

Belle(II)上粲重子实验进展

贾森 (东南大学) on behalf of the Belle and Belle II Collaboration

第三届强子与重味物理理论与实验联合讨论会 2024年4月5-9日,武汉

Dataset and charmed baryon production at Belle(II)

- In B-factories, e^+e^- collider at 10.58 GeV to make $\Upsilon(4S)$ resonance decaying into $B^0\overline{B}^0$ and B^+B^- in 96% of the time.
- Meanwhile, a large cross section for continuum processes $e^+e^- \rightarrow q\bar{q} (q = u, d, s, c)$.

Datasets	Luminosity
Belle	980 fb ⁻¹
Belle II	426 fb ⁻¹

Selected topics:

- 1. $\Xi_c^0 \rightarrow \Xi^0 h^0$ ($h^0 = \pi^0, \eta, \eta'$) [Preliminary results]
- 2. $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$ [PRD 109, 052003 (2024)]
- 3. $\Lambda_c^+ \rightarrow \Sigma^+ h^0 \ (h^0 = \pi^0, \eta, \eta') \ [PRD \ 107, 032003 \ (2023)]$
- 4. $\Lambda_c^+ \rightarrow pK_S^0K_S^0, pK_S^0\eta$ [PRD 107, 032004 (2023)]
- 5. $\Lambda_{c}(2625)^{+} \rightarrow \Sigma_{c}^{0,++} \pi \text{ [PRD 107, 032008 (2023)]}$
- 6. $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^+ \pi^-$ [PRL 130, 151903 (2023)]
- 7. $\Omega_c^0 \to \Xi^- \pi^+ / \Xi^- K^+ / \Omega^- K^+$ [JHEP 01 (2023) 055]

Study of $\Xi_c^0\to \Xi^0 h^0~(h^0=\pi^0,\eta,\eta')$

Motivation:

• Nonfactorizable amplitudes arising from internal *W*-emission and *W*-exchange lead to the difficulties for theoretical predictions in hadronic weak decay of charmed baryons.

Reference	Model	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$	$\alpha(\Xi_c^0\to\Xi^0\pi^0)$
Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92
Xu, Kamal [7]	pole	7.7	-	-	0.92
Cheng, Tseng [8]	pole	3.8	-	-	-0.78
Cheng, Tseng [8]	CA	17.1	-	-	0.54
Żenczykowski [9]	pole	6.9	1.0	9.0	0.21
Ivanov et al. [6]	quark	0.5	3.7	4.1	0.94
Sharma, Verma [11]	\mathbf{CA}	-	-	-	-0.8
Geng et al. [12]	${ m SU}(3)_{ m F}$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-
Geng et al. [13]	${ m SU}(3)_{ m F}$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00\substack{+0.07\\-0.00}$
Zhao et al. [14]	${ m SU}(3)_{ m F}$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
Zou et al. [10]	pole	18.2	26.7	-	-0.77
Huang et al. [15]	${ m SU}(3)_{ m F}$	$2.56 {\pm} 0.93$	-	-	-0.23 ± 0.60
Hsiao et al. [16]	${ m SU}(3)_{ m F}$	6.0 ± 1.2	$4.2^{+1.6}_{-1.3}$	-	-
Hsiao et al. [16]	$SU(3)_{F}$ -breaking	3.6 ± 1.2	7.3 ± 3.2	-	-
Zhong et al. [17]	${ m SU}(3)_{ m F}$	$1.13_{-0.49}^{+0.59}$	$1.56 {\pm} 1.92$	$0.683^{+3.272}_{-3.268}$	$0.50\substack{+0.37\\-0.35}$
Zhong et al. [17]	$SU(3)_{\rm F}$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63^{+5.09}_{-5.14}$	$-0.29^{+0.20}_{-0.17}$
Xing <i>et al.</i> [18]	${ m SU}(3)_{ m F}$	$1.30{\pm}0.51$	-	-	-0.28 ± 0.18

[5] Z. Phys. C 55 (1992) 659 [6] PRD 57 (1998) 6532 [7] PRD 46 (1992) 053004 [8] PRD 48 (1993) 4188 [9] PRD 50 (1994) 5787 [10] PRD 101 (2020) 014011 [11] EPJC 7 (1999) 217 [12] PRD 97 (2018) 073006 [13] PLB 794 (2019) 19 [14] JHEP 02 (2020) 165 [15] JHEP 03 (2022) 143 [16] JHEP 09 (2022) 35 [17] JHEP 02 (2023) 235 [18] PRD 108 (2023) 053004

Reference mode of $\Xi_c^0 \to \Xi^- \pi^+$

First BELLE + Belle II combined charm measurement.

