Analysis of three-body charmed B meson decays

周四红 (Si-Hong Zhou)

Based on:

 $B \rightarrow (D^* \rightarrow) DP_1 P_2$

in collaboration with Run-Hui Li, Zheng-Yi Wei, Cai-Dian Lu

 $B \rightarrow D(V \rightarrow)P_1P_2$ ArXiv:2404.XXXX

- 内蒙古大学(Inner Mongolia University)
- 第三届强子与重味物理理论与实验联合研讨会
 - 5-9 Apr. 2024
 - *Phys.Rev.D* 104 (2021) 11, 116012

- Notivation for three-body B meson decays
- \checkmark Experimental and theoretical investigation of $B \rightarrow DP_1 P_2$
- Factorization Assisted Topological Amplitude approach
- Numerical results for $B \to (D^* \to)DP_1P_2$, $B \to D(V \to)P_1P_2$
- **Summary**

Outline

Rich physics in three-body B decay

- **Broaden the study of B decay mechanisms**
 - such as testing the standard model,
 - studying the emergence of quantum chromodynamics
- Provide additional possibilities for CP violation searches.
 - besides tree and penguin amplitudes interference as in two-body B decays,
 - the interference between different resonant states in three-body B decays.

3

- $B^0 \to DK^+ \pi^-$ with D representing D^0, \bar{D}^0 , measure the unitarity triangle angle γ $\gamma \equiv \arg[-V_{ud}V_{ub}^*/(V_{cd}V_{cb}^*)]$
 - comparable in magnitude and potentially enhancing CP violation effects

Provide opportunities for the analysis on the hadron spectroscopy

Fig from arXiv:2112.00315 Ying Li etc.

Dalitz plot regions:

the center, the corners and the edges regions

the two energetic particles are collinear and form a moving-fast meson-pair, called quasi-two-body decay

• $m^2(P_1P_2), m^2(P_1P_D)$ generally peak as resonances, intermediate resonances in three-body B meson decays show up

 $B \to D(V, S \dots \to) P_1 P_2$ with vector, scaler... resonances

 $B \rightarrow (D^* \rightarrow) DP_1 P_2$ with charmed resonances D^*

Experimental and theoretical investigation

Applying Dalitz plot analysis,

LHCb have investigated $B_{(s)} \rightarrow D(s) K \pi$ [Phys.Rev.D 90(2014), Phys.Rev.D 92(2015)...]

LHCb, Belle and Babar for $B_{(s)} \rightarrow D(s) \pi \pi$ [Phys.Rev.D 92(2015), Phys.Rev.D 76(2007), Phys.Rev.D 79(2009)...]

- structures of ground and excited states of D^* , K^* and ρ
- their corresponding fit fractions in isobar model

2 Recently, ρ -like resonances in $B_{(s)} \to D(s) K^- K_S$ by Belle II

Actually, virtual effect from $\rho(770) \rightarrow KK$, when $m(\rho) < m(K) + m(\bar{K})$

[arXiv:2305.01321]

isobar model

$$A = \sum_{i=1}^{N} c^{i} A^{i}$$

resonances generally described by relativistic Breit-Wigner model

The theoretical approaches based on the factorization hypothesis have been proposed for quasi-two-body decays.

• **PQCD** approach for charmed *B* decays $B_{(s)} \to D_{(s)}\pi\pi, B_{(s)} \to D_{(s)}K\pi, B_{(s)} \to D_{(s)}KK$ [Phys.Rev.D 108(2023), Phys.Rev.D 103(2021)...]

parameterize as time-like form factor,

usually taken to be relativistic Breit-Wigner line shapes

$$L^{\text{RBW}}(s) = \frac{m_R^2}{s - m_R^2 + im_R \Gamma_R(s)}$$

the interactions between the meson-pair and the bachelor particle are power suppressed naturally.

• **QCDF** approach for charmless *B* decays $B_{(s)} \rightarrow \pi \pi \pi, B_{(s)} \rightarrow K \pi \pi, B_{(s)} \rightarrow K K \pi, B_{(s)} \rightarrow K K K$

[Phys.Rev.D 88(2013), Nucl.Phys.B 899(2015), JHEP 06 (2020)073...]

approaches based on the symmetry principles, such as SU(3) and isospin symmetry, for charmless *B* decays

[Phys.Lett.B 726(2013), Phys.Rev.D91(2015)...]

$$|B| > \frac{1}{s - m_{R_i}^2 + i m_{R_i} \Gamma_{R_i}} < R_i |H_{eff}| > 1$$

factorization-assisted topological-amplitude approach

* factorization-assisted topological-amplitude approach (FAT)

- Distinct by weak interaction and flavor flows with all strong interaction encoded, including non-perturbative ones.
- Amplitudes with strong phases extracted from data.
- Flavor SU(3) symmetry relate different amplitudes and strong phases of the same topological type.

$$T = |T|, C = |C|e^{i\delta_C}, E = |E|e^{i\delta_E},$$

for
$$B_{(s)} \rightarrow D_{(s)}P, P = \pi, K, \eta, \eta'$$

[*H.Y.Cheng, etc. Phys.Rev.D* 54 (1996)]

$B \rightarrow DP, D^*P, DV$

factorization-assisted topological-amplitude approach

[H.Y.Cheng, etc. Phys.Rev.D 75 (2007) 074021]

	Scheme 1
T	$16.26\substack{+0.61 \\ -0.68}$
C	$6.77\substack{+0.20 \\ -0.21}$
E	$1.47\substack{+0.13 \\ -0.15}$
δ_C (degrees)	$-69.0\substack{+9.2\\-7.5}$
δ_E (degrees)	$-146.2\substack{+13.9\\-12.0}$
ξ_T	1 (fixed)
ξ_C	1 (fixed)
$\chi^2_{ m min}$	45.28
$\chi^2_{ m min}/ m dof$	11.32

- based on Flavor SU(3) symmetry $T = |T|, C = |C|e^{i\delta_C}, E = |E|e^{i\delta_E},$
- Need to keep SU(3) breaking effects

factorization-assisted topological-amplitude approach

[Si-Hong Zhou, etc. Phys.Rev.D 92 (2015) 094016]

$$T_c^{DP} = i \frac{G_F}{\sqrt{2}} V_{cb} V_{uq}^* a_1(\mu) f_P(m_B^2 - m_D^2) F_0^{B-1}$$

$$C_{c}^{DP} = i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{uq}^{*} f_{D} (m_{B}^{2} - m_{P}^{2}) F_{0}^{B \to P} (m_{P}^{2} - m$$

$$E_{c}^{DP} = i \frac{G_{F}}{\sqrt{2}} V_{cb} V_{uq}^{*} m_{B}^{2} f_{B} \frac{f_{D_{(s)}} f_{P}}{f_{D} f_{\pi}}$$

SU(3) breaking effect are kept in F, f,

$$\chi_c^C = 0.48 \pm 0.01, \qquad \phi_c^C = (56.6^{+3.2}_{-3.2})$$

 $\chi_c^E = 0.024^{+0.002}_{-0.001}, \qquad \phi_c^E = (123.9^{+3.2}_{-2.2})$

with $\chi^2/d.o.f. = 1.4$.

