

Near-threshold charmed baryons: Ξ_c molecular states

Bo-Lin Huang with Bo Wang, Shi-Lin Zhu

School of Physical Science and Technology, Inner Mongolia University

TEH²P, Wuhan, 05.04.2024

Bo-Lin Huang (IMU)

blhuang@imu.edu.cn

TEH²P, 05.04.2024 1/19

Charmed Baryons: Ξ_c

PDG: $\equiv_c^+(2468), \equiv_c^0(2471), \equiv_c(2645), \equiv_c(2790), \equiv_c(2815), \equiv_c(2970)$ [was $\equiv_c(2980)$], $\equiv_c(3055), \equiv_c(3080)$.

 $\equiv_c(2970)$ and $\equiv_c(3080)$ [Belle PRL, 97 (2006) 162001 and BaBar PRD, 77 (2008) 012002].

 $\Xi_c(3055)^+$ [BaBar PRD, 77 (2008) 012002 and Belle PRD, 89 (2014) 052003].

 $\Xi_c(3055)^0$, $\Xi_c(3055)^+$ and $\Xi_c(3080)^+$ [Belle PRD, 94 (2016) 032002].

 J^P have not been determined.

Theory for Ξ_c

Charmed Baryons: Ξ_c

 $\Xi_c(3055)$ is a *D*-wave state [CPC, 32 (2008) 424].

 $J^{P} \text{ of the } \Xi_{C}(3055): \frac{3}{2}^{+}, \frac{5}{2}^{+}, \frac{7}{2}^{+} \text{ [PRD, 78 (2008) 056005; PRD, 86 (2012) 034024; PRD, 86 (2012) 034024; PRD, 86 (2012) 034024; PRD, 86 (2012) 034024; PRD, 94 (2016) 114020; PRD, 94 (2016) 114016; PRD, 95 (2017) 074022; NPB, 926 (2018) 467; PRD, 98 (2018) 076015].$

 $\Xi_c(3055)$ is a 2*S*-wave state [PRD, 96 (2017) 114003; PRD, 96 (2017) 114009].

 $\Xi_c(3055)$ is a molecular state with $J^P = \frac{1}{2}^-$ [EPJC, 79 (2019) 167].

In this talk (based on [Bo-Lin Huang, Bo Wang, Shi-Lin Zhu, arXiv: 2402. 00460]):

- $\Xi_c(3055)$ is interpreted as a molecular state.
- Identify several molecular states, designated as Ξ_c , within the mass range of 3100 3500 MeV.

Chiral Lagrangian

Eight octet-baryon fields in terms of the traceless hermitian 3×3 matrices *B*:

$$B=\left(egin{array}{ccc} rac{1}{\sqrt{2}}\Sigma^0+rac{1}{\sqrt{6}}\Lambda & \Sigma^+ & p\ \Sigma^- & -rac{1}{\sqrt{2}}\Sigma^0+rac{1}{\sqrt{6}}\Lambda & n\ \Xi^- & \Xi^0 & -rac{2}{\sqrt{6}}\Lambda \end{array}
ight).$$

The ground state heavy mesons:

$$P = (D^{0}, D^{+}, D^{+}_{s}), \quad P^{*}_{\mu} = (D^{0*}, D^{+*}, D^{+*}_{s})_{\mu},$$

$$1 + \psi_{(D^{*}, \mu, \tau; D^{*}_{s})}, \quad \overline{\mu} = (D^{*^{\dagger}, \mu}, \tau; D^{\dagger}_{s}), \quad 1 + 1$$

$$H=rac{1+\emph{v}}{2}(P_{\mu}^{*}\gamma^{\mu}+\emph{i}P\gamma_{5}), \quad ar{H}=(P_{\mu}^{*\dagger}\gamma^{\mu}+\emph{i}P^{\dagger}\gamma_{5})rac{1+\emph{v}}{2}.$$

