

Fully-Heavy Hadronic Molecules $B_c^{(*)+} B_c^{(*)-}$ Bound by Fully-Heavy Mesons

Wen-Ying Liu (刘文颖) Southeast University

Collaborators: Hua-Xing Chen

Outline

Motivation

- Coupled-channel Bethe-Salpeter equation
- Possible fully-heavy molecular states
- Summary and Outlook

- An exotic structure in μ⁺ μ⁻ μ⁺ μ⁻ channel at invariant mass, 18.4 ± 0.1(stat) ± 0.2(syst) GeV
 with a global significance of 3.6σ was reported
 by CMS collaboration.
- Later, the LHCb collaboration searched for $X_{\bar{b}b\bar{b}b}$ in the $\Upsilon(1s)\mu^+ \mu^-$ final state, but no significant excess in the range 17.5 20.0 GeV has been found.

[CMS, https://meetings.aps.org/Meeting/APR18/Session/U09.6] [LHCb, J. High Energy Phys. JHEP10(2018)086]

[LHCb, Sci.Bull. 65 (2020) 23, 1983-1993]

• In 2020, the LHCb collaboration reported the observation of two exotic structures in the di- J/ψ invariant mass spectrum:

 $X(6900): M = 6905 \pm 11 \pm 7 \text{ MeV},$ $X(6900): M = 6886 \pm 11 \pm 11 \text{ MeV},$ Fit(a) $\Gamma = 80 \pm 19 \pm 33 \text{ MeV}.$ Fit(b) $\Gamma = 168 \pm 33 \pm 69 \text{ MeV}.$

• The *X*(6900) was examined at the di- J/ψ mass spectrum by CMS collaboration, with two new structures:

 $X(6600): M = 6552 \pm 10 \pm 12 \text{ MeV}, \qquad X(6900): M = 6927 \pm 9 \pm 5 \text{ MeV}, \qquad X(7200): M = 7287 \pm 19 \pm 5 \text{ MeV}, \\ \Gamma = 124 \pm 29 \pm 34 \text{ MeV}; \qquad \Gamma = 122 \pm 22 \pm 19 \text{ MeV}; \qquad \Gamma = 95 \pm 46 \pm 20 \text{ MeV}.$

• The ATLAS collaboration examined the di- J/ψ mass spectra, and their best fit was performed with three interfering resonances:

Di- J/ψ	Model A	Model B
m_0	$6.41 \pm 0.08^{+0.08}_{-0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$
Γ_0	$0.59 \pm 0.35 \substack{+0.12 \\ -0.20}$	$0.44 \pm 0.05 \substack{+0.06 \\ -0.05}$
m_1	$6.63 \pm 0.05^{+0.08}_{-0.01}$	
Γ_1	$0.35\pm0.11^{+0.11}_{-0.04}$	
m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$
Γ_2	$0.11\pm0.05^{+0.02}_{-0.01}$	$0.15 \pm 0.03 \pm 0.01$
$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$	

 The ATLAS collaboration also examined the J/ψψ(2s) mass spectra, and the evidence for an enhancement at 6.9 GeV and a resonance at 7.2 GeV was reported :

$\overline{J/\psi + \psi(2S)}$	Model α	Model β
$\overline{m_3}$	$7.22 \pm 0.03^{+0.01}_{-0.04}$	$6.96 \pm 0.05 \pm 0.03$
Γ_3	$0.09 \pm 0.06 \substack{+0.06 \\ -0.05}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$
$\Delta s/s$	$\pm 21\%^{+25\%}_{-15\%}$	$\pm 20\% \pm 12\%$

Theoretical work on fully-heavy states *X*(6900)

• Compact tetraquark

- □ *P*-wave *ccc̄c̄* tetraquark in QCD sum rule
- [Chen W, Chen H-X, Liu X, Steele T G and Zhu S-L 2017, Phys. Lett. B 773 247–51]

□ 2*S*-wave *ccc̄c̄* tetraquark in NR quark model [Liu M-S, Liu F-X, Zhong X-H and Zhao Q, arXiv:2006.11952]

■ 2*S*-wave *ccc̄c̄* tetraquark in string junction picture [Karliner M and Rosner J L, Phys. Rev. D 102 114039]

• Non-resonant

.....