.2 .8)°, 3.3 2.2)°,

IU

FAT firstly proposed in D meson decaysH. n. Li, C. D. Lu, F. S. Yu , Q. QinApplied successfully in B meson decaysS.H.Zhou, etc.

d(s)

$B \rightarrow DP_1P_2$ with resonances $D^*, \rho, K^*, \omega, \phi$ in FAT

- rightarrow take $B_{(s)} \rightarrow D_{(s)}(V \rightarrow)P_1P_2$ as example
 - two subprocesses: $\bar{B}_{(s)} \to D_{(s)}V$ firstly, subsequently $V \to P_1P_2$

classify the topological diagrams into T, C, E by weak decays $b \rightarrow c q \bar{u} (q = d, s)$

we two subprocesses: $\bar{B}_{(s)} \to D_{(s)}V$ firstly, subsequently $V \to P_1P_2$

• amplitudes of $b \rightarrow c q \bar{u} (q = d, s)$:

$$\begin{split} T^{DV} &= \sqrt{2} \ G_F \ V_{cb} V_{uq}^* \ a_1(\mu) f_V \ m_V \ F_1^{B \to D} \left(m_V^2 \right) \left(\varepsilon_V^* \cdot p_B \right), \\ C^{DV} &= \sqrt{2} \ G_F \ V_{cb} V_{uq}^* \ f_{D_{(s)}} \ m_V \ A_0^{B \to V} \left(m_D^2 \right) \left(\varepsilon_V^* \cdot p_B \right) \ \chi^C \ e^{i\phi^C}, \\ E^{DV} &= \sqrt{2} \ G_F \ V_{cb} V_{uq}^* \ m_V \ f_B \ \frac{f_{D_{(s)}} f_V}{f_D \ f_-} \left(\varepsilon_V^* \cdot p_B \right) \ \chi^E e^{i\phi^E}. \end{split}$$

$$T^{DV} = \sqrt{2} G_F V_{cb} V_{uq}^* a_1(\mu) f_V m_V F_1^{B \to D} \left(m_V^2 \right) \left(\varepsilon_V^* \cdot p_B \right),$$

$$C^{DV} = \sqrt{2} G_F V_{cb} V_{uq}^* f_{D_{(s)}} m_V A_0^{B \to V} \left(m_D^2 \right) \left(\varepsilon_V^* \cdot p_B \right) \chi^C e^{i\phi^C}$$

$$E^{DV} = \sqrt{2} G_F V_A V^* m_V f_B \frac{f_{D_{(s)}} f_V}{2} \left(\varepsilon_V^* \cdot p_B \right) \chi^E e^{i\phi^E}.$$

$$E^{DV} = \sqrt{2} G_F V_{cb} V_{uq}^* m_V f_B \frac{f_{D_{(s)}} f_V}{f_D f_\pi}$$

two subprocesses: $\bar{B}_{(s)} \rightarrow D_{(s)}V$ firstly, subsequently $V \rightarrow P_1P_2$

• RBW distribution for intermediate states ρ, K^*, ω, ϕ :

$$L^{\text{RBW}}(s) = \frac{1}{s - m_V^2 + i m_V \Gamma_V(s)},$$

where $s = (p_1 + p_2)^2$, $\Gamma_V(s)$ is s-dependent width of vector resonances

• $\langle P_1(p_1) P_2(p_2) | V(p_V) \rangle$ can be parametrized as a strong coupling constant $g_{VP_1P_2}$

$$\Gamma_{V \to P_1 P_2} = \frac{2}{3} \frac{p_c^3}{4\pi m_V^2} g_{V P_1 P_2}^2,$$

Finally, combing the two subprocesses together, the decay amplitudes of each topological diagrams

$$\begin{split} T &= \langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |(\bar{q}u)_{V-A}|0\rangle \langle D(p_{D})|(\bar{c}b)_{V-A}|B(p_{B})\rangle \\ &= \frac{\langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |V(p_{V})\rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle V(p_{V}) |(\bar{q}u)_{V-A}| 0\rangle \langle D(p_{D}) |(\bar{c}b)_{V-A}| B(p_{B})\rangle \\ &= p_{D} \cdot \left(p_{1} - p_{2}\right) \sqrt{2} G_{F} V_{cb} V_{uq}^{*} a_{1} f_{V} m_{V} F_{1}^{B \to D}(s) \frac{g_{VP_{1}P_{2}}}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)}, \\ C &= \langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |(\bar{q}b)_{V-A}| B(p_{B})\rangle \langle D\left(p_{D}\right) |(\bar{c}u)_{V-A}| 0\rangle \\ &= \frac{\langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |V(p_{V})\rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle V(p_{V}) |(\bar{q}b)_{V-A}| B(p_{B})\rangle \langle D\left(p_{D}\right) |(\bar{c}u)_{V-A}| 0\rangle \\ &= p_{D} \cdot \left(p_{1} - p_{2}\right) \sqrt{2} G_{F} V_{cb} V_{uq}^{*} f_{D} m_{V} A_{0}^{B \to V}(m_{D}^{2}) \chi^{C} e^{\phi^{C}} \frac{g_{VP_{1}P_{2}}}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)}, \\ E &= \langle D\left(p_{D}\right) P_{1}\left(p_{1}\right) P_{2}(p_{2}) |\mathcal{H}_{eff}| B(p_{B})\rangle \\ &= \frac{\langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |V(p_{V})\rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle D(p_{D})V(p_{V}) |\mathcal{H}_{eff}| B(p_{B})\rangle \\ \end{array}$$

