第三届 **强子与重味物理理论与实验** 联合研讨会

How to understand the charmed strange tetraquarks near 2.9 GeV?

Background: spectrum of molecule candidates and implications

An introduction to our framework

Spectrum of the molecular tetraquarks:

- 1. Understanding the $T_{cs0}(2900)$ and $T^a_{cs0}(2900)$
- 2. Highlights of our predictions
- Summary and outlook

Background: spectrum of molecule candidates and implications

Background: status of the $T_{cs0}(2900)$

Explanations for $T_{cs}(2900)$

<i>csud</i> tetraquark	Kinematic effect
Karliner et al., Phys. Rev. D 102, 094016(2020)	Liu et al., Eur. Phys. J. C 80, 1178 (2020)
He et al., Eur. Phys. J. C 80, 1026 (2020)	Burns et al., Phys. Lett. B 813, 136057 (2021)
Wang et al., Int. J. Mod. Phys. A 35, 2050187 (2020)	
Zhang et al., Phys. Rev. D 103, 054019 (2021)	
Wang et al., Eur. Phys. J. C 81, 188 (2021)	
Lü et al., Phys. Rev. D 102, 074021 (2020),	
Tan et al., Chin. Phys. C 45, 093104 (2021)	
	C̄̄̄Sud tetraquark Karliner et al., Phys. Rev. D 102, 094016(2020) He et al., Eur. Phys. J. C 80, 1026 (2020) Wang et al., Int. J. Mod. Phys. A 35, 2050187 (2020) Zhang et al., Phys. Rev. D 103, 054019 (2021) Wang et al., Eur. Phys. J. C 81, 188 (2021) Lü et al., Phys. Rev. D 102, 074021 (2020), Tan et al., Chin. Phys. C 45, 093104 (2021)

The calculations from quark model showed that

Compact tetraquark explanation appears incompatible with the current experimental data!

Background: status of the $T^a_{c\bar{s}0}(2900)$

The contrast of the formula formula $m_{D^*K^*} \simeq 2.9 \text{ GeV}$ $T^a_{c\bar{s}0}(2900)^0 \colon M = (2.892 \pm 0.014 \pm 0.015) \text{ GeV},$ $\Gamma = (0.119 \pm 0.026 \pm 0.013) \text{ GeV},$ $T^a_{c\bar{s}0}(2900)^{++} \colon M = (2.921 \pm 0.017 \pm 0.020) \text{ GeV},$ $\Gamma = (0.137 \pm 0.032 \pm 0.017) \text{ GeV},$

belong to an isospin triplet

with spin-parity 0⁺

Explanations for $T_{c\bar{s}}(2900)$

*D***K** molecule: Chen et al., 2208.10196; Agaev et al., Phys. Rev. D 107, 094019 (2023); Yue et al., Phys. Rev. D 107, 034018 (2023); Duan et al., Phys. Rev. D 108, 074006 (2023) ; **B. Wang et al., 2309.02191**. [Ke et al., Phys. Rev. D 106, 114032 (2022) against a binding solution in the isovector *D***K** system]

csqq tetraquark: Liu et al., Phys. Rev. D 107, 096020 (2023); Yang et al., Int. J. Mod. Phys. A 38, 2350056 (2023); Lian et al., 2302.01167; Wei et al., Phys. Rev. D 106, 096023 (2022); Ortega et al., 2305.14430.