□ Rescattering mechanism

[Wang J-Z, Chen D-Y, Liu X and Matsuki T, Phys. Rev. D 103 071503]

[Dong X-K, Baru V, Guo F-K, Hanhart C and Nefediev A, Phys. Rev. Lett. 126 132001]

hadronic molecules

Hadronic molecular states seem to be universal:

- Deuteron can be regarded as a molecular state composed of p and n.
- $f_0(980)$, $a_0(980)$ could be considered a $\overline{K}K$ molecular state.
- $D_{s0}^{*}(2317)$ could be considered a *DK* molecular state.
- X(3872) could be considered a $D^*\overline{D}$ molecular state.
- $\mathbf{A} Z_b(10610)$ could be considered a $B^*\overline{B}$ molecular state.
- $\Lambda(1405)$ could be considered a $N\overline{K}$ molecular state.
- $\Lambda_c(2940)$ could be considered a *ND*^{*} molecular state.
- $P_{cs}(4459)$ could be considered a $\overline{D}^*\Xi_c^0$ molecular state.

BS-eq within LHG

Scattering matrix solved through the Bethe-Salpeter equation in coupled channels

P: pseudoscalar meson, V: vector meson

(c)

PPVVVPPР P(b)(a) $P = \begin{pmatrix} \eta_c & B_c^+ \\ B_c^- & \eta_b \end{pmatrix}$ \overline{V} $V = \begin{pmatrix} J/\psi & B_c^{*+} \\ B_c^{*-} & \Upsilon \end{pmatrix}$ VVVV

(d)

$$\begin{aligned} \mathcal{L}_{VPP} &= -ig \left\langle [P, \partial_{\mu} P] V^{\mu} \right\rangle, \\ \mathcal{L}_{VVV} &= ig \left\langle (V^{\mu} \partial_{\nu} V_{\mu} - \partial_{\nu} V^{\mu} V_{\mu}) V^{\nu} \right\rangle, \\ \mathcal{L}_{VVVV} &= \frac{g^2}{2} \left\langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\nu} V_{\mu} V^{\mu} V^{\nu} \right\rangle. \end{aligned}$$

BS-eq within LHG

coupling constant g

 $\mathcal{L}_{VPP} = -ig \langle [P, \partial_{\mu}P]V^{\mu} \rangle ,$ $\mathcal{L}_{VVV} = ig \langle (V^{\mu}\partial_{\nu}V_{\mu} - \partial_{\nu}V^{\mu}V_{\mu})V^{\nu} \rangle ,$ $\mathcal{L}_{VVVV} = \frac{g^2}{2} \langle V_{\mu}V_{\nu}V^{\mu}V^{\nu} - V_{\nu}V_{\mu}V^{\mu}V^{\nu} \rangle .$

$$P = \left(\begin{array}{cc} \eta_c & B_c^+ \\ B_c^- & \eta_b \end{array}\right)$$

$$V = \begin{pmatrix} J/\psi & B_c^{*+} \\ B_c^{*-} & \Upsilon \end{pmatrix}$$

- Within the framework of SU(5) flavor symmetry, a uniform coupling constant is required.
- A coupling constant $g = \frac{M_V}{2f}$ are often used to calculate light vector meson exchanges.
- In order to consider the broken of symmetry, the coupling constant is generalized using the physical mass and decay constant.

$$M_{J/\psi} = 3096.9 \text{ MeV} [35], f_{\eta_c} = 387/\sqrt{2} \text{ MeV} [36],$$

 $M_{B_c^*} = 6331 \text{ MeV} [37], f_{B_c} = 427/\sqrt{2} \text{ MeV} [38],$
 $M_{\Upsilon} = 9460.4 \text{ MeV} [35], f_{\eta_b} = 667/\sqrt{2} \text{ MeV} [38],$