$$\begin{split} T &= \langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |\langle \bar{q}u \rangle_{V-A} |0\rangle \langle D(p_{D}) |\langle \bar{c}b \rangle_{V-A} |B(p_{B})\rangle \\ &= \frac{\langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |V(p_{V})\rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle V(p_{V}) |\langle \bar{q}u \rangle_{V-A} |0\rangle \langle D(p_{D}) |\langle \bar{c}b \rangle_{V-A} |B(p_{B})\rangle \\ &= p_{D} \cdot (p_{1} - p_{2}) \sqrt{2} G_{F} V_{cb} V_{uq}^{*} a_{1} f_{V} m_{V} F_{1}^{B \to D}(s) \frac{g_{VP_{1}P_{2}}}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)}, \\ C &= \langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |\langle \bar{q}b \rangle_{V-A} |B(p_{B})\rangle \langle D\left(p_{D}\right) |\langle \bar{c}u \rangle_{V-A} |0\rangle \\ &= \frac{\langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |V(p_{V})\rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle V(p_{V}) |\langle \bar{q}b \rangle_{V-A} |B(p_{B})\rangle \langle D\left(p_{D}\right) |\langle \bar{c}u \rangle_{V-A} |0\rangle \\ &= p_{D} \cdot (p_{1} - p_{2}) \sqrt{2} G_{F} V_{cb} V_{uq}^{*} f_{D} m_{V} A_{0}^{B \to V}(m_{D}^{2}) \chi^{C} e^{\phi^{C}} \frac{g_{VP_{1}P_{2}}}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)}, \\ E &= \langle D\left(p_{D}\right) P_{1}\left(p_{1}\right) P_{2}(p_{2}) |\mathcal{H}_{eff}| B(p_{B})\rangle \\ &= \frac{\langle P_{1}\left(p_{1}\right) P_{2}\left(p_{2}\right) |V(p_{V})\rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle D(p_{D}) V(p_{V}) |\mathcal{H}_{eff}| B(p_{B})\rangle \\ \end{array}$$

$$\begin{split} P &= \langle P_{1}(p_{1}) P_{2}(p_{2}) | (\bar{q}u)_{V-A} | 0 \rangle \langle D(p_{D}) | (\bar{c}b)_{V-A} | B(p_{B}) \rangle \\ &= \frac{\langle P_{1}(p_{1}) P_{2}(p_{2}) | V(p_{V}) \rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle V(p_{V}) | (\bar{q}u)_{V-A} | 0 \rangle \langle D(p_{D}) | (\bar{c}b)_{V-A} | B(p_{B}) \rangle \\ &= p_{D} \cdot (p_{1} - p_{2}) \sqrt{2} G_{F} V_{cb} V_{uq}^{*} a_{1} f_{V} m_{V} F_{1}^{B \to D}(s) \frac{g_{VP_{1}P_{2}}}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)}, \\ C &= \langle P_{1}(p_{1}) P_{2}(p_{2}) | (\bar{q}b)_{V-A} | B(p_{B}) \rangle \langle D(p_{D}) | (\bar{c}u)_{V-A} | 0 \rangle \\ &= \frac{\langle P_{1}(p_{1}) P_{2}(p_{2}) | V(p_{V}) \rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle V(p_{V}) | (\bar{q}b)_{V-A} | B(p_{B}) \rangle \langle D(p_{D}) | (\bar{c}u)_{V-A} | 0 \rangle \\ &= p_{D} \cdot (p_{1} - p_{2}) \sqrt{2} G_{F} V_{cb} V_{uq}^{*} f_{D} m_{V} A_{0}^{B \to V}(m_{D}^{2}) \chi^{C} e^{\phi^{C}} \frac{g_{VP_{1}P_{2}}}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)}, \\ E &= \langle D(p_{D}) P_{1}(p_{1}) P_{2}(p_{2}) | \mathcal{H}_{eff} | B(p_{B}) \rangle \\ &= \frac{\langle P_{1}(p_{1}) P_{2}(p_{2}) | V(p_{V}) \rangle}{s - m_{V}^{2} + im_{V}\Gamma_{V}(s)} \langle D(p_{D}) V(p_{V}) | \mathcal{H}_{eff} | B(p_{B}) \rangle \\ \end{array}$$

 $= p_D \cdot (p_1 - p_2) \sqrt{2}$

$$2 G_F V_{cb} V_{uq}^* m_V f_B \frac{J_V J_{D_{(s)}}}{f_\pi f_D} \chi^E e^{i\phi^E} \frac{g_{VP_1P_2}}{s - m_V^2 + im_V \Gamma_V(s)},$$

Numerical results and discussion

input parameters

- electroweak coefficients: CKM matrix elements and Wilson coefficients;
- nonperturbative QCD parameters: decay constants f, transition form factors F and nonfactorizable parameters $\chi^{C}, \phi^{C}, \chi^{E}, \phi^{E}$;

$$\chi^{C} = 0.48 \pm 0.01, \qquad \phi^{C} = \left(56.6^{+3.2}_{-3.8}\right)^{\circ},$$

 $\chi^{E} = 0.024^{+0.002}_{-0.001}, \qquad \phi^{E} = \left(123.9^{+3.3}_{-2.2}\right)^{\circ}.$

• Hadronic parameters: m_V , Γ_0 and $g_{VP_1P_2}$

$C \gg E$

 \clubsuit Predict branching fractions for $\bar{B}_{(s)} \to D_{(s)}P_1$

integrate the the differential width over the kinematics region

$$d\Gamma = ds \frac{1}{(2\pi)^3} \frac{(|\mathbf{p}_{\mathbf{D}} \| \mathbf{p}_1 |)^3}{6 m_B^3} |A(s)|^3$$