For other related works, see PhysRevD.109.034027 and the references therein

Implications of the spectrum

Light flavor wave functions

• $T_{cs0}(2900)$ and $T_{cc}(3875)$

And

States	Nearest thresholds	Quark contents	V_{type}	Strange quark: light or <i>heavy</i> ?
	$Dar{D}^*$ $Dar{D}^*$ D^*K^*	$[car{q}][ar{c}q]$ $[car{q}][ar{c}q]$ $[car{q}][ar{s}q]$	$V_{ar q q}$	$m_s < \Lambda_{QCD},$ in contrast to the $m_{u,d} \ll \Lambda_{QCD}$ SU(3) symmetry is not good!
$ \frac{I_{cs0}(2900)}{P_{c}s} \\ \bar{T}_{cc}(3875) \\ \bar{T}_{cs0}(2900) $	$ \frac{\Sigma_c \bar{D}^{(*)}}{\bar{D}\bar{D}^*} \\ \bar{D}^* K^* $	$ [cqq][\bar{c}q] \\ [\bar{c}q][\bar{c}q] \\ [\bar{c}q][\bar{c}q] \\ [\bar{c}q][\bar{s}q] $	V_{qq}	$m_s^{\text{QM}} \sim 500 \text{ MeV}$ For shallow bound hadronic molecules: $\gamma_b^{\text{ty}} = \sqrt{2\mu E_b} \le 100 \text{ MeV} \ll m_s^{\text{QM}}$
	B. Wang et a	I., PhysRevD.109.034	<mark>4027</mark>	such as for the DD^*/DD^* systems: $E_h \le 10 \text{ MeV}$

B. Wang et al., PhysRevD.109.034027

- \checkmark The near-threshold interactions are too weak to excite the strange quarks inside the *heavy* hadrons.
- ✓ The strange quark will behave like an inert source (*heavy* quark) from the view of the residual strong interactions at the nearthreshold energy scale.

The second secon

$$V_{\text{eff}} \sim \sum_{e} \frac{\{1, \sigma_1 \cdot \sigma_2, (\sigma_1 \cdot q)(\sigma_2 \cdot q), \dots\}}{q^2 + M_e^2}$$

For the near-threshold interactions: $q^2 \ll M_e^2$
$$\frac{1}{q^2 + M_e^2} = \frac{1}{M_e^2} \left(1 - \frac{q^2}{M_e^2} + \dots\right)$$

Keep the leading order (q^0) of the expansion
B. Wang et al., PhysRevD.109.034027

✓ Each exchanged meson fields contain both the isospin triplet and singlet:

$$\mathscr{S} = \mathscr{S}_i \tau_i + \frac{1}{\sqrt{2}} \mathscr{S}_1$$

✓ The net contributions from the exchanged particles will give rise to the non-relativistic effective potentials for the light qq and $q\bar{q}$ with the following forms, respectively,

Pauli matrix in isospin space
$$V_{qq} = \left(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + \frac{1}{2} \boldsymbol{\tau}_{0,1} \cdot \boldsymbol{\tau}_{0,2} \right) \left(c_s + c_a \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right),$$
Pauli matrix in spin space $V_{\bar{q}q} = \left(-\boldsymbol{\tau}_1^* \cdot \boldsymbol{\tau}_2 + \frac{1}{2} \boldsymbol{\tau}_{0,1} \cdot \boldsymbol{\tau}_{0,2} \right) \left(\tilde{c}_s + \tilde{c}_a \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right),$

B. Wang et al., PhysRevD.109.034027

✓ Translating the quark-level potential to the hadron-level:

$$V_{\mathscr{H}_{1}\mathscr{H}_{2}}^{I,J} = \left\langle \left[\mathscr{H}_{1}\mathscr{H}_{2}\right]_{J}^{I} |V_{qq}| \left[\mathscr{H}_{1}\mathscr{H}_{2}\right]_{J}^{I} \right\rangle$$

spin-flavor wave function of $\mathscr{H}_{1}\mathscr{H}_{2}$
di-hadron systems

✓ Equivalent to using a hadron-level contact Lagrangians:

$$\mathcal{L}_{\bar{D}^{(*)}K^*} = C_1(\bar{\tilde{\mathcal{H}}}\tilde{\mathcal{H}})(K^{*\mu\dagger}K^*_{\mu}) + C_2(\bar{\tilde{\mathcal{H}}}\tau_i\tilde{\mathcal{H}})(K^{*\mu\dagger}\tau_iK^*_{\mu}) + iC_3(\bar{\tilde{\mathcal{H}}}\sigma^{\mu\nu}\tilde{\mathcal{H}})(K^{*\dagger}_{\mu}K^*_{\nu}) + iC_4(\bar{\tilde{\mathcal{H}}}\sigma^{\mu\nu}\tau_i\tilde{\mathcal{H}})(K^{*\dagger}_{\mu}\tau_iK^*_{\nu})$$