P-P interaction in $bc\overline{b}\overline{c}$ system

> Two coupled channels in $bc\bar{b}\bar{c}$ system,

 $\eta_c \eta_b$, $B_c^+ B_c^-$

$$V_{PP}(s) = C_{PP}^{t} \times g^{2}(p_{1} + p_{3})(p_{2} + p_{4}) + C_{PP}^{u} \times g^{2}(p_{1} + p_{4})(p_{2} + p_{3}),$$

$$C_{PP}^{t} = \begin{pmatrix} J = 0 & \eta_{c}\eta_{b} & B_{c}^{+}B_{c}^{-} \\ \hline \eta_{c}\eta_{b} & 0 & \lambda \frac{1}{m_{B_{c}}^{2}} \\ B_{c}^{+}B_{c}^{-} & \lambda \frac{1}{m_{B_{c}}^{2}} & -\left(\frac{1}{m_{J/\psi}^{2}} + \frac{1}{m_{\Upsilon}^{2}}\right) \end{pmatrix}$$

$$C_{PP}^{u} = \begin{pmatrix} J = 0 & \eta_{c}\eta_{b} & B_{c}^{+}B_{c}^{-} \\ \hline \eta_{c}\eta_{b} & 0 & \lambda \frac{1}{m_{B_{c}^{*}}^{2}} \\ B_{c}^{+}B_{c}^{-} & \lambda \frac{1}{m_{B_{c}^{*}}^{2}} & 0 \end{pmatrix}$$

V-P interaction in $bc\overline{b}\overline{c}$ system

- > Four coupled channels in $bc\overline{b}\overline{c}$ system,
 - $J/\psi\eta_b$, $\Upsilon\eta_c$, $B_c^{*+}B_c^-$, $B_c^{*-}B_c^+$
- > The single channel with positive *C*-parity:

 $B_c^* \bar{B}_c^{(C=+)} \equiv \left(B_c^{*+} B_c^- + c.c. \right) / \sqrt{2} \,,$

The three coupled channel with negative C-parity:

$$J/\psi\eta_b, \ \Upsilon\eta_c, \ B_c^*\bar{B}_c^{(C=-)} \equiv \left(B_c^{*+}B_c^{-} - c.c.\right)/\sqrt{2}$$

V-P interaction in $bc\overline{b}\overline{c}$ system

$$V_{VP(\pm)}(s) = C_{VP(\pm)}^{t} \times g^{2}(p_{1}+p_{3})(p_{2}+p_{4}) \epsilon_{1} \cdot \epsilon_{3}$$

+ $C_{VP(\pm)}^{u} \times g^{2}(p_{1}+p_{4})(p_{2}+p_{3}) \epsilon_{1} \cdot \epsilon_{3}$

$$C_{VP(+)}^{t} = -\left(\frac{1}{m_{J/\psi}^{2}} + \frac{1}{m_{\Upsilon}^{2}}\right),$$

$$C_{VP(+)}^{u} = 0.$$

$$\begin{split} C_{VP(-)}^{t} = & \left(\begin{array}{c|c} J = 1 & J/\psi\eta_{b} & \Upsilon\eta_{c} & B_{c}^{*}\bar{B}_{c}^{(C=-)} \\ \hline J/\psi\eta_{b} & 0 & 0 & \frac{\sqrt{2\lambda}}{m_{B_{c}^{*}}^{2}} \\ \Upsilon\eta_{c} & 0 & 0 & \frac{\sqrt{2\lambda}}{m_{B_{c}^{*}}^{2}} \\ B_{c}^{*}\bar{B}_{c}^{(C=-)} & \frac{\sqrt{2\lambda}}{m_{B_{c}^{*}}^{2}} & \frac{\sqrt{2\lambda}}{m_{B_{c}^{*}}^{2}} & -\left(\frac{1}{m_{J/\psi}^{2}} + \frac{1}{m_{\Upsilon}^{2}}\right) \\ \end{split} \right) \end{split}$$

• *VVP* vertices are not considered here, so there is no *u*-channel vector exchange contribution in the *VP* sector.

V-V interaction in $bc\overline{b}\overline{c}$ system

Additional four-vector contact terms are taken into account from :

$$\mathcal{L}_{VVVV} = \frac{g^2}{2} \langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\nu} V_{\mu} V^{\mu} V^{\nu} \rangle$$

$$g^2 = \sqrt{g_{V_1}g_{V_2}g_{V_3}g_{V_4}}$$

Loop function

> Bethe-Salpeter equation:

$$T_{PP/VP/VV}(s) = \frac{V_{PP/VP/VV}(s)}{1 - V_{PP/VP/VV}(s)G(s)}$$

> Loop function:

$$G_{ii}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_1^2 + i\epsilon} \frac{1}{(p-q)^2 - m_2^2 + i\epsilon}$$

$$G_{ii}(s) = \int_0^{q_{\text{max}}} \frac{d^3q}{(2\pi)^3} \frac{\omega_1 + \omega_2}{2\omega_1\omega_2} \frac{1}{s - (\omega_1 + \omega_2)^2 + i\epsilon}$$

