ParticleNet for Jet Tagging in Particle Physics on FPGA

Yutao Zhang, Yaodong Cheng, Yu Gao Computing center, IHEP, CAS

2023-12-05

Outline

- Background and motivation
- Brief introduction to FPGA AI programming
- ParticleNet implementation on FPGA
- Summary

AI Algorithms Acceleration

- AI has emerged as a solution to efficiently analyze these massive data sets
- GPUs and FPGAs allow AI algorithms to be greatly accelerated
- The combination of AI and these processors is leading to a revolution in the way we analyze data, minimizing the time needed to perform the most advanced of analyses
- A3D3: Accelerated AI Algorithms for Data-Driven
 Discovery
- high energy physics, multi-messenger astrophysics, and systems neuroscience

A3D3 institue

AI and FPGA application in Particle physics

✓ Requirements

Low Latency

• Strictly limited by collisions occurring every 25ns

Low resource usage

• Several algorithms in parallel on single device

High throughput

• System processing ~5% of total internet traffice

174 FPGAs

MUONS: 96 FPGAs 5 µs

CALORIMETRY

370 FPGA

4 for HGCAL only!

✓ AI and FPGA has widely applied in trigger and data processing

- Trigger, ml for data compression
- Simulation, ml for data generation
- Data reconstruction and analysis

✓ Why are FPGAs used?

Low Latency

• Resource parallelism and pipeline parallelism! High bandwidth Latency deterministic

CPU/GPU processing randomness, FPGA repeatable and predictable latency

Power efficient

• FPGAs up to ~10x more power efficient than GPU

How are FPGAs programmed?

Hardware Description Languages (HDLs)

HDLs are programming languages which describe electronic circuits

High Level Synthesis (HLS)

Compile from C/C++ to VHDL

Pre-processor directives and constraints used to optimize the design

Drastic decrease in firmware development time!

Currently we mainly use Xilinx Vivado HLS [*]

[*]<u>https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-</u> <u>synthesis.pdf</u>

AI Programming on FPGA

hls4ml

•HIs4mI: high level synthesis for machine learning

- hls4ml is a package for translating neural networks to FPGA firmware for inference with extremely low latency on FPGAs
 - https://github.com/hls-fpga-machine-learning/hls4ml
 - <u>https://fastmachinelearning.org/hls4ml/</u>
 - pip install hls4ml
- hls4ml origins: triggering at (HL-)LHC
 - Extreme collision frequency of 40 MHz \rightarrow extreme data rates O(100 TB/s)
 - Most collision "events" don't produce interesting physics
 - "Triggering" = filter events to reduce data rates to manageable levels
- hls4ml community is very active now
- Tutorial

https://github.com/fastmachinelearning/hls4ml-tutorial

 $r_{\rm min}$

Floating-point

range

 q_{\min}

0

 $q_{\rm max}$

rmax

XS

Scale

Constraints. Input bandwidth **FPGA** resources Latency

Efficient NN design for FPGAs

FPGAs provide huge flexibility

Performance depends on how well you take advantage of this

after pruning

Main methods to optimize the FPGA project

Pruning: reduce number of neurons

pruning

pruning

neurons

svnapses

--->

--->

before pruning

12/5/2023

Quantization: reduce the precision of the calculations (inputs, weights, biases)

Z **Zero point**

Parallelization : tune how much to parallelize to

make the inference faster

Quantization – QAT vs. PTQ

 Quantization is a common technique used to reduce model size, though it can sometimes result in reduced accuracy

QAT: Quantization Aware Training The network is further trained for few epochs in a process called Fine-Tuning/Retraining. Without/Less sacrificing accuracy

PTQ: Post-Training Quantization

The model's weights and activations are quantized from high precision to low precision, such as from FP32 to INT8 Does not consider for the loss of accuracy

Quantization – Symmetric vs. Asymmetric

Symmetric :

Quantize : Dequantize :

$$Q = clamp(round(\frac{R_{float}}{S}))$$
$$R_{float} = S * Q$$

Asymmetric:

Quantize:
$$Q = clamp(round(\frac{R_{float}}{S}) - Z)$$

Dequantize: $R_{float} = S * (Q + Z)$

Physical case: Jet tagging

- Jet: collimated spray of hadrons initiated by energetic quarks or gluons, and they are ubiquitous at a hadron collider
- Jet tagging: identifying the hard scattering particle that initiates the jet, examples:
 - heavy flavor tagging (bottom/charm)
 - heavy resonance tagging (top/W/Z/Higgs)
 - quark/gluon discrimination
 - exotic jet tagging (displaced, 4-prong, ...)