Datasets	Signal yield
Belle	36340±348
Belle II	13719±184

Branching fractions for $\Xi_c^0 \rightarrow \Xi^0 h^0$ ($h^0 = \pi^0, \eta, \eta'$)

2.6

2.55

Preliminary results, will be submitted to JHEP

Signal yield:

Channel	Belle	Belle II
$\Xi_c^0\to \Xi^0\pi^0$	1315±66	869±46
$\Xi_c^0\to\Xi^0\eta$	81±15	60±11
$\Xi_c^0\to \Xi^0\eta'$	23±6	8±4

First measurement of the following BRs:

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 1.5 (\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2 (\text{stat.}) \pm 0.2 (\text{syst.}) \pm 0.4 (\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3 (\text{stat.}) \pm 0.1 (\text{syst.}) \pm 0.3 (\text{norm.})) \times 10^{-3}$

They are compatible with theoretical prediction based on SU(3)_F-breaking [JHEP 02, 235 (2023)].

Asymmetry parameter for $\Xi_c^0\to \Xi^0\pi^0$

The asymmetry parameter, related to P-violation, is measured through the differential decay rate: Preliminary results

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$$

The $\cos\theta_{\Xi^0}$ is the angle between the Λ momentum vector and the opposite of the Ξ_c^0 momentum vector in the Ξ^0 rest frame.

The $\alpha(\Xi_c^0 \rightarrow \Xi^0 \pi^0) = -0.90 \pm 0.15 \pm 0.23$, which is consistent with predictions based on the pole model [PRD 48 (1993) 4188, PRD 101 (2020) 014011], CA [EPJC 7 (1999) 217], and SU(3)_F flavor symmetry [PLB 794 (2019) 19] approaches.

Search for the semileptonic decays of $\Xi_c^0 \rightarrow \Xi^0 \ell^+ \ell^-$

Motivation

- Few baryonic neutrino-less semileptonic decays were observed experimentally [1-4].
- Only upper limits were set for $\Lambda_c^+ \to p\ell^+\ell^-$ decay for the charmed baryons [5, 6].
- With the SU(3) flavor symmetry, $\mathcal{B}(\Xi_c^0 \to \Xi^0 e^+ e^-) \le 2.35 \times 10^{-6}$ and $\mathcal{B}(\Xi_c^0 \to \Xi^0 \mu^+ \mu^-) \le 2.25 \times 10^{-6}$ [PRD 103, 013007 (2021)].
- It will help the understanding of the recent anomalies in $b \to s\ell^+\ell^-$ processes, i.e. $B \to K^{(*)}\ell^+\ell^-$.

decays	Experimental results on \mathcal{B}_{f}	Ref.
$\Xi^0 ightarrow \Lambda e^+ e^-$	$(7.6 \pm 0.4 \pm 0.4 \pm 0.2) \times 10^{-6}$	[1] PLB 650, 1 (2007)
$\Sigma^+ ightarrow p\mu^+\mu^-$	$(8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$	[2] PRL 94, 021801 (2005)
$\Lambda^0_b \to \Lambda \mu^+ \mu^-$	$(1.73 \pm 0.42 \pm 0.55) \times 10^{-6}$	[3] PRL 107, 201802 (2011)
$\Lambda_b^0 \to \Lambda \mu^+ \mu^-$	$(0.96 \pm 0.16 \pm 0.13 \pm 0.21) \times 10^{-6}$	[4] JHEP 06, 115 (2015)
$\Lambda_{\rm c}^+ \rightarrow {\rm pe^+e^-}$	< 5.5×10 ⁻⁶ @ 90% C. L.	[5] PRD 84, 072006 (2011)
$\Lambda_{\rm c}^+ \rightarrow p \mu^+ \mu^-$	< 44×10 ⁻⁶ @ 90% C. L.	[5] PRD 84, 072006 (2011)
$\Lambda_{\rm c}^+ \to p \mu^+ \mu^-$	$< 7.7 \times 10^{-8}$ @ 90% C. L.	[6] PRD 97, 091101(2018)

Search for the semileptonic decays of $\Xi_c^0 \rightarrow \Xi^0 \ell^+ \ell^-$ **Results:** [PRD 109, 052003 (2024)]

- No significant signals are observed in the $\Xi^0 \ell^+ \ell^-$ invariant-mass spectra.
- 90% credibility upper limits on branching fractions are set:
 > B(Ξ⁰_c → Ξ⁰ℓ⁺ℓ⁻)/B(Ξ⁰_c → Ξ⁻π⁺) < 6.7 (4.3)×10⁻³ and
 > B(Ξ⁰_c → Ξ⁰ℓ⁺ℓ⁻) < 9.9 (6.5)×10⁻⁵ for electron (muon) mode.

