

Opportunities to probe CP violation in rare B decays at LHCb Upgrades

谢跃红,华中师范大学

第三届强子与重味物理理论与实验联合研讨会

武汉·2024年4月6-9日

LHCb Upgrades

- 理解正反物质不对称 (CP破坏)
- 间接寻找新物理效应(稀有衰变、轻子普适性)
- 理解强相互作用机制 (强子性质、QCD)
- 前向区域的物理研究(电弱物理、重离子物理)

- > Run 1+2: 9 fb^{-1}
- ▶ After Run 3: 达到 23 fb⁻¹
- ➤ Upgrade I: 达到 50 fb⁻¹ (10年)
- ➤ Upgrade II: 达到 300 fb⁻¹ (20年)

两大主题: CP破坏与稀有衰变

State-of-the-art CP violation study

CP violation has been precisely measured in tree-level hadron decays, which is very well described by the CKM mechanism.

Rare B decays at LHCb

□ Focusing on FCNC decays

- Dileptonic $b \to (s/d)l^+l^-$
- Radiative $b \to (s/d)\gamma$
- Hadronic $b \to (s/d)q\overline{q} \ (q = s, d)$

□ Major observables in FCNC decays

- Decay rates
- Angular correlations -
- CP asymmetries

Sensitive to form factors; extensively studied!

Theoretically clean; much less explored!

CP violation in FCNC decays is very interesting but much less explored!

CP-violating observables in FCNC decays

Time-Integrated CP violation in the decay $B \rightarrow f$

$$A_{CP}^{TI} = \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$$

Time-Dependent CP violation in neutral B_q^0 decays to a CP eigenstate

$$A_{CP}(t) = \frac{-C\cos(\Delta m_d t) + S\sin(\Delta m_d t)}{\cosh\left(\frac{\Delta\Gamma_q t}{2}\right) + A_{\Delta}\sinh\left(\frac{\Delta\Gamma_q t}{2}\right)}$$

C: direct CP violation S: mixing-induced CP violation A_{Δ} : CP-even, accessible only in B_s^0

- □ This talk focuses on TD CPV observables
 - SM predictions largely independent of form factors
 - Providing much more information than TI observables

CP violation in $b \rightarrow s\mu^+\mu^-$ decays

FCNC $b \rightarrow sl^+l^-$ decays

□ Precision tests of the SM and NP

SM: FCNCs: loop and CKM suppressed, breakdown of GIM due to *t*

NP:

Could enter already at tree-level, highly sensitive to short-distance NP

FCNC $b \rightarrow sl^+l^-$ decays

 \Box $b \rightarrow sl^+l^-$ decays described by effective Hamiltonian

$$H^{\text{eff}} = -\frac{4G_{\text{F}}}{\sqrt{2}} V_{\text{tb}} V_{\text{ts}}^* \sum_i (C_i O_i + C_i' O_i')$$

SM :
$$C_9 \approx -C_{10}, C'_{7,9,10} \approx 0$$

New physics can alter Wilson coefficients C_i

Consider NP effects in $C_{7,9,10,S,P}^{(\prime)}$

7: photon penguin; 9,10: EW penguin; S,P: (pseudo-)scalar penguin

FCNC $b \rightarrow sl^+l^-$ decays

□ Global $b \rightarrow sl^+l^-$ results for Wilson coefficients, using rate and angular observables and assuming real Wilson coefficient [EPJC 83 (2023) 419]

- CP asymmetries can be used to constrain phases of the relevant Wilson coefficients [JHEP 03 (2023) 113]
 - Direct CP violation sensitive to C_9 or C_T
 - Mixing-induced CP violation sensitive to phases of any Wilson coefficients

CP violation in $B^0 \rightarrow K_S^0 \mu^+ \mu^-$

- □ Tiny CP-violating phase in $b \to s\mu^+\mu^-$ decay in the SM [PRD 104 (2021) 115004] $A_{CP}(t) = C\cos(\Delta m_d t) - S\sin(\Delta m_d t) \quad \text{SM: } C \approx 0, \ S \approx \sin 2\beta^{c\bar{c}s} \text{ below } J/\psi$
- □ Large CP-violating phase in $b \to s\mu^+\mu^-$ decay possible in NP models e.g. S_3 leptoquark model with $M_{LQ} \sim a$ few TeV [JHEP 03 (2023) 113]