Cutoff regularization

Loop function

Looking for poles on complex plane,

$$G_{ii}^{II}(s) = G_{ii}(s) + i \frac{k}{4\pi\sqrt{s}}, \qquad k(s) = \sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}/(2\sqrt{s})$$

> Coupling constants are defined as the residue of the amplitude at the poles:

$$T_{ij}(s) = \frac{g_i g_j}{s - s_p^2} \qquad \qquad g_i^2 = \lim_{\sqrt{s} \to s_p} (s - s_p^2) T_{ii}(s)$$

TABLE I. Pole positions E_p with respect to the cutoff momentum Λ , in units of MeV. We only list the poles that can qualify as hadronic molecules.

Pole	$\Lambda = 400$	$\Lambda = 600$	$\Lambda = 800$	$\Lambda = 1000$	$\Lambda = 1200$	$\Lambda = 1400$
$ B_{c}^{+}B_{c}^{-};J^{PC}=0^{++}\rangle$		12503.3 - i126.8	12383.1 - i115.2	12379.0 - i0	12324.5 - i0	12227.8 - i0
$ B_{c}^{*+}B_{c}^{-};J^{PC}=1^{++}\rangle$			12604.8 - i0	12598.1 - i0	12581.5 - i0	12552.5 - i0
$ B_c^{*+}B_c^-; J^{PC} = 1^{+-}\rangle$		12559.9 - i111.6	12495.8 - i76.8	12444.4 - i42.2	12394.8 - i0	12296.4 - i0
$ B_c^{*+}B_c^{*-}; J^{PC} = 0^{++}\rangle$					12549.4 - i0	12508.2 - i0
$ B_c^{*+}B_c^{*-}; J^{PC} = 1^{+-}\rangle$						
$ B_c^{*+}B_c^{*-}; J^{PC} = 2^{++}\rangle$	12660.7 - i45.7	12572.0 - i96.7	12556.3 - i0	12510.2 - i0	12418.8 - i0	12287.7 - i0

> Four bound state poles in $b\bar{c}c\bar{b}$ system with cutoff parameter $\Lambda = 400 \sim 1400$ MeV.

The 0⁺⁺ and 1⁺⁻ poles in VV interaction are more difficult to form a bound state due to the additional repulsive contact terms.

Results of $bc\overline{b}\overline{c}$ system

TABLE II. Pole positions E_p and their couplings g_i to various coupled channels, with the cutoff momentum $\Lambda = 500$ MeV. We only list the poles that can qualify as hadronic molecules.

State	$E_p \ ({\rm MeV})$	Channel	$ g_i $ (GeV)
$ B^+B^-, I^{PC} - 0^{++}\rangle$	125/1 - i83	$\eta_c\eta_b$	20
$ D_c \ D_c \ , J = 0 $	12541 - i85	$B_c^+ B_c^-$	123
) 12597 - i74	$J/\psi\eta_b$	14
$ B_{c}^{*+}B_{c}^{-};J^{PC}=1^{+-}\rangle$		$\Upsilon\eta_c$	14
		$B_c^* \bar{B}_c^{(C=-)}$	114
$ B^{*+}B^{*-}, I^{PC} - 2^{++}\rangle$	12630 - i80	$J/\psi\Upsilon$	23
$ D_c \ D_c \ , J = 2 /$		$B_c^{*+}B_c^{*-}$	135

- > The 0^{++} , 1^{+-} and 2^{++} states are more likely to exist.
- > All 3 states are strongly coupled to $B_c^{(*)}\overline{B}_c^{(*)}$.

Results of $bc\overline{b}\overline{c}$ system

FIG. 2. Pole positions $E'_p = E_p - M_{B_c^*} - M_{B_c}$ of the hadronic molecules (a) $|B_c^{*+}B_c^-; J^{PC} = 1^{++}\rangle$ and (b) $|B_c^{*+}B_c^-; J^{PC} = 1^{+-}\rangle$ with respect to the cutoff momentum $\Lambda = 400 \sim 1400$ MeV. A small imaginary part is added to the poles of the subfigure (a). The $J/\psi\eta_b$ and $\Upsilon\eta_c$ thresholds are indicated by dotted lines in the subfigure (b).