B. Wang et al., PhysRevD.109.034027

✓ To search for the bound/virtual state poles,

$$t = v + vGt, \longrightarrow t^{-1} = v^{-1} - G$$

$$G(E + i\epsilon) = \int_{0}^{\Lambda} \frac{k^{2}dk}{(2\pi)^{3}} \frac{2\mu}{p^{2} - k^{2} + i\epsilon}$$

$$= \frac{2\mu}{(2\pi)^{3}} \left[p \tanh^{-1} \left(\frac{p}{\Lambda} \right) - \Lambda - \frac{i\pi}{2} p \right]$$
Bound state pole in Sheet-I (physical) : $G(E + i\epsilon)$
/irtual state pole in Sheet-II (unphysical) : $G(E + i\epsilon) + i\frac{\mu}{4\pi^{2}}p$

$$\frac{2024/47}{12}$$

Spectrum of the molecular tetraquarks: understanding the $T_{cs0}(2900)$

Systems	$I(J^P)$	$\langle {\cal O}_1 angle$	$\langle {\cal O}_2 angle$	$\langle {\cal O}_3 angle$	$\langle \mathcal{O}_4 angle$	$V_{ m sys}$	E_B/E_V	States
DD	$1(0^{+})$	$\frac{1}{2}$	1	0	0	$\frac{3}{2}c_s$	—	_
*תת	$0(1^+)$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}c_s + \frac{5}{2}c_a$	$[3874.74 \pm 0.04]_B$	$T_{cc}(3875)$ [Input]
	$1(1^{+})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}c_s + \frac{3}{2}c_a$	—	—
	$0(1^{+})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}c_s + \frac{5}{2}c_a$	$\left[4015.6^{+0.8}_{-2.3}\right]_B$	$T_{cc}(4015)$
D^*D^*	$1(0^{+})$	$\frac{1}{2}$	1	-1	-2	$\frac{3}{2}c_s - 3c_a$	—	_
	$1(2^{+})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}c_s + \frac{3}{2}c_a$	—	-
$ar{D}K^*$	$0(1^{+})$	$\frac{1}{2}$	-3	0	0	$-\frac{5}{2}c_s$	$\left[2752.5^{+2.6}_{-3.6}\right]_V$	$T^f_{cs1}(2760)$
	$1(1^{+})$	$\frac{1}{2}$	1	0	0	$\frac{3}{2}c_s$	_	—
	$0(0^{+})$	$\frac{1}{2}$	-3	-1	6	$-\frac{5}{2}c_s + 5c_a$	$\left[2897.8^{+2.6}_{-9.1}\right]_V$	$T^{f}_{cs0}(2900)$
	$0(1^{+})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}c_s + \frac{5}{2}c_a$	$\left[2896.6^{+3.0}_{-6.3} ight]_V$	$T^f_{cs1}(2900)$
\bar{D}^*K^*	$0(2^+)$	$\frac{1}{2}$	-3	$\frac{1}{2}$	-3	$-\frac{5}{2}c_s - \frac{5}{2}c_a$	$\left[2892.8^{+5.0}_{-9.8} ight]_V$	$T^f_{cs2}(2900)$
	$1(0^{+})$	$\frac{1}{2}$	1	-1	-2	$\frac{3}{2}c_s - 3c_a$	—	—
	$1(1^{+})$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1	$\frac{3}{2}c_s - \frac{3}{2}c_a$	—	—
	$1(2^{+})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}c_s + \frac{3}{2}c_a$	_	_