CP violation in $B^0 \rightarrow K_S^0 \mu^+ \mu^-$

[Kechen Li, PhD Thesis]

- About 1k signals in Run 1+2 data
- Expected precision with with 9 /50 /300 $\rm fb^{-1}$

 $\sigma_S \approx \sigma_C \approx 0.29/0.11/0.045$

• Measure S, C in three q^2 regions with 50 fb⁻¹ or more

 $\bigcirc q^2 \in [1.1, 6.0] \text{ GeV}^2$ $\bigcirc q^2 \in [8, 9] \text{ GeV}^2$ $\bigcirc q^2 \in [15, 22] \text{ GeV}^2$

An Upgrade II example [JHEP 03 (2023) 113]

 $\mathcal{A}_{CP}^{dir}[8,9] = 0.16 \pm 0.02,$ $\mathcal{B}[1.1, 6.0] = (1.15 \pm 0.02) \times 10^{-7},$

 $\mathcal{A}_{CP}^{mix}[1.1, 6] = 0.94 \pm 0.04,$ $\mathcal{B}[15, 22] = (0.908 \pm 0.018) \times 10^{-7}.$

CPV in $B_s^0 \rightarrow \phi \mu^+ \mu^-$ and $B_s^0 \rightarrow \mu^+ \mu^-$

 $B_s^0 o \phi \mu^+ \mu^-$

- TD CP violation in $B_s^0 \rightarrow \phi \mu^+ \mu^-$ as a probe of NP [JHEP 04 (2015) 045]
- Sensitivity study [Yilong Wang, PhD Thesis]
 - > ~2k signals found in Run 1+2 data
 - ▶ In analogy to $B_s^0 \to J/\psi \phi$, measure a phase $\phi_s^{s\mu\mu}$. In the SM, $\phi_s^{s\mu\mu} \approx 0$.
 - > Expected precision with 9 /50 /300 fb⁻¹: $\sigma(\phi_s^{s\mu\mu}) \approx 0.29/0.11/0.045$ rad
 - > Possible to investigate q^2 and polarization dependence with 300 fb⁻¹

 $B_s^0 \to \mu^+ \mu^-$

- CP violation in $B_s^0 \rightarrow \mu^+ \mu^-$ sensitive to (pseudo-) scalar interactions [PRL 109 (2012) 041801]
- LHCb precision with 300 fb⁻¹: $\sigma_s = 0.2$ [LHCb-pub-2018-009]
- Interesting case for a combined analysis of LHCb, ATLAS, CMS

CP violation in radiative *B* decays

Photon polarization in $b \rightarrow s/d\gamma$ decays

□ Photons in $b \rightarrow s/d\gamma$ are predominantly left-handed □ Right-handed contribution can be enhanced in BSM models

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\text{tb}} V_{\text{ts}}^* \sum_{i} \left(\underbrace{C_i \mathcal{O}_i}_{\text{left-handed}} + \underbrace{C_i' \mathcal{O}_i'}_{\text{right-handed}} \right) + h.c.$$

$$\mathbf{r} = \frac{C_7}{C_7} = \frac{A(b \to s/d\gamma_R)}{A(b \to s/d\gamma_L)} = \mathcal{O}\left(\frac{m_{s/d}}{m_b}\right)$$

 \Box TD CP violation in $B_q^0 \rightarrow M_{CP}\gamma$, with η being the CP eigenvalue of M_{CP}

$$A_{CP}(t) = \frac{-C\cos(\Delta m_d t) + S\sin(\Delta m_d t)}{\cosh\left(\frac{\Delta\Gamma_q t}{2}\right) + A_{\Delta}\sinh\left(\frac{\Delta\Gamma_q t}{2}\right)}$$