Chiral Lagrangian

The effective chiral Lagrangian:

$$\mathcal{L}_{B\phi}^{(1)} = \operatorname{tr}(i\bar{B}[v \cdot D, B]) + 2D\operatorname{tr}(\bar{B}S_{\mu}\{u^{\mu}, B\}) + 2F\operatorname{tr}(\bar{B}S_{\mu}[u^{\mu}, B]),$$

$$\mathcal{L}^{(1)}_{B\phi T} = -ar{T}^{\mu}(i\mathbf{v}\cdot D - \delta_B)T_{\mu} + \mathcal{C}(ar{T}^{\mu}u_{\mu}B + ar{B}u_{\mu}T^{\mu}) + 2\mathcal{H}ar{T}^{\mu}S \cdot uT_{\mu},$$

$$\mathcal{L}_{H\phi}^{(1)} = -\left\langle (iv \cdot \partial H)\bar{H} \right\rangle + \left\langle H(iv \cdot \Gamma)\bar{H} \right\rangle - \frac{1}{8}\delta_D \left\langle H\sigma^{\mu\nu}\bar{H}\sigma_{\mu\nu} \right\rangle \\ + g \left\langle Hu_{\mu}\gamma^{\mu}\gamma_5\bar{H} \right\rangle,$$

$$\mathcal{L}_{BH}^{(0)} = D_{a} \operatorname{tr}(\bar{B}B) \langle H\bar{H} \rangle + D_{b} \operatorname{tr}(\bar{B}\gamma_{\mu}\gamma_{5}B) \langle H\gamma^{\mu}\gamma_{5}\bar{H} \rangle + E_{a} \operatorname{tr}(\bar{B}\lambda_{a}B) \langle H\lambda_{a}\bar{H} \rangle + E_{b} \operatorname{tr}(\bar{B}\gamma_{\mu}\gamma_{5}\lambda_{a}B) \langle H\gamma^{\mu}\gamma_{5}\lambda_{a}\bar{H} \rangle .$$

Feynman diagrams

Bo-Lin Huang (IMU

blhuang@imu.edu.cr

Bo-Lin Huang (IMU

blhuang@imu.edu.cr

Effective potentials

The effective potentials for *BD* and *BD*^{*} systems:

$$\mathcal{V}_{BD}^{(\mathsf{X11})} = D_a + \alpha^{(\mathsf{X11})} E_a,$$

$$\mathcal{V}_{BD^*}^{(X21)} = D_a + D_b + \alpha^{(X21)} (E_a + E_b \boldsymbol{\sigma} \cdot \boldsymbol{T}),$$

$$\mathcal{V}_{BD^*}^{(\mathsf{H21})} = \alpha_{\pi}^{(\mathsf{H21})} \frac{g}{f^2} \frac{(\boldsymbol{\sigma} \cdot \boldsymbol{q})(\boldsymbol{T} \cdot \boldsymbol{q})}{\boldsymbol{q}^2 + m_{\pi}^2} + \alpha_{\eta}^{(\mathsf{H21})} \frac{g}{f^2} \frac{(\boldsymbol{\sigma} \cdot \boldsymbol{q})(\boldsymbol{T} \cdot \boldsymbol{q})}{\boldsymbol{q}^2 + m_{\eta}^2},$$

$$\mathcal{V}_{BD}^{(F11)} = \alpha_{\pi\pi}^{(F11)} \frac{1}{f^4} J_{22}^F(m_{\pi}, m_{\pi}) + \alpha_{KK}^{(F11)} \frac{1}{f^4} J_{22}^F(m_K, m_K),$$

··· omitting many more equations ···

Bound states

The local potentials can be given by

$$V(\mathbf{r}) = \int rac{d^3 \mathbf{q}}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \mathcal{V}(\mathbf{q}) \mathcal{F}(\mathbf{q}),$$

with the regulator function:

$$\mathcal{F}(\boldsymbol{q}) = \exp\left(-\boldsymbol{q}^{2n}/\Lambda^{2n}
ight).$$

The Schrödinger equation:

$$\Big[-\frac{\hbar^2}{2\mu}\nabla^2+V(\boldsymbol{r})\Big]\psi(\boldsymbol{r})=\boldsymbol{E}\psi(\boldsymbol{r}).$$

Bo-Lin Huang (IMU)

LECs

Low Energy Constants

SU(2): $D_a = 3c_s$, $D_b = -c_t$, $E_a = 3c_s$, $E_b = -5c_t$;

SU(3): $D_a = 2c_s$, $D_b = 2c_t/3$, $E_a = 3c_s$, $E_b = -5c_t$.

 c_s and c_t are determined through quark model [PRD, 101 (2020) 094035] and the NN interaction [JHEP. 02 (2014) 113].