• ground states of ρ, K^*, ω, ϕ $B_{(s)} \to D_{(s)}(\rho \to)\pi\pi,$ $B_{(s)} \to D_{(s)}(K^* \to)K\pi,$ $B_{(s)} \to D_{(s)}(\rho, \omega, \phi \to)KK$

$$_{1}P_{2}, \ \bar{B}_{(s)} \to \bar{D}_{(s)}P_{1}P_{2}$$

 $(s)|^2,$

ground states of D^*

$$\bar{B}_{(s)} \rightarrow (D^*_{(s)} \rightarrow) D_{(s)} P_1 P_2$$

Decay Modes	Amplitudes	Data	${\cal B}_{ m FAT}$	$\mathcal{B}_{ ext{PQCD}}$
$\bar{B} \to D(\rho \to)\pi\pi$	$V_{cb}V_{ud}^{*}$	10^{-4}	10^{-4}	10^{-4}
$B^- \to D^0 (\rho^- \to) \pi^0 \pi^-$	T + C	134 ± 18	$97.7^{+2.1+16.8+8.5}_{-2.3-15.8-8.1}$	115^{+59}_{-38}
$\bar{B}^0 \rightarrow D^+ (\rho^- \rightarrow) \pi^0 \pi^-$	T + E	76 ± 12	$60.0\substack{+0.5+13.0+6.4\\-0.3-11.7-6.0}$	$82.3\substack{+49.2 \\ -29.0}$
$\bar{B}^0 \rightarrow D^0(\rho^0 \rightarrow) \pi^+ \pi^-$	$\frac{1}{\sqrt{2}}(E-C)$	3.21 ± 0.21	$2.50\substack{+0.14+0.24+0.03\\-0.13-0.49-0.03}$	$1.39\substack{+1.24 \\ -0.90}$
$\bar{B}^0_s \rightarrow D^+_s (\rho^- \rightarrow) \pi^- \pi^0$	T	95 ± 20	$74.5\substack{+0.0+15.6+7.9\\-0.0-14.2-7.5}$	$77.2\substack{+40.2 \\ -25.6}$
	$V_{cb}V_{us}^*$			
$\bar{B}^0_s \rightarrow D^+(\rho^- \rightarrow) \pi^- \pi^0$	E		$0.018\substack{+0.003+0+0.005\\-0.001-0-0.004}$	$0.051\substack{+0.022\\-0.014}$
$\bar{B}^0_s \to D^0(\rho^0 \to) \pi^+\pi^-$	$\frac{1}{\sqrt{2}}E$		$0.009\substack{+0.002+0+0.002\\-0.001-0-0.001}$	$0.026\substack{+0.010\\-0.006}$
$\bar{B} \to \bar{D}(\rho \to)\pi\pi$	$V_{ub}V_{cs}^*$	10^{-6}	10^{-6}	10^{-6}
$B^- \to D^s (\rho^0 \to) \pi^+ \pi^-$	$\frac{1}{\sqrt{2}}T$		$16.7\substack{+0.0+3.5+1.7+1.5\\-0.0-3.2-1.6-1.5}$	$15.2\substack{+11.1 \\ -8.2}$
$\bar{B}^0 \to D^s (\rho^+ \to) \pi^+ \pi^0$	T		$29.7\substack{+0.0+6.2+2.9+2.6\\-0.0-5.6-2.8-2.6}$	$28.2\substack{+20.4 \\ -15.3}$
$\bar{B}^0_s \to D^-(\rho^+ \to) \pi^+ \pi^0$	E		$0.19\substack{+0.03+0+0.02+0.02\\-0.02-0-0.02-0.02}$	$0.69\substack{+0.20 \\ -0.16}$
$\bar{B}^0_s\to \bar{D}^0(\rho^0\to)\pi^+\pi^-$	$\frac{1}{\sqrt{2}}E$		$0.09\substack{+0.02+0+0.01+0.01\\-0.01-0-0.01-0.01}$	$0.34\substack{+0.10 \\ -0.08}$
	$V_{ub}V_{cd}^{*}$			
$B^- \rightarrow D^- (\rho^0 \rightarrow) \pi^+ \pi^-$	$\frac{1}{\sqrt{2}}(T-A)$		$0.35\substack{+0+0.10+0.01+0.03\\-0-0.09-0.01-0.03}$	$0.53\substack{+0.36 \\ -0.27}$
$B^- ightarrow ar{D}^0 (ho^- ightarrow) \pi^+ \pi^0$	C + A		$0.48\substack{+0.02+0.07+0.01+0.04\\-0.02-0.06-0.01-0.04}$	$0.05\substack{+0.02 \\ -0.01}$
$\bar{B}^0 \rightarrow D^-(\rho^+ \rightarrow) \pi^+ \pi^0$	T + E		$1.03\substack{+0.01+0.23+0.01+0.09\\-0.01-0.20-0.01-0.09}$	$0.76\substack{+0.59 \\ -0.31}$
$\bar{B}^0 \rightarrow \bar{D}^0(\rho^0 \rightarrow) \pi^+ \pi^-$	$\frac{1}{\sqrt{2}}(E-C)$		$0.11\substack{+0.01+0.02+0+0.01\\-0.01-0.02-0-0.01}$	$0.013\substack{+0.009\\-0.008}$

1. $B_{(s)} \to D_{(s)} \rho \to D_{(s)} \pi \pi$

Hierarchy of branching fraction

• CKM:

 $\bar{B} \to D(\rho \to) \pi \pi$ induced via $b \to c \bar{u}q$

 $\bar{B} \to \bar{D}(\rho \to) \pi \pi$ induced via $b \to u \bar{c}q$

Cabibbo favored decay modes are able to be measured firstly by experiments

• topological diagrams

FAT $|T| \sim 2|C| \sim 12|E|$

Decay Modes	Amplitudes	Data	$\mathcal{B}_{ ext{FAT}}$	$\mathcal{B}_{ ext{PQCD}}$
$\bar{B} \to D(K^* \to) K \pi$	$V_{cb}V_{ud}^{*}$	10^{-4}	10^{-4}	10^{-4}
$\bar{B}^0 \rightarrow D^+_s (K^{*-} \rightarrow) K^- \pi^0$	E		$0.11\substack{+0.02+0+0.02\\-0.01-0-0.02}$	$0.52\substack{+0.14+0.05+0.05\\-0.12-0.08-0.00}$
$\bar{B}^0_s \to D^0(K^{*0} \to) K^+ \pi^-$	C	2.86 ± 0.44	$3.74\substack{+0.16+0.79+0.04\\-0.15-0.71-0.04}$	$2.86\substack{+1.67+0.43+0.05\\-1.33-0.56-0.08}$
	$V_{cb}V_{us}^*$			
$B^- \rightarrow D^0(K^{*-} \rightarrow) K^- \pi^0$	T + C		$2.04\substack{+0.04+0.35+0.17\\-0.05-0.33-0.16}$	$1.67\substack{+0.71+0.32+0.07\\-0.53-0.34-0.07}$
$\bar{B}^0 \to D^+(K^{*-} \to) K^- \pi^0$	T		$1.31\substack{+0+0.28+0.13\\-0-0.25-0.13}$	$1.24\substack{+0.55+0.15+0.06\\-0.40-0.18-0.05}$
$\bar{B}^0 \rightarrow D^0(\bar{K}^{*0} \rightarrow) K^- \pi^+$	C	0.32 ± 0.05	$0.27\substack{+0.01+0.06+0.01\\-0.01-0.05-0.01}$	$0.17\substack{+0.10+0.03+0.00\\-0.08-0.03-0.01}$
$\bar{B}^0_s \rightarrow D^+_s (K^{*-} \rightarrow) K^- \pi^0$	T + E		$1.42\substack{+0.01+0.31+0.15\\-0.01-0.28-0.14}$	$1.11\substack{+0.45+0.20+0.05\\-0.33-0.21-0.04}$
$\bar{B} \to \bar{D}(K^* \to) K \pi$	$V_{ub}V_{cs}^*$	10^{-6}	10^{-6}	10^{-6}
$B^- \rightarrow \bar{D}^0 (K^{*-} \rightarrow) K^- \pi^0$	C + A		$4.46\substack{+0.18+0.74+0.06+0.39\\-0.18-0.68-0.06-0.39}$	$1.00\substack{+0.43+0.20+0.00\\-0.48-0.27-0.07}$
$B^- \rightarrow D^- (\bar{K}^{*0} \rightarrow) K^- \pi^+$	Α		$0.72\substack{+0+0+0.03+0.06\\-0-0-0.01-0.06}$	$0.21\substack{+0.10+0.03+0.04\\-0.06-0.02-0.00}$
$\bar{B}^0 \rightarrow \bar{D}^0 (\bar{K}^{*0} \rightarrow) K^- \pi^+$	C		$3.48\substack{+0.15+0.73+0.04+0.31\\-0.14-0.66-0.04-0.31}$	$1.96\substack{+1.01+0.52+0.11\\-0.87-0.41-0.12}$
$\bar{B}^0_s \rightarrow D^s (K^{*+} \rightarrow) K^+ \pi^0$	T + E		$8.59\substack{+0.14+1.92+0.86+0.76\\-0.08-1.72-0.82-0.76}$	$13.3\substack{+6.84+0.76+0.80\\-3.04-0.73-0.79}$
	$V_{ub}V_{cd}^*$			
$B^- \to D^s (K^{*0} \to) K^+ \pi^-$	A		$0.037^{+0+0+0.002+0.003}_{-0-0-0.001-0.003}$	$0.014\substack{+0.008+0.004+0.002\\-0.003-0.008-0.0002}$
$\bar{B}^0 \rightarrow D^s (K^{*+} \rightarrow) K^+ \pi^0$	E		$0.005\substack{+0.0009+0+0.0007+0.0004\\-0.0004-0-0.0007+0.0004}$	$0.005\substack{+0.003+0.001+0\\-0.003-0.001-0}$
$\bar{B}^0_s \rightarrow D^-(K^{*+} \rightarrow) K^+ \pi^0$	T		$0.35\substack{+0+0.07+0.004+0.03\\-0-0.07-0.004+0.03}$	$0.6\substack{+0.30+0.03+0.04\\-0.15-0.04-0.04}$
$\bar{B}^0_s\to \bar{D}^0(K^{*0}\to)K^+\pi^-$	C		$0.16\substack{+0.01+0.03+0.002+0.01\\-0.01-0.03-0.002-0.01}$	$0.08\substack{+0.05+0.02+0.00\\-0.03-0.02-0.00}$

2.	$B_{(s)}$	$\rightarrow D_{(s)}K^*$	$\rightarrow D_{(s)}K$
----	-----------	--------------------------	------------------------

FAT $|T| \sim 2 |C| \sim 12 |E|$

comparable branching ratios or $10^{-6} - 10^{-4}$ are also measurable in experiments

- Comparison with PQCD $|T| \sim 2 |C| \sim 12 |E|$ FAT $PQCD |T| \gg |C| \sim |E|$
- all modes dominated only by *C* are larger than those in the PQCDmore precise

$\mathcal{B}_{ ext{PQCD}}$

I	n	_	4
L	υ		

3. $B_{(s)} \rightarrow D_{(s)} \rho \rightarrow D_{(s)} K K$

Decay Modes	$\mathcal{B}_{ ext{FAT}}^{v}$	Ľ
$\bar{B} \to D(\rho \to) KK$		
$B^- \rightarrow D^0(\rho^- \rightarrow) K^- K^0$	$7.01^{+0.13+1.26+0.63}_{-0.14-1.16-0.60}\times10^{-5}$	$11.8\substack{+6.2+\-4.0-}$
$\bar{B}^0 \to D^+(\rho^- \to) K^- K^0$	$4.64^{+0.03+1.00+0.49}_{-0.02-0.90-0.47}\times10^{-5}$	$7.93\substack{+5.01+\\-2.93-}$
$\bar{B}^0 \rightarrow D^0(\rho^0 \rightarrow) K^+ K^-$	$1.34^{+0.07+0.28+0.02}_{-0.07-0.26-0.02}\times10^{-6}$	$1.07\substack{+0.46 + \\ -0.37 - }$
$\bar{B}^0_s \to D^+_s (\rho^- \to) K^- K^0$	$5.63^{+0+1.18+0.60}_{-0-1.07-0.60} imes 10^{-5}$	$6.06\substack{+3.47 + \ -2.06 - \ }$
$\bar{B}^0_s \rightarrow D^+(\rho^- \rightarrow) K^- K^0$	$9.46^{+1.64+0+2.71}_{-0.77-0-1.89}\times10^{-9}$	$4.22\substack{+0.58+\\-0.67-}$
$\bar{B}^0_s \rightarrow D^0(\rho^0 \rightarrow) K^+ K^-$	$0.48^{+0.08+0+0.11}_{-0.04-0-0.07} imes 10^{-8}$	$1.05\substack{+0.15 + \\ -0.17 - }$
$\bar{B} \to \bar{D}(\rho \to) KK$		
$\mathbf{D} = \mathbf{D} = \langle 0 \rangle \mathbf{z} + \mathbf{z} =$	1 - 2 + 0 + 0 = 53 + 0 = 03 + 0 = 04 = 1 - 2 = 0	$a a a \pm 0.52 \pm$