SM: $S \approx 2\eta |\mathbf{r}| \sin(\phi_M - \phi_L - \phi_R) \approx 0$ $A_\Delta \approx 2\eta |\mathbf{r}| \cos(\phi_M - \phi_L - \phi_R) \approx 0$ $C \approx 0$

u,c,t

Current status of CPV in $b \rightarrow s/d\gamma$

- $b \rightarrow s\gamma: B_s^0$
- $B_s^0 \to \phi \gamma$ $S = 0.43 \pm 0.30 \pm 0.11$ $C = 0.11 \pm 0.29 \pm 0.11$ $A^{\Delta} = -0.67^{+0.37}_{-0.41} \pm 0.17$

[LHCb, PRL 123 (2019) 081802]

 $b \rightarrow d\gamma$

 $B^0 \rightarrow \rho^0 \gamma$ $S = -0.83 \pm 0.65 \pm 0.18$ $C = +0.44 \pm 0.49 \pm 0.14$ [Belle, PRL 100 (2008) 021602]

CP violation in $B^0 \rightarrow \pi^+ \pi^- \gamma$

□ $B^0 \rightarrow \pi^+ \pi^- \gamma$ is dominated by a $b \rightarrow d\gamma$ transition: $S \approx 0$ and $C \approx 0$ in the SM □ $\pi^+ \pi^-$ is always in a CP-even eigenstate $C(\pi^+ \pi^-) = (-1)^{L+S} = (-1)^L$, $P(\pi^+ \pi^-) = (-1)^L$, $CP(\pi^+ \pi^-) = (-1)^{2L} = +1$

D Measure TD CP violation in $B^0 \rightarrow \pi^+ \pi^- \gamma$ using the full $\pi^+ \pi^-$ spectrum

• No need for amplitude analysis to distinguish different resonances

- Gain 200% more signals than $B^0 \rightarrow \rho^0 \gamma$
- Expect ~18k signals in Run 1+2 data
- Expected precision with 9/50/300 fb⁻¹ $\sigma_s \approx \sigma_c \approx 0.09/0.035/0.015$

c.f. Belle results on $B^0 \rightarrow \rho^0 \gamma$ $S = -0.83 \pm 0.65 \pm 0.18$ $C = +0.44 \pm 0.49 \pm 0.14$

CPV in $B_s^0 \to K^+ K^- \gamma$ decays

□ $B_s^0 \to K^+K^-\gamma$ is dominated by a $b \to s\gamma$ transition: $S \approx 0$, $A_\Delta = 0$ and $C \approx 0$ in the SM □ Measure TD CP violation in $B_s^0 \to K^+K^-\gamma$ using the full K^+K^- spectrum

- Gain 100% more signals than $B_s^0 \rightarrow \phi \gamma$
- Expect ~10k signals in Run 1+2
- Expected precision with 9/50/300 fb⁻¹ $\sigma_S \approx \sigma_c \approx 0.20/0.08/0.03$ $\sigma_{A_\Delta} \approx 0.25/0.11/0.04$

c.f. LHCb results on $B_s^0 \to \phi \gamma$ (9 fb⁻¹) $S = 0.43 \pm 0.30 \pm 0.11$ $C = 0.11 \pm 0.29 \pm 0.11$ $A^{\Delta} = -0.67^{+0.37}_{-0.41} \pm 0.17$

Constraints on C'_7/C_7

CPV in $B^0 \rightarrow \pi^+\pi^-\gamma$ is very powerful for constraining the complex phase of C'_7/C_7

CP violation in hadronic $b \rightarrow s$ decays

CP violation in hadronic $b \rightarrow s$ decays

	$b \rightarrow s$	$\overline{q}q$: B^0							
$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \xrightarrow[Moriond 2021]{PRELIMINARY}$									
b→ccs ℃	World Ayera BaBar Belle	ge		- 0.66	$\begin{array}{c} 0.70 \pm 0.02 \\ 3 \pm 0.17 \pm 0.07 \\ 0.90 \pm 0.07 \end{array}$				
η΄ K ^o ^C s	BaBar Belle		-+-	0.57 • 0.68	$7 \pm 0.08 \pm 0.02 \\ 3 \pm 0.07 \pm 0.03 $				
L = + + + + + + + + + + + + + + + + + +	BaBar Belle BaBar Belle BaBar Belle BaBar Belle BaBar BaBar Belle BaBar Belle BaBar Belle BaBar Belle BaBar BaBar BaBar BaBar BaBar BaBar	ge		0.7 0.5 0.35 0.4 0.6 0.6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	$\begin{array}{c}$				
-2	-1	0		1	2				