Measurements of $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$

Motivation

- For the charmed baryon weak decays: $B_c \rightarrow B + M$, there are six topological diagrams. Among them, T and C are factorizable, while C' and E_{1-3} are nonfactorizable.
- All the nonfactorizable diagrams contribute to $\Lambda_c^+ \rightarrow \Sigma^+ \eta(\eta')$.

W-exchange diagrams E_1 , E_2 , E_3

Measurements of $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$

Motivation

- Theoretical predictions on the branching fractions and asymmetry parameters of $\Lambda_c^+ \rightarrow \Sigma^+ \eta(\eta')$ vary across.
- Branching fractions of $\Lambda_c^+ \rightarrow \Sigma^+ \eta(\eta')$ are measured with large uncertainty ($\delta B/B > 40\%$). Decay asymmetry parameters for these two modes have never been measured.

Decay	Körner [1]	Ivanov [2]	Żenczykowski [7]	Sharma [8]	Zou [10]	Geng [11]	Experiment [1	8]
$\Lambda_c^+ \rightarrow \Sigma^+ \eta$	0.16	0.11	0.90	0.57	0.74	$0.32{\pm}0.13$	$0.44{\pm}0.20$	$\sim 10^{-2}$
$\Lambda_c^+{ ightarrow}\Sigma^+\eta^\prime$	1.28	0.12	0.11	0.10	_	$1.44{\pm}0.56$	$1.5{\pm}0.6$	×10 -
$\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$	0.70	0.43	0.39	-0.31	-0.76	$-0.35{\pm}0.27$	$-0.55{\pm}0.11$	
$\Lambda_c^+ \rightarrow \Sigma^+ \eta$	0.33	0.55	0.00	-0.91	-0.95	$-0.40{\pm}0.47$	-	
$\Lambda_c^+ { ightarrow} \Sigma^+ \eta'$	-0.45	-0.05	-0.91	0.78	0.68	$1.00\substack{+0.00\\-0.17}$	_	

Branching fractions

Asymmetry parameters

11

[1] Z. Phys. C 55, 659 (1992) [2] PRD 57, 5632 (1998) [7] PRD 50, 5787 (1994) [8] EPJC 7, 217 (1999) [10] PRD 49, 3417 (1994) [11] PLB 794, 19 (2019) [18] PTEP 2022, 083C01 (2022)

Measurements of $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$

• Measurements of branching fractions of $\Lambda_c^+ \to \Sigma^+ \eta$ and $\Lambda_c^+ \to \Sigma^+ \eta'$

[PRD 107, 032003 (2023)]

 $\frac{B(\Lambda_{c}^{+}\to\Sigma^{+}\eta)}{B(\Lambda_{c}^{+}\to\Sigma^{+}\pi^{0})} = 0.25 \pm 0.03 \pm 0.01; \qquad B(\Lambda_{c}^{+}\to\Sigma^{+}\eta) = (3.14 \pm 0.35 \pm 0.11 \pm 0.25) \times 10^{-3}$ $\frac{B(\Lambda_{c}^{+}\to\Sigma^{+}\pi^{0})}{B(\Lambda_{c}^{+}\to\Sigma^{+}\pi^{0})} = 0.33 \pm 0.06 \pm 0.02; \qquad B(\Lambda_{c}^{+}\to\Sigma^{+}\eta') = (4.16 \pm 0.75 \pm 0.21 \pm 0.33) \times 10^{-3}$ $I \qquad I \qquad 1$ PDG: $B(\Lambda_{c}^{+}\to\Sigma^{+}\eta) = (4.4 \pm 2.0) \times 10^{-3}$ statistical systematical from $B(\Lambda_{c}^{+}\to\Sigma^{+}\pi^{0})$ PDG: $B(\Lambda_{c}^{+}\to\Sigma^{+}\eta') = (15 \pm 6) \times 10^{-3}$ Consistent with PDG. Most precise result to date.