 $B^{-} \to D^{-}(\rho^{0} \to)K^{+}K^{-} \quad 1.89^{+0+0.53+0.03+0.04}_{-0-0.46-0.03-0.04} \times 10^{-9} \quad 3.22^{+0.52+0.86+0.01}_{-0.45-0.43-0.01} \times 10^{-9}$ $B^- \to \bar{D}^0 (\rho^- \to) K^- K^0 \quad 2.51^{+0.10+0.37+0.04+0.17}_{-0.11-0.34-0.04-0.17} \times 10^{-9} \quad 0.53^{+0.12+0.25+0.03}_{-0.06-0.17-0.01} \times 10^{-9}$ $B^- \to D^-_s (\rho^0 \to) K^+ K^- \quad 8.74^{+0+1.83+0.87+0.77}_{-0-1.66-0.83-0.77} \times 10^{-8} \quad 6.26^{+1.69+2.69+0.03}_{-1.30-0.92-0.02} \times 10^{-8}$ $\bar{B}^0 \to D^-(\rho^+ \to) K^+ K^0 \quad 5.37^{+0.07+1.18+0.06+0.05}_{-0.04-1.07-0.06-0.05} \times 10^{-9} \quad 6.87^{+2.05+3.30+0.08}_{1.60-1.01-0.08} \times 10^{-9}$ $\bar{B}^0 \to \bar{D}^0 (\rho^0 \to) K^+ K^- \quad 5.73^{+0.32+1.26+0.06+0.51}_{-0.31-1.13-0.06-0.51} \times 10^{-10} \ 0.78^{+0.20+0.46+0.08}_{-0.13-0.29-0.06} \times 10^{-10}$ $1.51^{+0+0.32+0.15+0.13}_{-0-0.29-0.14-0.13}\times10^{-7}$ $\bar{B}^0 \to D_s^-(\rho^+ \to) K^+ K^0$ $0.99^{+0.17+0+0.11+0.09}_{-0.08-0-0.11-0.09}\times10^{-9}$ $\bar{B}^0_s \to D^-(\rho^+ \to) K^+ K^0$ $0.51^{+0.09+0+0.06+0.04}_{-0.04-0-0.05-0.04}\times10^{-9}$ $\bar{B}^0_s \to \bar{D}^0(\rho^0 \to) K^+ K^-$

 $B_{(s)} \rightarrow D_{(s)} \phi \rightarrow D_{(s)} K \bar{K}$ pole mass dynamics

$\mathcal{B}^{v}_{ ext{PQCD}}$

- $^{+0.9+0.7}_{-1.2-0.9} \times 10^{-5}$
- $^{+0.32+0.65}_{-0.30-0.63} \times 10^{-5}$
- $^{-0.80+0.01}_{-0.58-0.01} \times 10^{-6}$
- $^{-0.04+0.47}_{-0.04-0.45} \times 10^{-5}$
- $^{+0.90+0.40}_{-0.65-0.30} \times 10^{-8}$
- $^{-0.23+0.10}_{-0.15-0.07} \times 10^{-8}$

Belle II $\mathcal{B}(B^- \to D^0 K^- K_S^0) = (1.89 \pm 0.16 \pm 0.10) \times 10^{-4},$ $\mathcal{B}(\overline{B}^0 \to D^+ K^- K_S^0) = (0.85 \pm 0.11 \pm 0.05) \times 10^{-4}$ a peaking structure in low invariant mass region of $K^{\pm}K^0$, with ρ -like resonances but

 $\rho(770)$ is not favored

BWT (or off-shell) effects

- $2.32^{+0.63+1.00+0.01}_{-0.48-0.34-0.01}\times10^{-7}$
- $7.47^{+1.49+2.42+0.40}_{-0.32-1.83-0.37}\times10^{-9}$
- $1.85^{+0.36+0.61+0.09}_{-0.32-0.45-0.08} \times 10^{-9}$

 $B_{(s)} \to D_{(s)} \rho \to D_{(s)} K \bar{K}$

- $m_{\rho} < m_K + m_{\bar{K}}$
- $\rho(770)$ is about 20 % of the ρ -like resonance and nonresonance contribution
- are not very sensitive to the widths of resonances, $B_{(s)} \to D_{(s)} \rho, \omega \to D_{(s)} K \bar{K}$

4.
$$\bar{B}_{(s)} \to D^*_{(s)}P_2 \to D_{(s)}P_1P_2$$

Decay modes	$\mathcal{B}_{ m FAT}^{ m (cut)}(10^{-5})$	$\mathcal{B}_{PQCD}^{(cut)}(10^{-5})$ [14]	Data (10^{-5})	BWT (or off-sh	ell) effects fro
$B^+ \to \bar{D}^{*0} \pi^+ \to D^- \pi^+ \pi^+$	$18.8\substack{+3.16 \\ -2.96}$	$19.2\substack{+8.80 \\ -6.20}$	22.3 ± 3.20 [63]	$B^- \rightarrow (D^* \rightarrow)L$	$P^{+}\pi^{-}K^{-}$
			10.9 ± 1.8 [59]		by cut $s > 21$
			10.9 ± 2.7 [30]		0 y 0 ut 5 / 2.1
$B^+ \rightarrow \bar{D}^{*0} K^+ \rightarrow D^- \pi^+ K^+$	$1.39^{+0.24}$	$1.48^{+0.68}_{-0.47}$	0.56 ± 0.23 [47]	Resonance	Fit fraction
	-0.21			$D_0^*(2400)^0$	$8.3\pm2.6\pm0.6$
$B^0 \rightarrow D^{*-} \pi^+ \rightarrow \bar{D}^0 \pi^- \pi^+$	$10.26\substack{+2.25\\-2.02}$	$8.7^{+4.5}_{-2.9}$	8.8 ± 1.3 [26]	$D_2^*(2460)^0$	$31.8\pm1.5\pm0.9$
			7 8 [29]	$D_1^{*}(2760)^0$	$4.9\pm1.2\pm0.3$
				S-wave nonresonant	$38.0 \pm 7.4 \pm 1.5$
$B^0 \rightarrow D^{*-}K^+ \rightarrow \bar{D}^0 \pi^- K^+$	$0.83\substack{+0.17 \\ -0.15}$	$0.72\substack{+0.36 \\ -0.24}$	0.81 ± 0.38 [28]	P-wave nonresonant	$23.8\pm5.6\pm2.1$
$B^0 \rightarrow D^{*-}\pi^+ \rightarrow \bar{D}^0 K^-\pi^+$	$4.21^{+0.89}$	$1.90^{+1.01}$	4.70 ± 4.38 [32]	$D_v^*(2007)^0$	$7.6 \pm 2.3 \pm 1.3$
				B_v^*	$3.6\pm1.9\pm0.9$

$$B^- \to (D^* \to) D^+ \pi^- K^-$$

Summary

1. We systematically analyze three-body decays $B \rightarrow DP_1P_2$ with ρ, K^*, ω, ϕ , and D^* resonances.

——The intermediate subprocesses $B \rightarrow DV, B \rightarrow D^*P_2$ are calculated in FAT approach; ——The resonant states V and D^* are described by relativistic Breit-Wigner distribution successively strong decay to P_1P_2 .