$$b \rightarrow s \overline{q} q$$
: B_s^0

$$B_s^0 \to \phi \phi$$

$$\phi_s^{s\bar{s}s} = -0.074 \pm 0.069 \text{ rad}$$

$$B_s^0 \to K^{*0} \overline{K}^{*0}$$

 $\phi_s^{s\bar{d}d} = -0.10 \pm 0.13 \pm 0.14$ rad

From $B_s^0 \rightarrow \phi \phi$ to $B_s^0 \rightarrow \phi K^+ K^-$

□ LHCb has measured TD CP violation in $B_s^0 \rightarrow \phi \phi$ using Run 1+2 data, where $\phi \rightarrow K^+ K^-$

 $\phi_s^{s\bar{s}s} = -0.074 \pm 0.069$ rad

\Box Extend this study to $B_s^0 \rightarrow \phi K^+ K^-$

- Gain ~100% more signals than $B_s^0 \rightarrow \phi \phi$
- Expected precision with $9/50/300 \text{ fb}^{-1}$

$\sigma(\phi_s^{s\bar{s}s}) \approx 0.05/0.02/0.008 \, \text{rad}$

Run 1 + Run 2, 9 fb⁻¹

Run 1 + 2015 + 2016, 5 fb⁻¹

Run 2, 6 fb⁻¹

Run 1, 3 fb⁻¹

2011, 1 fb⁻¹

LHCb

SM prediction

-1

 $\phi_{s}^{s\overline{s}s}$ [rad]

Ω

• A tagged time-dependent amplitude analysis is needed, similar to the analysis of $B_s^0 \rightarrow J/\psi K^+ K^-$ in the mass range above $\phi(1020)$ [JHEP 08 (2017) 037]

Summary

LHCb has great potential to study CP violation in rare *B* decays
 Some new ideas

- First measurements of CP violation in $b \rightarrow s\mu^+\mu^-$ decays
- New decay modes to study CP violation in radiative *B* decays
- Extending the study of CP violation in hadronic $b \rightarrow s$ decays

Modes	Key measure	Present data (9 fb ⁻¹)	Upgrade I (50 fb ⁻¹)	Upgrade II (300 fb ⁻¹)
$B^0 o K^0_S \mu^+ \mu^-$	$\sigma_S pprox \sigma_C$	0.29	0.11	0.045
$B_s^0 o \phi \mu^+ \mu^-$	$\sigma(\phi_s^{s\mu\mu})$	0.29 rad	0.12 rad	0.045 rad
$B^0 o \pi^+ \pi^- \gamma$	$\sigma_S pprox \sigma_C$	0.09	0.035	0.015
$B_s^0 \to K^+ K^- \gamma$	$\sigma_S pprox \sigma_C$	0.20	0.08	0.03
$B_s^0 \to \phi K^+ K^-$	$\sigma(\phi_s^{sar{s}s})$	0.05 rad	0.02 rad	0.008 rad

Backup slides

CP violation in $B^+ \rightarrow K^+ \mu^+ \mu^-$

□ Interference of short and long distance contributions

- □ New analysis can be performed with separate relative phases δ_j for B^+ and B^- to account for CP violation
- □ Large improvement in direct CP violation $A_{CP}(q^2)$ also expected with LHCb Upgrades

Flavour tagging at high pile-up

New physics searches in flavour sector

- Flavour physics can indirectly probe new physics, complementary to direct searches
 - Exploring NP scale >> TeV
 - Distinguishing NP models

Generic bounds on New Physics scale (for $g_{X\sim}$ 1)

- Major processes and observables for new physics searches
- Neutral meson mixing
- FCNC decays
- Forbidden decays

- Decay rates
- CP asymmetries
- Angular correlations
- Lepton universality ratios