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1. Motivation
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As the bridge between the theoretical frame and the experiment
data, the computation of scattering amplitudes is extremely
important.

With current accuracy of experimental data, the one-loop
correction is necessary. For some cases, even higher loops are
needed.
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However, directly evaluating each Feynmna diagram is not
smart, because they share some common features. A well
used and nicer method is the reduction method.

The key idea is that any Feynman integral can be written as

I =
∑

i

ci Ii

Thus the evaluation of integrals has been divided into two
parts: the evaluation of basis and the computation of
reduction coefficients ci
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Thus the computation of loop corrections can be roughly
divided into three parts:

The construction of integrand
The computation of master integrals
The computation of reduction coefficients

The improvement in each part will lead the improvement of the
loop computations.

My focus in the talk will be the third part, i.e., the reduction.
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The reduction method can be classified from different points of
view. One classification is:

Reduction at the integrand level:
It has been solved, in principle, by the computational
algebraic geometry

[Ossola, Papadopoulos, Pittau, 2006] [Mastrolia, Ossola,
Papadopoulos, Pittau, 2011] [Badger, Frellesvig, Zhang, 2012] [ Zhang,
2012]

Reduction at the integrand level: There are various
proposals.
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Some widely mentioned methods of integral level reduction
include

Passarino-Veltman(PV)-reduction [Passarino and Veltman,
1979]

Integration-by-Part (IBP) method [Chetyrkin and Tkachov, 1981;
Tkachov, 1981; Laporta, 2001]

Unitarity cut method [Bern, Dixon, Dunbar and Kosower,
hep-ph/9403226, hep-ph/9409265] [Britto, Cachazo and Feng,
hep-th/0412103]

Intersection theory [Mastrolia and Mizera, 1810.03818] [Frellesvig,
Gasparotto, Mandal, Mastrolia, Mattiazzi and Mizera, 1907.02000]
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No matter which method, a notable common feature in the
reduction procedure is the appearance of an iterative structure.
For example, the tadpole

I1(a) =
∫

dD l
iπD/2

1
(l2 − M2)a . (1)

it is easy to find the IBP relation

I1(a) =
D − 2a + 2
2(a − 1)M2 I1(a − 1), (2)

From it we can solve the reduction coefficient as

C1(a) =
(−1)a−1(1 − D

2 )a−1

(a − 1)!(M2)a−1 . (3)
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When encountering an iterative structure, a very useful
approach is to consider the corresponding generating
function. In many examples, it is much easier to find the
generating function rather than to find expansion coefficients of
each order. For example, For example, the Hermite Polynomial
Hn(x) of eigenvectors of harmonic oscillator can be read out
from the generation function

e2tx−t2
=

∞∑
n=0

Hn(x)
tn

n!
(4)

Thus it is natural to conisder the generating function for the
reduction!!!
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As far as we know, some early work are:
Ablinger etc introduced the generating function for an
operator insertion on an l-leg vertex , which facilitates the
computation of operator matrix elements of higher loop
contributions. [Ablinger, Blumlein, Raab, Schneider and Wissbrock,
1403.1137]

Kosower introduced generating functions for a specific
tensor structure of some two-loop integrals, which provide
explicit reductions of that tensor structure with arbitrary
power. [Kosower, 1804.00131]
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Our aim is to solve the reduction of general loop integrals, i.e.,
with arbitrary polynomial of loop momenta in the numerator and
arbitrary powers of propagators in the denominator:

To deal with numerator, a key gredient is the introduction of
auxiliary vector R, i.e.,∫

dℓ
ℓµ1 ...ℓµm∏

Di
=⇒ ∂

∂Rµ1

...
∂

∂Rµm

∫
dℓ

(ℓ · R)m∏
Di

(5)

Thus we have our first generating function

IR
n+1 ≡

∫
dDℓ

iπD/2
e2ℓ·R∏n

i=0((ℓ− Ki)2 − M2
i )

= Jn+1 · α⃗gen(R) ,

(6)
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The basis is the scalar integrals

Jn+1;Ŝ =

∫
dDℓ

iπD/2
1∏n

i=0,i ̸∈S((ℓ− Ki)2 − M2
i )

, (7)

where Ŝ is the list of removed propagators, then the
components of row vector Jn+1 will be ordered as

J =
{

Jn+1; Jn+1;0̂, Jn+1;1̂, ..., Jn+1;n̂; Jn+1;0̂1, Jn+1;0̂2,

..., J
n+1; ̂(n−1)n

; ...; J
n+1; ̂01...(n−1)

, ..
}

. (8)
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To deal with denominator with arbitrary powers

IR
n+1;{a} ≡

∫
dDℓ

iπD/2
e2ℓ·R∏n

i=0((ℓ− Ki)2 − M2
i )

ai
= Jn+1 · α⃗

gen
a (9)

there are two approaches:
The first one is to use

IR
n+1;{a} =

 n∏
j=0

1
(aj − 1)!