$$c_s = -8.1 \,\mathrm{GeV}^{-2}, \quad c_t = 0.65 \,\mathrm{GeV}^{-2}.$$

Natural size for NN interaction [EPJA, 51 (2015) 53]:

$$|\widetilde{C}_{i}| \sim \frac{4\pi}{F_{\pi}^{2}} \sim 0.15 \times 10^{4} \,\mathrm{GeV^{-2}}, \quad |C_{i}| \sim \frac{4\pi}{F_{\pi}^{2}\Lambda_{b}^{2}} \sim 0.6 \times 10^{4} \,\mathrm{GeV^{-4}}$$

 $|D_{i}| \sim \frac{4\pi}{F_{\pi}^{2}\Lambda_{b}^{4}} \sim 2.5 \times 10^{4} \,\mathrm{GeV^{-6}}. \quad \Lambda? \qquad \Lambda = 400 \,\mathrm{MeV} \to \Lambda_{c}(2940).$

Results and discussion

ND^(*)

ND(*)	(*)ر
-------	------

SU(3)/SU(2)	$[DN]_{J=1/2}^{I=0}$	$[D^*N]_{J=1/2}^{I=0}$	$[D^*N]_{J=3/2}^{I=0}$
ΔE (MeV)	-12.9/-10.5	-1.3/-2.9	-6.9/-9.3
M (MeV)	2793.2/2795.6	2946.2/2944.6	2940.5/2938.1
$\sqrt{\left< r^2 \right>}$ (fm)	1.7/1.8	4.1/3.0	2.0/1.9
States	Σ _c (2800)?	Λ _c (2940)	Λ _c (2940)

PDG: $I(J^P) = 1(?^?)$ for $\Sigma_c(2800)$,

 $I(J^P) = 0(\frac{3}{2}^-)$ for $\Lambda_c(2940)$, J^P not certain.

イロト イポト イヨト イヨト 二日

Results and discussion

 $\Sigma D^{(*)}$

		1		1
Σ	D	(*	,

SU(3)	$[D\Sigma]_{J=1/2}^{I=1/2}$	$[D^*\Sigma]_{J=1/2}^{I=1/2}$	$[D^*\Sigma]_{J=3/2}^{l=1/2}$
ΔE (MeV)	-7.5	-3.6	-6.2
M (MeV)	3052.9	3198.1	3195.5
$\sqrt{\left< r^2 \right>}$ (fm)	1.9	2.5	2.0
States	Ξ _c (3055)	Ξ _c (3196)	Ξ _c (3196)

 $\Xi_c(3055)$: $I(J^P) = \frac{1}{2}(\frac{1}{2})$, a molecular state. $\Xi_c(3196)$ vs $\Lambda_c(2940)$

(日)

 $\equiv D^{(*)}$

16/19

ΞD^(*)

SU(3)	$[D\Xi]_{J=1/2}^{I=0}$	$[D_S \Xi]_{J=1/2}^{I=1/2}$	$[D_S^* \Xi]_{J=1/2}^{I=1/2}$	$[D_S^* \Xi]_{J=3/2}^{I=1/2}$
ΔE (MeV)	-4.1	-7.7	-1.7	-0.4
M (MeV)	3181.4	3279.0	3428.8	3430.1
$\sqrt{\left< r^2 \right>}$ (fm)	2.3	1.9	3.2	5.7
States	$\Omega_{c}(3188)$?	Ξ _c (3279)	Ξ _c (3430)	∃ _c (3430)

 $(\Xi_c(3055), [D\Sigma]_{J=1/2}^{l=1/2})$ vs $(\Xi_c(3279), [D_S\Xi]_{J=1/2}^{l=1/2})$

 $\Xi_c(3430)$ vs $\Xi_c(3196)$ vs $\Lambda_c(2940)$

Summary and Outlook

• Ξ_c : $\Xi_c(3055)$, $\Xi_c(3196)$, $\Xi_c(3279)$, $\Xi_c(3430)$

 Ξ_c within the mass range of 3100 - 3500 MeV.

- Outlook
 - Other methods for these states.
 - We look forward with great anticipation to future experimental investigations, which we hope will validate the existence of these states.

Thank you for your attention!

Bo-Lin Huang (IMU)

blhuang@imu.edu.cn

TEH²P, 05.04.2024 19/19