- > The 1⁺⁺ pole involves single channel $B_c^* \overline{B}_c^{(C=+)}$ corresponds to a virtual state when $\Lambda < 710$ MeV, and a bound state when $\Lambda > 710$ MeV.
- > The 1⁺⁺ pole can still be a bound state for $\Lambda > 940$ MeV, when only the contribution of J/ψ exchange is retained.

Results of $bc\overline{b}\overline{c}$ system

- > The pole of $J^{PC} = 1^{++}$ in VP interaction is identified as a virtual state, so it enhances the near-threshold cusp effect at $B_c^{*+}B_c^-$ threshold.
- > The pole of $J^{PC} = 1^{+-}$ in VP interaction is identified as a bound/resonance state, so it appears as a normal peak under $B_c^{*+}B_c^{-}$ threshold, with the threshold effects of the lower coupled channels.

Summary and Outlook

- > Within the extensional LHG formalism, fully-heavy hadronic molecules $B_c^{(*)}\overline{B}_c^{(*)}$ could arise from the exchange of fully-heavy vector mesons J/ψ , B_c^* and Υ .
- > 3 states: $|B_c^+B_c^-; J^{PC} = 0^{++}\rangle$, $|B_c^{*+}B_c^-; J^{PC} = 1^{+-}\rangle$ and $|B_c^{*+}B_c^{*-}; J^{PC} = 2^{++}\rangle$ are more likely to exist, and $|B_c^{*+}B_c^-; J^{PC} = 1^{++}\rangle$ may exist or behave as threshold cusp.
- A similar approach is used for the fully-heavy systems bcccc, bbccc and bbbc. Our results do not support the existence of deeply-bound hadronic molecules in these systems.
- > The tetraquark state may have a larger effect, as well as the direct gluon exchange.

Thanks for your attention

Back-up

BS-eq within LHG

$$P = \begin{pmatrix} \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} + \frac{\pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} & \bar{D}^{0} & B^{+} \\ \pi^{-} & \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} - \frac{\pi^{0}}{\sqrt{2}} & K^{0} & D^{-} & B^{0} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} + \sqrt{\frac{2}{3}}\eta' & D^{-}_{s} & B^{0}_{s} \\ D^{0} & D^{+} & D^{+}_{s} & \eta_{c} & B^{+}_{c} \\ B^{-} & \bar{B}^{0} & \bar{B}^{0}_{s} & B^{-}_{c} & \eta_{b} \end{pmatrix}, \qquad V = \begin{pmatrix} \frac{\omega + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{*0} & B^{*+} \\ \rho^{-} & \frac{\omega - \rho^{0}}{\sqrt{2}} & K^{*0} & D^{*-} & B^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi & D^{*-}_{s} & B^{*0} \\ D^{*0} & D^{++} & D^{+}_{s} & \eta_{c} & B^{+}_{c} \\ B^{*-} & \bar{B}^{*0} & \bar{B}^{*0}_{s} & B^{*-}_{c} & \Upsilon \end{pmatrix}$$

A flavor SU(5) symmetry is assumed

٠

$$J/\psi\Upsilon$$
, $B_c^{*+}B_c^{*-}$.

 $V_{VV}(s) = V_{VV}^{ex}(s) + V_{VV}^{co}(s)$.

$$V_{VV}^{ex}(s) = C_{VV}^t \times g^2(p_1 + p_3)(p_2 + p_4)\epsilon_1 \cdot \epsilon_3\epsilon_2 \cdot \epsilon_4 + C_{VV}^u \times g^2(p_1 + p_4)(p_2 + p_3)\epsilon_1 \cdot \epsilon_4\epsilon_2 \cdot \epsilon_3,$$