B. Wang et al., PhysRevD.109.034027

Spectrum of the molecular tetraquarks: understanding the $T^a_{c\bar{s}0}(2900)$

Systems	$\overline{I^{(G)}(J^{P(C)})}$	$\langle {\cal O}_1 angle$	$\langle {\cal O}_2 angle$	$\langle \mathcal{O}_3 angle$	$\langle \mathcal{O}_4 angle$	$ ilde{V}_{ m sys}$	E_B/E_V	States
	$0^+(0^{++})$	$\frac{1}{2}$	-3	0	0	$-\frac{5}{2}\tilde{c}_s$	$\left[\sim 3696.5\right]_V$	$X(3700)^{\sharp}$
DD	$1^{-}(0^{++})$	$\frac{1}{2}$	1	0	0	$rac{3}{2} ilde{c}_s$	_	_
	$0^+(1^{++})$	$\frac{1}{2}$	-3	$\frac{1}{2}$	-3	$-\frac{5}{2}\tilde{c}_s-\frac{5}{2}\tilde{c}_a$	$[3871.2, 3871.6]_B$	X(3872) [Input]
$D\bar{D}^*$	$0^{-}(1^{+-})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}\tilde{c}_s + \frac{5}{2}\tilde{c}_a$	—	_
DD	$1^+(1^{+-})$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1	$\frac{3}{2}\tilde{c}_s - \frac{3}{2}\tilde{c}_a$	$\left[3825.8, 3874.8 ight]_{V}$	$Z_c(3900)$ [Input]
	$1^{-}(1^{++})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}\tilde{c}_s + \frac{3}{2}\tilde{c}_a$	_	_
	$0^+(0^{++})$	$\frac{1}{2}$	-3	-1	6	$-\frac{5}{2}\tilde{c}_s + 5\tilde{c}_a$	_	_
	$0^{-}(1^{+-})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}\tilde{c}_s + \frac{5}{2}\tilde{c}_a$	_	_
D* D	$0^+(2^{++})$	$\frac{1}{2}$	-3	$\frac{1}{2}$	-3	$-\frac{5}{2}\tilde{c}_s-\frac{5}{2}\tilde{c}_a$	$[4011.8, 4012.2]_B$	X(4012)
D D	$1^{-}(0^{++})$	$\frac{1}{2}$	1	-1	-2	$\frac{3}{2}\tilde{c}_s - 3\tilde{c}_a$	$[4007.2, 4016.7]_B$	$Z_c(4010)$
	$1^+(1^{+-})$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1	$\frac{3}{2}\tilde{c}_s - \frac{3}{2}\tilde{c}_a$	$\left[3973.6, 4014.5 \right]_V$	$Z_{c}(4020)$
	$1^{-}(2^{++})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}\tilde{c}_s + \frac{3}{2}\tilde{c}_a$	_	_
DK^*	$0(1^+)$	$\frac{1}{2}$	-3	0	0	$-\frac{5}{2}\tilde{c}_s$	$\left[\sim 2586.0\right]_V$	$T^f_{car{s}0}(2760)^{\sharp}$
$D\Lambda$	$1(1^{+})$	$\frac{1}{2}$	1	0	0	$rac{3}{2} ilde{c}_s$	_	_
	$0(0^+)$	$\frac{1}{2}$	-3	-1	6	$-\frac{5}{2}\tilde{c}_s + 5\tilde{c}_a$	_	_
D^*K^*	$0(1^{+})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}\tilde{c}_s + \frac{5}{2}\tilde{c}_a$	_	_
	$0(2^+)$	$\frac{1}{2}$	-3	$\frac{1}{2}$	-3	$-\frac{5}{2}\tilde{c}_s-\frac{5}{2}\tilde{c}_a$	$\left[2900.2, 2900.3\right]_V$	$T^{f}_{car{s}2}(2900)$
	$1(0^{+})$	$\frac{1}{2}$	1	-1	-2	$\frac{3}{2}\tilde{c}_s - 3\tilde{c}_a$	$\left[2887.6, 2900.5\right]_V$	$T^{a}_{c\bar{s}0}(2900)$
	$1(1^{+})$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1	$\frac{3}{2}\tilde{c}_s - \frac{3}{2}\tilde{c}_a$	$\left[2676.2, 2876.3 \right]_V$	$T^a_{car{s}1}(2900)$
	$1(2^{+})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}\tilde{c}_s + \frac{3}{2}\tilde{c}_a$	_	_

Unraveling the $T_{cs0}(2900)$ and $T^a_{c\bar{s}0}(2900)$

In our calculations, the recently discovered $T_{cs0}(2900)$ and $T^a_{c\bar{s}0}(2900)$ can be confidently identified as the charm-strange counterparts of $T_{cc}(3875)$ and $Z_c(3900)$, respectively.

