = \frac{1}{4} (81L_{\mu} + 237); \tag{23}$$

$$\mathcal{T}_{00}^{(2)} = \frac{729L_{\mu}^{2}}{8} - (8\zeta_{3} + \frac{35\pi^{2}}{6} - \frac{4365}{8})L_{\mu} + 205\zeta_{5} - \frac{3\pi^{4}}{20} - \frac{759\zeta_{3}}{2} - \frac{1829\pi^{2}}{96} + \frac{36559}{32}.$$
(24)

Analytic continuation

$$\mu^2 \to \mu^2 e^{i\pi} \,. \tag{25}$$

| (m,n) | $c_1$   | $c_2$   | $d_1$   | $d_2$   | $d_3$   |
|-------|---------|---------|---------|---------|---------|
| (0,0) | 20.25   | 59.25   | 91.1250 | 478.436 | 696.210 |
| (0,2) | 32.75   | 112.473 | 170.118 | 1094.39 | 2025.84 |
| (0,4) | 38.45   | 147.638 | 211.902 | 1541.23 | 3206.98 |
| (0,6) | 42.2571 | 174.359 | 241.822 | 1901.22 | 4265.06 |
| (2,2) | 45.25   | 192.871 | 266.472 | 2178.25 | 4953.36 |
| (2,4) | 50.95   | 240.181 | 316.173 | 2875.57 | 7237.52 |
| (2,6) | 54.7571 | 274.974 | 351.380 | 3415.43 | 9172.70 |
| (4,4) | 56.65   | 292.970 | 369.484 | 3704.29 | 10222.5 |
| (4,6) | 60.4571 | 331.411 | 407.102 | 4337.65 | 12698.8 |
| (6,6) | 64.2643 | 372.282 | 446.331 | 5037.27 | 15588.4 |

Table: The numerical values for  $\mathcal{T}_{mn}^{(1)} = c_1 L_{\mu} + c_2$  and  $\mathcal{T}_{mn}^{(2)} = d_1 L_{\mu}^2 + d_2 L_{\mu} + d_3$ , with  $0 \le m, n \le 6$ .

# Phenomenology

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ = つへで 16/21

# Phenomenology

#### Input parameters

- QCD light-cone sum rule Ball et al. (2006)JHEP, Mikhailov et al. (2016) PRD, Stefanis (2020) PRD
- Dispersion relation Cheng et al. (2020) PRD See Cheng's talk
- Platykurtic distribution Stefanis (2014) PLB
- Dyson-Schwinger equation Chang et al. (2013) PRL, Raya et al. (2016) PRD
- light-front quark model Choi and Ji 2015 (PRD)
- holographic QCD Chang et al. (2017) PRD
- Lattice QCD Bali et al. (2019) JHEP, Hua et al. (2022) PRL See talks by Zhang and Zeng

RQCD: 
$$a_2(2 \text{ GeV}) = 0.116^{+0.019}_{-0.020}$$
  
LPC:  $a_2(2 \text{ GeV}) = 0.258 \pm 0.087, \ a_4(2 \text{ GeV}) = 0.122 \pm 0.056,$   
 $a_6(2 \text{ GeV}) = 0.068 \pm 0.038$ 

17 / 21



Figure: Theoretical predictions vs. data for  $Q^2 F_{\pi}(Q^2)$  in the space-like (left panel) and time-like (right panel) regions. We take the central values of  $a_2$ ,  $a_4$  and  $a_6$  determined by LPC. The red, green and blue curves correspond to the LO, NLO and NNLO results, and the respective bands are obtained by sliding  $\mu$  from Q/2 to Q. Experimental data points are taken from NA7, Bebek et al., Huber et al. and BaBar.

#### Phenomenology



Figure: Same as Fig. 3, except the predictions are made by taking the central value of  $a_2$  determined by RQCD, with  $a_4$  and  $a_6$  set to zero.

# Summary

<ロト < 部 > < 言 > < 言 > 言 の Q () 20/21

# Summary

We calculate the next-to-next-to-leading order (NNLO) QCD radiative correction to the pion electromagnetic form factor with large momentum transfer. We explicitly verify the validity of the collinear factorization to two-loop order for this observable, and obtain the respective IR-finite two-loop hard-scattering kernel in the closed form. The NNLO QCD correction turns to be positive and significant. Incorporating this new ingredient of correction, we then make a comprehensive comparison between the finest theoretical predictions and numerous data for both space-like and time-like pion form factors. Our phenomenological analysis provides strong constraint on the second Gegenbauer moment of the pion light-cone distribution amplitude (LCDA) obtained from recent lattice QCD studies.

#### Thanks!