$$C_{VV}^{t} = \begin{pmatrix} J = 0, 1, 2 & J/\psi \Upsilon & B_{c}^{*+}B_{c}^{*-} \\ J/\psi \Upsilon & 0 & \lambda \frac{1}{m_{B_{c}}^{2}} \\ B_{c}^{*+}B_{c}^{*-} & \lambda \frac{1}{m_{B_{c}}^{2}} & -(\frac{1}{m_{J/\psi}^{2}} + \frac{1}{m_{\Upsilon}^{2}}) \end{pmatrix} \qquad V_{J/\psi \Upsilon \to B_{c}^{*+}B_{c}^{*-}}^{co}(s) = \begin{cases} -4g^{2} & \text{for } J = 0, \\ 0 & \text{for } J = 1, \\ 2g^{2} & \text{for } J = 2, \end{cases}$$
$$C_{VV}^{u} = \begin{pmatrix} J = 0, 1, 2 & J/\psi \Upsilon & B_{c}^{*+}B_{c}^{*-} \\ J/\psi \Upsilon & 0 & \lambda \frac{1}{m_{B_{c}}^{2}} \\ B_{c}^{*+}B_{c}^{*-} & \lambda \frac{1}{m_{B_{c}}^{2}} & 0 \end{pmatrix}. \qquad V_{B_{c}^{*+}B_{c}^{*-}}^{co}(s) = \begin{cases} 4g^{2} & \text{for } J = 0, \\ 6g^{2} & \text{for } J = 1, \\ -2g^{2} & \text{for } J = 1, \\ -2g^{2} & \text{for } J = 2. \end{cases}$$

Loop function

Loop function:

$$G_{ii}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_1^2 + i\epsilon} \frac{1}{(p-q)^2 - m_2^2 + i\epsilon}$$

$$\begin{aligned} G_{ii}(s) = &\frac{1}{16\pi^2} \left\{ a_{ii}(\mu) + \ln \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} \ln \frac{m_2^2}{m_1^2} \right. \\ &+ \frac{q_{cmi}(s)}{\sqrt{s}} \left[\ln \left(s - \left(m_2^2 - m_1^2 \right) + 2q_{cmi}(s) \sqrt{s} \right) \right. \\ &+ \ln \left(s + \left(m_2^2 - m_1^2 \right) + 2q_{cmi}(s) \sqrt{s} \right) \right. \\ &- \ln \left(-s - \left(m_2^2 - m_1^2 \right) + 2q_{cmi}(s) \sqrt{s} \right) \\ &- \ln \left(-s + \left(m_2^2 - m_1^2 \right) + 2q_{cmi}(s) \sqrt{s} \right) \right] \right\}, \end{aligned}$$

dimensional regularization

Intrinsic Width and significance in 4u

- Fit the signal to a single Gaussian, width = 144 MeV.
- Fit the signal shape to a Breit-Wigner convolved with a Gaussian with a fixed width.
- Returned intrinsic width 0 \pm 35 MeV.

- Evaluate the significance with
 - $\sqrt{-2\ln L_0/L_s}$, L₀: null hypothesis, L_s:

signal hypothesis

- 44±13 signal yield with 3.86**o** local significance.
- Mass : 18.4 ± 0.1 (stat.) ± 0.2 (syst.) GeV

(a,b) and $J/\psi + \psi(2s)$ (c,d) channels.

TABLE II. The fitted masses and natural widths (in GeV), and relative uncertainties of signal yields $(\Delta s/s)$ in the di- J/ψ and $J/\psi + \psi(2S)$ channels. The results of both the models are given in each channel. The first uncertainties are statistical while the second ones are systematic.

Di - J/ψ	Model A	Model B
$\overline{m_0}$	$6.41 \pm 0.08^{+0.08}_{-0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$
Γ_0	$0.59 \pm 0.35 \substack{+0.12 \\ -0.20}$	$0.44 \pm 0.05 \substack{+0.06 \\ -0.05}$
m_1	$6.63 \pm 0.05 \substack{+0.08 \\ -0.01}$	0.00
Γ_1	$0.35 \pm 0.11^{+0.11}_{-0.04}$	
m_2	$6.86 \pm 0.03 \substack{+0.01 \\ -0.02}$	$6.91 \pm 0.01 \pm 0.01$
Γ_2	$0.11 \pm 0.05 \substack{+0.02 \\ -0.01}$	$0.15 \pm 0.03 \pm 0.01$
$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$	
$\overline{J/\psi + \psi(2S)}$	Model a	Model β
$\overline{m_3}$	$7.22 \pm 0.03 \substack{+0.01 \\ -0.04}$	$6.96 \pm 0.05 \pm 0.03$
Γ_3	$0.09 \pm 0.06^{+0.06}_{-0.05}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$
$\Delta s/s$	$\pm 21\%^{+25\%}_{-15\%}$	$\pm 20\% \pm 12\%$