∂aj−1

∂(M2
j )

aj−1

 IR
n+1 . (10)

Using the result

∂

∂(M2
j )

IR
n+1 =

(
∂

∂(M2
j )

Jn+1

)
· α⃗gen + Jn+1 ·

(
∂

∂(M2
j )

α⃗gen

)
≡ Jn+1 · Dn+1;j α⃗

gen , (11)
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where we have rewritten the differential action over basis as

∂

∂(M2
j )

Jn+1 ≡ Jn+1Hn+1;j (12)

and defined the "covariant derivative" as

Dn+1;j ≡
∂

∂(M2
j )

+Hn+1;j , (13)

Thus we can obtain the reduction of general integrals in (9) as

IR
n+1;{a} = Jn+1 ·


 n∏

j=0

1
(aj − 1)!

Daj−1
n+1;j

 α⃗gen

 . (14)
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The second approach to solve (9) is to sum over all a as

∞∑
a0,··· ,an=1

ta0−1
0 · ta1−1

1 · ta2−1
2 · · · · · tan−1

n IR
n+1;{a} (15)

to reach

IR
n+1(t) ≡

∫
dDℓ

iπD/2
e2ℓ·R∏n

i=0((ℓ− Ki)2 − M2
i − ti)

. (16)

which is the most general generating function for one loop
reduction we are looking for.
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Expression (16) is very similar to (6) except the mass shifting
M2

i → M2
i + ti . Thus using (6) we have immediately

IR
n+1(t) = Jn+1(t) · α⃗gen(R, t) (17)

where the scalar basis Jn+1(t) is the one in (7) with the mass
shifting M2

i → M2
i + ti . To complete the reduction (17), we need

to find the reduction

Jn+1(t) = Jn+1 G(t) (18)

where the matrix G depends on t only, but not R. In other
words, to compute G(t), we can start from (16) by setting
R = 0. Assembling all together we finally have

IR
n+1(t) = Jn+1·γ⃗gg(R, t), γ⃗gg(R, t) ≡ G(t)α⃗gen(R, t) . (19)
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Above two approaches are, in fact, related to each other as
following. Using (14) one finds

∞∑
a0,··· ,an=1

ta0−1
0 · ta1−1

1 · · · · · tan−1
n IR

n+1;{a}

=
n∏

j=0

 ∞∑
aj=1

taj−1
j

(aj − 1)!

(
∂

∂M2
j

)aj−1
 IR

n+1

= Jn+1

 n∏
j=0

 ∞∑
aj=1

taj−1
j

(aj − 1)!
(
Dn+1;j

)aj−1

 α⃗gen


= Jn+1 ·

(
e
∑n

j=0 tjDn+1;j α⃗gen
)

(20)

thus one gets

γ⃗gg(R, t) = e
∑n

j=0 tjDn+1;j α⃗gen(R) (21)
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2. Differential equation for generating function
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The IBP relations are given by

0 =

∫
dDℓ

iπD/2
d

dℓµ

{
Aµ e2ℓ·R

(ℓ2 − M2
0 )
∏n

i=1((ℓ− Ki)2 − M2
i )

}
(22)

with Aµ = ℓµ,K µ
i . After simplification we get

Y⃗r =
n∑

j=0

frj X⃗j , r = 0,1...,n (23)

where the modified Caylay matrix F with elements

fij = (Ki − Kj)
2 − M2

i − M2
j , i , j = 0, ...,n; K0 = 0 (24)
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and

Y⃗r = −
(

D − 2 − n − 2Kr · R + R · ∂

∂R

)
α⃗gen

+
n∑

j=0,j ̸=r

(
Dn+1;j α⃗

gen
n+1;̂r

)
(25)

and
Dn+1;i α⃗

gen ≡ X⃗i (26)
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Using Aµ = Rµ we get

0 = 2R2α⃗gen +
n∑

j=0

((
2R · Kj − R · ∂

∂R

)
(F−1)jr Y⃗r

)
(27)
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3. Solving α⃗gen
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To simplify notations, let us define

Br =
n∑

j=0,j ̸=r

(
Dn+1;j α⃗

gen
n+1;̂r

)
(28)

First using (23), we can solve

X⃗i = (F−1)ij Y⃗j (29)