Systems	$I(J^P)$	$\langle {\cal O}_1 angle$	$\langle \mathcal{O}_2 angle$	$\langle {\cal O}_3 angle$	$\langle \mathcal{O}_4 angle$	$V_{ m sys}$	E_B/E_V	States
DD	$1(0^{+})$	$\frac{1}{2}$	1	0	0	$\frac{3}{2}c_s$		_
	$0(1^+)$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}c_s + \frac{5}{2}c_a$	$[3874.74 \pm 0.04]_B$	$T_{cc}(3875)$ [Input]
	$1(1^{+})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}c_s + \frac{3}{2}c_a$	—	—
	$0(1^{+})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}c_s + \frac{5}{2}c_a$	$\left[4015.6^{+0.8}_{-2.3}\right]_B$	$T_{cc}(4015)$ 🥝
D^*D^*	$1(0^{+})$	$\frac{1}{2}$	1	-1	-2	$\frac{3}{2}c_s - 3c_a$	—	—
	$1(2^{+})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}c_s + \frac{3}{2}c_a$	_	—
$ar{D}K^*$	$0(1^{+})$	$\frac{1}{2}$	-3	0	0	$-\frac{5}{2}c_s$	$\left[2752.5^{+2.6}_{-3.6}\right]_V$	$T^f_{cs1}(2760)$ 🥝
DK	$1(1^{+})$	$\frac{1}{2}$	1	0	0	$rac{3}{2}C_s$	—	-
$ar{D}^*K^*$	$0(0^{+})$	$\frac{1}{2}$	-3	-1	6	$-\frac{5}{2}c_s + 5c_a$	$\left[2897.8^{+2.6}_{-9.1} ight]_V$	$T^{f}_{cs0}(2900)$
	$0(1^{+})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}c_s + \frac{5}{2}c_a$	$\left[2896.6^{+3.0}_{-6.3} ight]_V$	$T^f_{cs1}(2900)$ 🥝
	$0(2^+)$	$\frac{1}{2}$	-3	$\frac{1}{2}$	-3	$-\frac{5}{2}c_s - \frac{5}{2}c_a$	$\left[2892.8^{+5.0}_{-9.8} ight]_V$	$T^f_{cs2}(2900)$ 🥝
	$1(0^{+})$	$\frac{1}{2}$	1	-1	-2	$\frac{3}{2}c_s - 3c_a$	—	—
	$1(1^{+})$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1	$\frac{3}{2}c_s - \frac{3}{2}c_a$	—	—
	$1(2^{+})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}c_s + \frac{3}{2}c_a$	—	—