2. The branching fractions agree with data measured by Babar, LHCb and Belle, and of all ρ -resonant and nonresonant components measured by Belle II recently.

3. Predictions for the other modes, especially with comparable branching ratio $10^{-6} - 10^{-4}$ are also measurable in LHCb and Belle II.

BWT effects for $\rho^{\pm}(770)$ to $K^{\pm}K_{S}$ system reach a proportion of approximately 20%

Thank you

Backup slides

$$\begin{split} T &= \langle P_{1}\left(p_{1}\right)P_{2}\left(p_{2}\right)|(\bar{u}b)_{V-A}|B(p_{B})\rangle \left\langle \bar{D}(p_{\bar{D}})|(\bar{c}q)_{V-A}|0\right\rangle \\ &= \frac{\langle P_{1}\left(p_{1}\right)P_{2}\left(p_{2}\right)|V(p_{V})\rangle}{s-m_{V}^{2}+im_{V}\Gamma_{V}(s)} \left\langle V(p_{V})|(\bar{u}b)_{V-A}|B(p_{B})\rangle \left\langle \bar{D}\left(p_{\bar{D}}\right)|(\bar{c}u)_{V-A}|0\right\rangle \\ &= p_{\bar{D}}\cdot\left(p_{1}-p_{2}\right)\sqrt{2}\,G_{F}\,V_{ub}V_{cq}^{*}\,a_{1}\,f_{D}\,m_{V}\,A_{0}^{B\rightarrow V}(m_{D}^{2})\frac{g_{VP_{1}P_{2}}}{s-m_{V}^{2}+im_{V}\Gamma_{V}(s)},\\ C &= \langle P_{1}\left(p_{1}\right)P_{2}\left(p_{2}\right)|(\bar{u}b)_{V-A}|B(p_{B})\rangle \left\langle \bar{D}\left(p_{\bar{D}}\right)|(\bar{c}q)_{V-A}|0\right\rangle \\ &= \frac{\langle P_{1}\left(p_{1}\right)P_{2}\left(p_{2}\right)|V(p_{V})\rangle}{s-m_{V}^{2}+im_{V}\Gamma_{V}(s)} \left\langle V(p_{V})\left|(\bar{q}b)_{V-A}|B(p_{B})\right\rangle \left\langle \bar{D}\left(p_{\bar{D}}\right)|(\bar{c}u)_{V-A}|0\right\rangle \\ &= p_{\bar{D}}\cdot\left(p_{1}-p_{2}\right)\sqrt{2}\,G_{F}\,V_{ub}V_{cq}^{*}\,f_{D}\,m_{V}\,A_{0}^{B\rightarrow V}(m_{D}^{2})\,\chi^{C}e^{i\phi^{C}}\,\frac{g_{VP_{1}P_{2}}}{s-m_{V}^{2}+im_{V}\Gamma_{V}(s)} \\ E &= \left\langle \bar{D}\left(p_{\bar{D}}\right)P_{1}\left(p_{1}\right)P_{2}\left(p_{2}\right)|\mathcal{H}_{eff}|B(p_{B})\right\rangle \\ &= p_{\bar{D}}\cdot\left(p_{1}-p_{2}\right)\sqrt{2}\,G_{F}\,V_{ub}V_{cq}^{*}\,m_{V}\,f_{B}\,\frac{f_{V}f_{D}_{(s)}}{f_{\pi}f_{D}}\,\chi^{E}e^{i\phi^{E}}\,\frac{g_{VP_{1}P_{2}}}{s-m_{V}^{2}+im_{V}\Gamma_{V}(s)},\\ A &= \left\langle \bar{D}\left(p_{\bar{D}}\right)P_{1}\left(p_{1}\right)P_{2}\left(p_{2}\right)|\mathcal{H}_{eff}|B(p_{B})\right\rangle \\ &= p_{\bar{D}}\cdot\left(p_{1}-p_{2}\right)\sqrt{2}\,G_{F}\,V_{ub}V_{cq}^{*}\,a_{1}\,f_{B}\,\frac{f_{D}g_{DDV}m_{D}^{2}}{m_{B}^{2}-m_{D}^{2}}\,\frac{g_{VP_{1}P_{2}}}{s-m_{V}^{2}+im_{V}\Gamma_{V}(s)},\\ b &\to u \text{ transition, respectively, where }q &= d, s \text{ and }p_{V} = p_{1}+p_{2}=\sqrt{s}. \end{split}$$

 $A^{\bar{D}V} = -\sqrt{2} G_F V_{ub} V_{cq}^* a_1(\mu) f_B \frac{f_{D_{(s)}} g_{DDV} m_D^2}{m_B^2 - m_D^2} (\varepsilon_V^* \cdot p_B).$ $p_1 + p_2$

$$\begin{split} \langle \pi^{+}(p_{1})\pi^{-}(p_{2})|(\bar{u}b)_{V-A}|B^{-}\rangle^{R} &= \sum_{i} \langle \pi^{+}\pi^{-}|V_{i}\rangle \frac{1}{s-m_{V_{i}}^{2}+im_{V_{i}}\Gamma_{V_{i}}} \langle V_{i}|(\bar{u}b)_{V-A}|B^{-}\rangle \\ &+ \sum_{i} \langle \pi^{+}\pi^{-}|S_{i}\rangle \frac{-1}{s-m_{S_{i}}^{2}+im_{S_{i}}\Gamma_{S_{i}}} \langle S_{i}|(\bar{u}b)_{V-A}|B^{-}\rangle, \end{split}$$

$$\begin{split} & \frac{g^{V_i \to \pi^+ \pi^-}}{2 - m_{V_i}^2 + i m_{V_i} \Gamma_{V_i}} \sum_{\text{pol}} \varepsilon^* \cdot (p_1 - p_2) \langle V_i | (\bar{u}b)_{V-A} | B^- \rangle \\ & \frac{g^{S_i \to \pi^+ \pi^-}}{2 - m_{S_i}^2 + i m_{S_i} \Gamma_{S_i}} \langle S_i | (\bar{u}b)_{V-A} | B^- \rangle, \end{split}$$

f_{π}	f_K	f_D	f_{D_s}	f_B
130.2 ± 1.7	155.6 ± 0.4	211.9 ± 1.1	258 ± 12.5	190.9 ± 4.1

