Cluster Counting Technique

Istituto Nazionale di Fisica Nucleare

Muhammad Numan Anwar Department of Physics Polytechnic University of Bari INFN, Italy

Outline

- 1. Cluster Counting
- 2. Peak Finding Algorithm
- 3. Long Short Term Memory (LSTM) Model
- 4. Clusterization
- 5. Convolution Neural Network (CNN) Model
- 6. Future Planning

Cluster Counting vs dE/dx

- Energy loss per unit length, Landau distribution, large fluctuation
- Number of primary ionization clusters per unit length, Poisson distribution, small fluctuation —> Cluster Counting Technique

Two-Step Reconstruction Algorithm

Waveform

 Discriminate peaks (both primary and secondary) from the noises (classification problem)

12/12/2023

• The data of waveform is time sequence data, which is suitable for LSTM

Evaluation by Waveform

Performance of the Model

The above plot Accuracy VS epoch show us that the training and validation Accuracy increases over the epochs The above plot loss VS epoch show us that the training and validation loss decreases over the epochs

Step2: Clusterization

 Determine the number of clusters from the detected peaks (Regression Problem)

- Extracting features from input
- 1D CNN can handle sequence data

Performance of the Model

Training and validation loss Training loss Validation loss Training loss Validation loss Training loss Validation loss

The above plot mean absolute error VS epoch show us that the training and validation mae decreases over the epochs

12/12/2023

The above plot loss VS epoch show us that the training and validation loss decreases over the epochs

Predictions of the Two Models

Number of clusters predicted by CNN Model

Prob of the LSTM Model to Classify Signal and Background

Future Planning

Now, we aim to enhance the performance of these models by using:

- Different loss and activation functions
- Adding more layers
- Adjusting the number of training epochs etc.
- Once we achieve the best performance, we will apply our model to the test beam data.

Plots for the Discussion

Peak Finding Train Root

Plots for the Discussion

Peak Finding Test Root

Plots for the Discussion

Counting Test Root