Putting it back to (27) we get2R2 −
n∑

j=0

(
2R · Kj − R · ∂

∂R

)
(F−1)jr(

D − 2 − n − 2Kr · R + R · ∂

∂R

)}
α⃗gen

= −
n∑

j=0

(
2R · Kj − R · ∂

∂R

)
(F−1)jr Br . (30)

Bo Feng



There are two ways to solve (30). The first one is by the series
expansion. Putting

α⃗gen =
∞∑

i0,...,in=0

α⃗i0i1...in(R
2)i0(2K1 · R)i1 ...(2Kn · R)in

Br =
∞∑

i0,...,in=0

b⃗r ;i0i1...in(R
2)i0(2K1 · R)i1 ...(2Kn · R)in (31)
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we get

α⃗i0i1...in(2i0 +
n∑

t=1

it)(D − 2 − n + (2i0 +
n∑

t=1

it))
n∑

j,r=0

(F−1)jr

= −

 n∑
j=1

n∑
r=0

(F−1)jr b⃗r ;i0i1...(ij−1)...in

−(2i0 +
n∑

t=1

it)
n∑

j,r=0

(F−1)jr b⃗r ;i0i1...in


+

n∑
j=1

n∑
r=0

(F−1)jr α⃗i0i1...(ij−1)...in(D − 3 − n + 4i0 + 2
n∑

t=1

it)

−
n∑

j,r=1

(F−1)jr α⃗i0i1...(ij−1)...(ir−1)...in − 2α⃗(i0−1)i1...in (32)
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The second one is to define

R = tR̃ . (33)

then (30) becomes the second order ordinary differential
equation

At
d2

dt2 W + (B0 + B1t)
d
dt

W + (C0 + C1t)W + B(t) = 0 . (34)

A = I · (F−1) · IT , B0 = (D − (n + 1))A

B1 = −2I · (F−1) · PT , C0 =
(D − (n + 1))

2
B1

C1 = 2R̃2 + P · (F−1) · PT . (35)

with

I = (1,1, ...,1), P = (2K0 · R̃,2K1 · R̃, ...,2Kn · R̃) . (36)
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The solution is given by the generalized hypergeometric
function with definition

AFB(a1, ...,aA;b1, ...,bB; x) =
∞∑

n=0

(a1)n...(aA)n

(b1)n...(bB)n

xn

n!
(37)

where the Pochhammer symbol is defined by (From the
definition one can see that (x)n=0 = 1,∀x)

(x)n =
Γ(x + n)
Γ(x)

=
n∏

i=1

(x + (i − 1)) . (38)
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For our case, the solution is

⃗̃α
gen

(t , R̃) = e
−B1+

√
B2

1−4C1
2 t( 1F1(a1;b1; x)){

c⃗1 +

∫ x

0
ds

s−b1es

( 1F1(a1;b1; s))2(∫ s

0
dyg(y)yb1−1

1F1(a1;b1; y)e−y
)}

(39)

with c⃗1 = {1,0,0, ...,0}T

x =
−t
√

B2
1 − 4C1A

A
, b1 = (D − (n + 1)), a1 =

b1

2

g⃗(x) =
1√

B2
1 − 4AC1

e

−(B1−
√

B2
1−4AC1)x

2
√

B2
1−4AC1 B⃗( −xA√

B2
1 − 4C1A

) (40)
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For the special component

(⃗̃α
gen

(t , R̃))∅ = e
−B1+

√
B2

1−4C1A
2A t

1F1(
(D − (n + 1))

2
; (D − (n + 1));

−t
√

B2
1 − 4C1A

A
)

= e
−B1t

2A 0F1(∅;
(D + 1 − (n + 1))

2
;
(B2

1 − 4C1A)t2

16A2 ) (41)
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Example: Massless bubble
The generating function of bubble to bubble is

e(K ·R̃)t
0F1

(
∅; (D − 1)

2
;
1
4

t2((K · R̃)2 − K 2R̃2)

)
(42)

One can easily expand (42) and check with known results:

1 + (K · R̃)t +
(D(K · R̃)2 − K 2R̃2)t2

2(D − 1)

+
((D + 2)(K · R̃)3 − 3K 2R̃2(K · R̃))t3

6(D − 1)

+
((D + 2)(D + 4)(K · R̃)4 − 6(D + 2)K 2R̃2(K · R̃)2 + 4(K 2R̃2)2)t4

24(D − 1)(D + 1)
+ ...(43)
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4. Solving Hn+1;j
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Using (13), (26), (29) and the boundary condition, i.e.,
α⃗00...0 = {1,0,0, ...,0}T , we arrive

Hn+1;i · {1,0,0, ...,0}T =
n∑

r=0

(F−1
ir )

(
− (D − 2 − n) {1,0,0, ...,0}T

+b⃗r ;00...0

)
. (44)