• $\alpha_{\Sigma^+\pi^0} = -0.48 \pm 0.02 \pm 0.02$

- > agrees with the world average value: -0.55 ± 0.11 .
- ➤ with much improved precision
- → The consistency with $\alpha_{\Sigma^0 \pi^+} = -0.463 \pm 0.016 \pm 0.008$ [Sci.Bull. 68 (2023) 583] indicates no isospin symmetry broken.

Branching fractions of $\Lambda_c^+ \rightarrow p K_S^0 K_S^0$, $p K_S^0 \eta$

Motivation

- No result of branching fraction for $\Lambda_c^+ \to p K_S^0 K_S^0$ (singly Cabibbo-suppressed) is reported. According to theoretically results based on SU(3)_F symmetry [EPJC 79 (2019) 946], $\mathcal{B}(\Lambda_c^+ \to p K_S^0 K_S^0) = (1.9 \pm 0.4) \times 10^{-3}$.
- Measured branching fraction $B(\Lambda_c^+ \rightarrow pK_S^0\eta) = (4.15 \pm 0.90) \times 10^{-3}$ has large uncertainty ($\delta B/B \sim 20\%$) [PDG].
- Check Dalitz-plot for the intermediate resonances existence, e.g. $N^*(1535) \rightarrow p\eta$.

Branching fractions of $\Lambda_c^+ \rightarrow pK_S^0K_S^0, pK_S^0\eta$ Signal Yield Extraction[PRD 107, 032004 (2023)]Full Belle
dataset

Branching fractions of $\Lambda_c^+ \rightarrow p K_S^0 K_S^0$, $p K_S^0 \eta$

Branching fraction

- $\frac{B(\Lambda_c^+ \to pK_S^0K_S^0)}{B(\Lambda_c^+ \to pK_S^0)} = (1.48 \pm 0.08 \pm 0.04) \times 10^{-2} \implies B(\Lambda_c^+ \to pK_S^0K_S^0) = (2.35 \pm 0.12 \pm 0.07 \pm 0.12) \times 10^{-4}$ > First observation
- $\frac{B(\Lambda_c^+ \to pK_S^0\eta)}{B(\Lambda_c^+ \to pK_S^0)} = (2.73 \pm 0.06 \pm 0.13) \times 10^{-1} \Rightarrow B(\Lambda_c^+ \to pK_S^0\eta) = (4.35 \pm 0.10 \pm 0.20 \pm 0.22) \times 10^{-3}$
 - > Consistent with world average value $(4.15 \pm 0.90) \times 10^{-3}$ and threefold improvement in precision.

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++} \pi$

Motivation

- $\Lambda_c(2625)^+(J^P = 3/2^-)$ is the excited state of Λ_c^+ . It dominantly decays to $\Lambda_c^+\pi^+\pi^-$ via P-wave decay. The D-wave decay $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++}\pi$ is also allowed, but its contribution is known to be small.
- The mass of the $\Lambda_c(2625)^+$, relative to the Λ_c^+ mass, is already relatively well known [PRD 84,012003 (2011)], but the large Belle data sample allows for a more precise measurement.
- No intrinsic width of the $\Lambda_c(2625)^+$ has yet been measured, and the current upper limit $\Gamma < 0.97 \text{ MeV/c}^2$ at 90% confidence level is based on the CDF measurement in 2011 [PRD 84,012003 (2011)].

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++} \pi$

Measurements of mass and width

Reconstruction mode: $\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-, \Lambda_c^+ \rightarrow pK^- \pi^+$

Full Belle

[PRD 107, 032008 (2023)]

dataset

 $\square M[\Lambda_c(2625)^+] - M(\Lambda_c^+) = 341.518 \pm 0.006 \pm 0.049 \text{ MeV/c}^2$

- > consistent with the world average value 341.65 ± 0.13 MeV/ c^2
- has approximately half the uncertainty
- □ $\Gamma[\Lambda_c(2625)^+] < 0.52$ MeV
 - \succ a factor of 2 more stringent than the previous limit $\Gamma < 0.97$ MeV
 - An improved limit on the width of the $\Lambda_c(2625)^+$ will help to constrain various theoretical predictions.

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++} \pi$

Measurements of branching fractions

[PRD 107, 032008 (2023)]

Full Dalitz plot fitted with AmpTools is performed [PRD 98, 114007 (2018)].

□ The measured branching fraction ratios agree with PDG values and are the most precise to date.