	$F_1^{B \to D}$	$F_1^{B_s \to D_s}$	$A_0^{B \to \rho}$	$A_0^{B \to K^*}$	$A_0^{B_s \to K^*}$	$A_0^{B \to \omega}$	$A_0^{B_s \to \phi}$
$F_i(0)$	0.54	0.58	0.30	0.33	0.27	0.26	0.30
α_1	2.44	2.44	1.73	1.51	1.74	1.60	1.73
α_2	1.49	1.70	0.17	0.14	0.47	0.22	0.41

 $f_{
ho}$ f_{K^*} f_{ω} f_{ϕ} f_{B_s}

 $225 \pm 11.2\ 213 \pm 11\ 220 \pm 11\ 192 \pm 10\ 225 \pm 11$

Resonance	Line shape Parameters	Resonance	Line shape Parameters
ho(770)	$m_V=775.26~{\rm MeV}$	$\omega(782)$	$m_V=782.65~{\rm MeV}$
	$\Gamma_0 = 149.1 \text{ MeV}$		$\Gamma_0=8.49~{ m MeV}$
$K^{*}(892)^{+}$	$m_V=891.66~{\rm MeV}$	$K^{*}(892)^{0}$	$m_V=895.55~{\rm MeV}$
	$\Gamma_0~=~50.8~{ m MeV}$		$\Gamma_0~=~47.3~{ m MeV}$
$\phi(1020)$	$m_V=1019.46~{\rm MeV}$		
	$\Gamma_0 = 4.25 { m ~MeV}$		

 $g_{\rho \to \pi^+ \pi^-} = 6.0, \quad g_{K^* \to K^+ \pi^-} = 4.59, \quad g_{\phi \to K^+ K^+}$

 $g_{\rho \to K^+ K^-} : g_{\omega \to K^+ K^-} : g_{\phi \to K^+ K^-} = 1$

 $g_{
ho^0\pi^+\pi^-}=g_{
ho^+\pi^0\pi^+}\,,\,g_{
ho^0\pi^0\pi^0}=g_{\omega\pi^+\pi^-}=0\,,$

 $g_{
ho^0 K^+ K^-} = -g_{
ho^0 K^0 \bar{K}^0} = g_{\omega K^+ K^-} = g_{\omega K^0 \bar{K}^0}, \ g_{\phi K^+ K^-} = g_{\phi K^0 \bar{K}^0}$

$$_{K^{-}} = -4.54$$
.

$$: 1 : -\sqrt{2},$$

TABLE VI: The same as table IV, but for the quasi-two-body decays (top) $\bar{B}_{(s)} \to D(\phi \to) KK$ $(\times 10^{-4})$, and (bottom) $\overline{B}_{(s)} \rightarrow \overline{D}(\phi \rightarrow) KK \ (\times 10^{-6})$.

Decay Modes	Amplitudes	$\mathcal{B}_{ ext{FAT}}$
$\bar{B} \to D(\phi \to) KK$	$V_{cb}V_{us}^*$	
$\bar{B}^0_s \to D^0(\phi \to) K^+ K^-$	C	$0.193\substack{+0.008+0.041+0.002\\-0.008-0.037-0.002}$
$\rightarrow D^0(\phi \rightarrow) K^0 \bar{K}^0$		$0.134\substack{+0.006+0.028+0.001\\-0.006-0.026-0.001}$
$\bar{B} \to D(\phi \to) KK$	$V_{ub}V_{cs}^*$	
$B^- \to D^s (\phi \to) K^+ K^-$	Α	$0.75\substack{+0+0+0.32+0.07\\-0-0-0.32-0.07}$
$\rightarrow D^s(\phi \rightarrow) \rightarrow K^0 K^0$		$0.52\substack{+0+0+0.32+0.05\\-0-0-0.34-0.05}$
$\bar{B}^0_s \to \bar{D}^0(\phi \to) K^+ K^-$	\mathbf{C}	$2.85_{-0.12-0.54-0.03-0.25}^{+0.12+0.60+0.03+0.25}$
$ ightarrow ar{D}^0(\phi ightarrow) ar{K}^0 K^0$		$1.98\substack{+0.08+0.42+0.02+0.17\\-0.08-0.38-0.02-0.17}$

$\mathcal{B}_{ ext{PQCD}}$ $\bar{B} \to D(\omega \to)KK$ $\bar{B}^0 \to D^0(\omega \to) K^+ K^ 1.83^{+0.09+0.15+0.03}_{-0.08-0.32-0.03} \times 10^{-6}$ $\bar{B}^0_s \to D^0(\omega \to) K^+ K^- \qquad 4.01^{+0.70+0+0.92}_{-0.33-0-0.57} \times 10^{-9}$ $\bar{B} \to \bar{D}(\omega \to) KK$ $B^- \to D^-_s (\omega \to) K^+ K^- \quad 6.90^{+0+1.45+0.68+0.61}_{-0-1.31-0.65-0.61} \times 10^{-8}$ $0.15\substack{+0.02+0.01+0.01\\-0.02-0.01-0.01}$ $0.10^{+0.01+0.01+0.01}_{-0.01-0.01} \quad B^- \to D^-(\omega \to) K^+ K^- \quad 4.15^{+0+0.68+0.06+0.37}_{-0-0.63-0.05-0.37} \times 10^{-9}$ $\bar{B}^0 \to \bar{D}^0(\omega \to) K^+ K^- \quad 6.14^{+0.30+1.16+0.09+0.54}_{-0.28-1.05-0.09-0.54} \times 10^{-10}$ $\bar{B}^0_s \to \bar{D}^0(\omega \to) K^+ K^- = 4.21^{+0.73+0+0.49+0.37}_{-0.34-0-0.45-0.37} \times 10^{-10}$