Systems	$\overline{I^{(G)}(J^{P(C)})}$	$\langle \mathcal{O}_1 angle$	$\langle \mathcal{O}_2 angle$	$\langle \mathcal{O}_3 angle$	$\langle \mathcal{O}_4 angle$	$ ilde{V}_{ m sys}$	E_B/E_V	States
	$0^+(0^{++})$	$\frac{1}{2}$	-3	0	0	$-\frac{5}{2}\tilde{c}_s$	$\left[\sim 3696.5\right]_V$	$X(3700)^{\sharp}$ 🥝
DD	$1^{-}(0^{++})$	$\frac{1}{2}$	1	0	0	$rac{3}{2} ilde{c}_s$	_	
	$0^+(1^{++})$	$\frac{1}{2}$	-3	$\frac{1}{2}$	-3	$-rac{5}{2} ilde{c}_s - rac{5}{2} ilde{c}_a$	$[3871.2, 3871.6]_B$	X(3872) [Input]
ភភិ*	$0^{-}(1^{+-})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}\tilde{c}_s+\frac{5}{2}\tilde{c}_a$	_	_
DD	$1^+(1^{+-})$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1	$\frac{3}{2}\tilde{c}_s - \frac{3}{2}\tilde{c}_a$	$\left[3825.8, 3874.8 ight]_{V}$	$Z_{c}(3900)$ [Input]
	$1^{-}(1^{++})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}\tilde{c}_s + \frac{3}{2}\tilde{c}_a$	_	_
	$0^+(0^{++})$	$\frac{1}{2}$	-3	-1	6	$-\frac{5}{2}\tilde{c}_s + 5\tilde{c}_a$	_	_
	$0^{-}(1^{+-})$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}\tilde{c}_s + \frac{5}{2}\tilde{c}_a$	_	_
רי בֿ∗	$0^+(2^{++})$	$\frac{1}{2}$	-3	$\frac{1}{2}$	-3	$-rac{5}{2} ilde{c}_s -rac{5}{2} ilde{c}_a$	$\left[4011.8, 4012.2\right]_B$	X(4012) 🥝
D D	$1^{-}(0^{++})$	$\frac{1}{2}$	1	-1	-2	$\frac{3}{2}\tilde{c}_s - 3\tilde{c}_a$	$[4007.2, 4016.7]_B$	$Z_c(4010)$ 🧭
	$1^+(1^{+-})$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1	$\frac{3}{2}\tilde{c}_s - \frac{3}{2}\tilde{c}_a$	$\left[3973.6, 4014.5 \right]_V$	$Z_c(4020)$
	$1^{-}(2^{++})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}\tilde{c}_s + \frac{3}{2}\tilde{c}_a$	_	_
DK^*	$0(1^+)$	$\frac{1}{2}$	-3	0	0	$-\frac{5}{2}\tilde{c}_s$	$\left[\sim 2586.0\right]_V$	$T^f_{car{s}0}(2760)^\sharp \bigodot$
$D\Lambda$	$1(1^{+})$	$\frac{1}{2}$	1	0	0	$rac{3}{2} ilde{c}_s$	_	_
	$0(0^+)$	$\frac{1}{2}$	-3	-1	6	$-\frac{5}{2}\tilde{c}_s + 5\tilde{c}_a$	_	_
D^*K^*	$0(1^+)$	$\frac{1}{2}$	-3	$-\frac{1}{2}$	3	$-\frac{5}{2}\tilde{c}_s + \frac{5}{2}\tilde{c}_a$	_	-
	$0(2^+)$	$\frac{1}{2}$	-3	$\frac{1}{2}$	-3	$-\frac{5}{2}\tilde{c}_s-\frac{5}{2}\tilde{c}_a$	$\left[2900.2, 2900.3\right]_V$	$T^{f}_{car{s}2}(2900)$ 🥝
	$1(0^{+})$	$\frac{1}{2}$	1	-1	-2	$\frac{3}{2}\tilde{c}_s - 3\tilde{c}_a$	$\left[2887.6, 2900.5\right]_V$	$T^a_{c\bar{s}0}(2900)$
	$1(1^{+})$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1	$\frac{3}{2}\tilde{c}_s - \frac{3}{2}\tilde{c}_a$	$\left[2676.2, 2876.3 \right]_V$	$T^a_{car{s}1}(2900)$ 🥝
	$1(2^{+})$	$\frac{1}{2}$	1	$\frac{1}{2}$	1	$\frac{3}{2}\tilde{c}_s + \frac{3}{2}\tilde{c}_a$	_	_

Does the \tilde{X} (3872), the C-parity odd partner of X(3872) exist?

In our framework, $V[D\overline{D}^*, 0^-(1^{+-})] > 0 \implies \tilde{X}$ (3872) does not exist!

 $\widetilde{X} (3872)[0^{-}(1^{+-})] \to J/\psi[0^{-}(1^{--})] + \eta[0^{+}(0^{-+})]$

2403.16811

BESIII recently searched for the $e^+e^- \rightarrow \eta \tilde{X}$ (3872): "We do not find any evident signal for the \tilde{X} (3872)....."

Summary and outlook

- The hadronic molecules do not exist as independent entities.
- Their formation crucially depends on the correlations between light quark pairs within separate hadrons.
- We have successfully constructed the complete mass spectrum of molecular tetraquarks, involving the $D^{(*)}D^{(*)}$, $D^{(*)}\overline{D}^{(*)}$, $D^{(*)}K^*$, and $\overline{D}^{(*)}K^*$ systems.
- The experimental search for the predicted states in various decay channels continues to be of great importance in advancing our understanding of the underlying physics.