• The rise of machine learning (ML) has brought lots of new progresses to jet tagging

ParticleNet: jet tagging via particle clouds [arXiv:1902.08570]

12/5/2023

PFN: Particle Flow Network based on the Deep Sets [arXiv:1810.05165]

and/or mass ~ 0

Workflow of ParticleNet

 $\checkmark\,$ Using heterogenous solution with CPU and FPGA

Quantization of ParticleNet

- The quantization policy combined with Symmetric, Post-Training and Per tensor
- Symmetric: power-of-Two Quantization, $scale = 2^{x}$

	Parameters	ACC	Туре
ParticleNet	993KB	~93.9%	float32
ParticleNet-quantization	289KB	~93.3%	Int8

ACC = (TP + TN)/(TP + TN + FP + FN)

Quantization implementation

Convert floating point calculation to fixed point calculation

$$A_{n+1} = A_n \otimes W_n + B_n$$

$$Aq_{n+1}S_{a_{n+1}} = Aq_nS_{a_n} \otimes Wq_nS_{w_n} + Bq_nS_{b_n}$$

$$Aq_{n+1}S_{a_{n+1}} = (Aq_n \otimes Wq_n)S_{a_n}S_{w_n} + Bq_nS_b$$

$$\therefore S_{b_n} = S_{a_n}S_{w_n}$$

$$\therefore Aq_{n+1} = (Aq_n \otimes Wq_n + Bq_n)\frac{S_{a_n}S_{w_n}}{S_{a_{n+1}}}$$

1×128×128×16

Convert floating point calculation to fixed point calculation

$$Aq_{n+1} = (Aq_n \otimes Wq_n + Bq_n) \frac{S_{a_n} S_{w_n}}{S_{a_{n+1}}}$$

 $S = 2^{x}$, therefore:

$$\frac{S_{a_n} S_{w_n}}{S_{a_{n+1}}} = 2^{a_n + w_n - a_{n+1}},$$

$$Aq_{n+1} = (Aq_n \otimes Wq_n + Bq_n)2^{a_n + w_n - a_{n+1}}$$

Any 2^x operation can be further simplified in hardware logic as:

$$\begin{cases} R \times 2^x = R << |x|, x \ge 0\\ R \times 2^x = R >> |x|, x < 0 \end{cases}$$

$$\log_2 \frac{S_{a_n} S_{w_n}}{S_{a_{n+1}}} = a_n + w_n - a_{n+1}$$

System Architecture

Overall System Architecture for Software-Hardware Co-design

Pipeline parallelism

A customized architecture to make full use of the resources of the hardware
 Each convolution layer is calculated in parallel without the need to write intermediate results back to external memory

Result

FPGA: Xilinx U200

CPU:Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz

Try

The first EdgeConv have the k-NN,edge features, other EdgeConv not have. Call "Static ParticleNet"

Result for Static ParticleNet

Power only 9.432w

latency only 3.13ms

Summary

- FPGA as a coprocessor can accelerate the AI inference dramatically with low latency and power consumption
- Some projects such as hls4ml greatly simplifies the difficulty of programming
- We have tried to implement particleNet on FPGA

Acknowledgement

- The majority of the work was completed by our team members, including Yutao Zhang, Yaodong Cheng, Yu Gao and so on. I thank them for their outstanding work.
- Some of the materials in this presentation are sourced from projects like fastml and hls4ml, or Internet, and I would like to express my gratitude. If there are any copyright concerns, please notify me.

Thank you for your attention zhangyutao@ihep.ac.cn