Using the definition of b⃗ we get

(Hn+1;i)Ŝ,∅̂ = −

{
(D − 2 − n)

n∑
r=0

(F−1
ir )

}
δS,∅

+
n∑

r=0

(F−1
ir )

n∑
j=0,j ̸=r

(Hn+1;j)Ŝ ,̂r , (45)
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Now based on (45), we can write down the recursive algorithm
for all components of the matrix Hn+1;i :

(1) Let us consider the arbitrary element (Hn+1;i)R̂,Ĉ where
the removed lists R, C indicate the corresponding row and
column. The first obvious result is when i ∈ C,
(Hn+1;i)R̂,Ĉ = 0, ∀R. Now we will assume that i ̸∈ C. The
second obvious result is that when C ̸⊆ R, the
(Hn+1;i)R̂,Ĉ = 0.

(2) Now we define some notations for later convenience.
First we use P = {0,1, ...,n} to represent the complete list
of propagators. Given C we use nC to denote the number of
elements in the list and define the reduced modified Caylay
matrix FP\C by removing the corresponding rows and
columns indicated by the list (see (24)).
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(3) When R = C, we have

(Hn+1;i)Ĉ,Ĉ = −(D−1−(n+1−nC))
∑

r∈P\C

(FP\C)
−1
ir . (46)

(4) When C ⊂ R, we have

(Hn+1;i)R̂,Ĉ =
∑

r∈P\C

(FP\C)
−1
ir

∑
j∈P\(C

⋃
{r})

(Hn+1;j)R̂,C
⋃
{r} .

(47)
(5) Equation (47) shows explicitly the recursive structure.
With fixed row list R, the column list at the right hand side
is larger than the left hand side by one element. Iteratively
using (47) will reach two possible terminations: either
R = C with the expression (46) and either C ̸⊆ R with zero
contribution.
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5. Solving GŜ1,∅
(t)
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For generating function

Jn(t) ≡
∫

dDℓ

iπD/2
1∏n

i=1((ℓ− Ki)2 − M2
i − ti)

. (48)

Using the IBP relations (29) with R = 0, we get partial
differential equations

∂

∂ti
GŜ1,∅

(t) =
∑

j

(F−1)ij(t)

−(D − 1 − n)GŜ1,∅
(t) +

∑
r ̸=j

∂

∂tr
GŜ1 ,̂j

(t)

 .

(49)
with Fij(t) = (Ki − Kj)

2 − M2
i − ti − M2

j − tj
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For the reduction from n-gon to n-gon, we have

∂

∂ti
G∅,∅(t) = −

∑
j

(F−1)ij(t)(D − 1 − n)G∅,∅(t) . (50)

We can combine (50) to give∑
i

(
∂

∂ti
G∅,∅(t)

)
dti = −(D − 1 − n)G∅,∅(t)

∑
i,j

(F−1)ij(t)dti

= −(D − 1 − n)
2

G∅,∅(t)
∑
i,j

(F−1)ij(t)(dti + dtj)

=
(D − 1 − n)

2
G∅,∅(t)

∑
i,j

(F−1)ij(t)dFij(t) , (51)
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Using
dg = g

(
g−1

)µν
dgµν ,g = |gµν | (52)

(51) becomes

dG∅,∅(t) =
(D − 1 − n)

2
G∅,∅(t)

d |F |
|F |

, (53)

which can be solved immediately

G∅,∅(t) =
(

|F |(t)
|F |(t = 0)

) (D−1−n)
2

. (54)
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For general case we have

dGŜ1,∅
(t) =

(D − 1 − n)
2

GŜ1,∅
(t)d ln |F |+

∑
i

Bi;Ŝ1
(t)dti

Bi;Ŝ1
(t) =

∑
j

(F−1)ij(t)
∑
r ̸=j

∂

∂tr
GŜ1 ,̂j

(t) . (55)

By the constant variation method we write

GŜ1,∅
(t) =

(
|F |(t)

|F |(t = 0)

) (D−1−n)
2

g̃Ŝ1,∅
(t) . (56)
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with

g̃Ŝ1,∅
(t)− g̃Ŝ1,∅

(t = 0)

=

∫ 1

0
dλ
(

|F |(λt)
|F |(t = 0)

)− (D−1−n)
2 ∑

i

Bi;Ŝ1
(λt)ti (57)

where the boundary condition is that

g̃Ŝ1,∅
(t = 0) =

{
1, S1 = ∅
0, S1 ̸= ∅ (58)
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6. Conclusion
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Some future works:
How to use these results to get more information of
one-loop integrals?
How to generalize to higher loops?
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Thanks a lot of your
attention !
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