 \square Our measurements align with the prediction that assuming $\Lambda_c(2625)^+$ is a λ mode excitation [PRD 98, 114007 (2018)]. 19

Peak at $\overline{K}N$ threshold in $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^-$

[PRL 130, 151903 (2023)]

Motivation

- The Λ(1405) (I = 0) state, which has been interpreted as an orbitally excited quark-diquark [PRC 49, 2831 (1994)], or as a KN bound state [PRL 114, 132002 (2015)].
- The \overline{KN} (I = 1) interaction is a virtual state could exist [PLB 500, 263 (2001)] and could be observed as a

Standard Breit-Wigner

$$f_{\rm BW} = \frac{\Gamma/2}{(E - E_{\rm BW})^2 + \Gamma^2/4}$$

Mode	Mass (MeV/c ²)	Width (MeV)	χ^2/NDF
$\Lambda\pi^+$	1434.3±0.6±0.9	11.5±2.8±5.3	74/68
$\Lambda\pi^-$	1438.5±0.9±2.5	33.0±7.5±23.6	92/68

Peak at $\overline{K}N$ threshold in $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^-$

Dalitz model (cusp) [Czech. J. Phys. B 32, 1021 (1982)] For scattering length A=a+ib and decay momentum k/κ .

$$f_D = \frac{4\pi b}{(1+kb)^2 + (ka)^2}, E > m_{\bar{K}N}$$

= $\frac{4\pi b}{(1+\kappa a)^2 + (\kappa b)^2}, E < m_{\bar{K}N}$

Mode	<i>a</i> [fm]	<i>b</i> [fm]	χ^2/NDF
$\Lambda\pi^+$	0.48±0.32±0.38	1.22±0.83±2.54	69/68
$\Lambda\pi^-$	1.24±0.57±1.56	0.18±0.13±0.20	78/68

Obtained center values for *a* are larger than most theories (e.g., $a(K^-n)=0.3\sim0.6$ fm for [Nucl. Phys. A 881, 98 (2012)]), but with large uncertainties. 22

Evidence for $\Omega_c^0 \to \Xi^- \pi^+$ and search for $\Omega_c^0 \to \Xi^- K^+$ and $\Omega^- K^+$ decays

- The theoretical study of hadronic weak decays of the Ω_c^0 has a long history. But due to the low production rate of Ω_c^0 and low detection efficiency for long-lived final states, our knowledge of the Ω_c^0 state is very limited.
- The singly Cabibbo-suppressed decay $\Omega_c^0 \to \Xi^- \pi^+$ and doubly Cabibbo-suppressed decay $\Omega_c^0 \to \Xi^- K^+$ decays have been studied systematically in various theoretical models.

Predicted ratios of branching fractions for using light-front quark model (LFQM), pole model, and current algebra (CA).

Branching fraction ratios	LFQM CPC 42,093101 (2018)	Pole model and CA PRD 101, 094033 (2020)
$\mathcal{B}(\Omega_{\rm c}^0 \to \Xi^- \pi^+) / \mathcal{B}(\Omega_{\rm c}^0 \to \Omega^- \pi^+)$	1.96×10^{-3}	1.04×10^{-1}
$\mathcal{B}(\Omega_{c}^{0} \rightarrow \Xi^{-}K^{+})/\mathcal{B}(\Omega_{c}^{0} \rightarrow \Omega^{-}\pi^{+})$	1.74×10^{-4}	1.06×10^{-2}

$$\begin{split} \mathcal{B}(\Omega_{\rm c}^0 \to \Xi^- \pi^+) / \mathcal{B}(\Omega_{\rm c}^0 \to \Omega^- \pi^+) &= 0.253 \pm 0.053 ({\rm stat.}) \pm 0.030 ({\rm syst.}) \\ \mathcal{B}(\Omega_{\rm c}^0 \to \Xi^- {\rm K}^+) / \mathcal{B}(\Omega_{\rm c}^0 \to \Omega^- \pi^+) < 0.070 \\ \mathcal{B}(\Omega_{\rm c}^0 \to \Omega^- {\rm K}^+) / \mathcal{B}(\Omega_{\rm c}^0 \to \Omega^- \pi^+) < 0.29 \end{split}$$

Summary

- □ At Belle, we are still producing excited results for Λ_c , Ξ_c , and Ω_c charmed baryons.
- □ We are combining Belle and Belle II data to study charmed baryon decays.
- □ These experimental results will be useful to future constrain the parameter space of the theoretical models [quark model, chiral symmetry...] and can be applied to other heavy quark systems.
- □ In the future, Belle II will provide greater sensitivity and precise measurements in charmed baryon physics with 50 ab⁻¹.

Thanks for your attentions!