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Flavor puzzles in SM

NO or IO?

 Hierarchical masses, e.g. 
𝒎𝒕

𝒎𝒆
= O(𝟏𝟎𝟓)

Quark mixings are small Lepton mixings are large
 Quark mixing vs lepton mixing

Quark and lepton mixing 
matrices have distinctive 
structures!

In SM, the fermion masses and flavor mixing are determined by Yukawa coupling 
constants  which are unconstrained by gauge symmetry. 2



Symmetry as a guiding principle to flavor puzzle
The fundamental principle of fermion masses and flavor mixing structure is unkonwn so far. Symmetry 
can help to reduce the number of free parameters in the Yukawa coupling. 

 Flavor symmetry:  relations among three families tau-family e-family muon-family

 GUTs: connecting quarks and leptons leptons quarks

Flavor symmetry(horizontal)
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Tri-bimaximal mixing:

• To make the Lagrangian invariant under flavor symmetry, Higgs-like fields “flavons” Φ𝑒 , Φ𝜈 are needed  

• Structure of Yukawa couplings arises from the vacuum alignment of flavons

[Feruglio, Romanino, 1912.06028; 
Ding,Valle, 2402.16963]
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Combining flavor symmetry with GUT: GGUTx Gf

• Flavor symmetry unifies three families 

• GUT symmetry unifies the gauge coupling constants
as well  as the SM matter fields in a generation

• Flavons and the vacuum alignment make the models quite 
complicated 

……
fGGUTG



n

[talk by Ning Chen for alternative]
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An example of Pati-Salam GUT model with  traditional flavor symmetry

Matter fields

GUT  symmetry 
breaking sector

flavor symmetry 
breaking sector

• complicated dynamics of aligning flavon VEVs

• extra symmetry Z5 and R-symmetry

• higher dimensional operators reduce predictive power

൝
𝜙1
𝑢 ∝ 0,1,1 𝑇, 𝜙2

𝑢 ∝ 1,4,2 𝑇 ,

𝜙1
𝑑 ∝ 1,0,0 𝑇 , 𝜙2

𝑑 ∝ 0,1,0 𝑇,
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Modular symmetry
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 Modular action
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 The field transformation (non-linear)

weight  𝑘 ∈ ℤ

 Superpotential

𝜌 is a unitary representation of Γ𝑁 or Γ𝑁
′

[Feruglio, 1706.08749, Ding, King, 2311.09282 for review]

Modular invariance requires
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• Γ𝑁 and Γ𝑁
′ play the role of flavor symmetry groups

𝜓 → 𝑐𝜏 + 𝑑 −𝑘 𝜌 𝛾 𝜓

Yukawa couplings are  modular forms 𝑌𝐼1𝐼2…𝐼𝑛(𝜏)

Principal congruence subgroup of level N:

1 0
( ) (mod )

0 1

a b
N N

c d
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SL(2,Z) on torus T2

[talks by Hajime Otsuka, Arsenii Titov]
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Symmetry groups of modular  GUTs

 Candidates of GUT gauge group GGUT

𝐴4 𝑆4
𝑆4 𝐴5 𝐴5

 Finite modular groups 𝚪𝑵 and 𝚪𝑵
′

The symmetry group of modular GUT is GGUT × 𝚪𝑵 or GGUT × 𝚪𝑵
′
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Modular 
GUT

S4

A4

S3

SU(5)

A4

flipped 
SU(5)

A4

SO(10)

Pati-
Salam

A4

Kobayashi, Shimizu, Takagi, Tanimoto, 
Tatsuishi, 1906.10341;

Du, Wang, 2012.01397

Anda, King, Perdomo,1812.05620;
Chen, Ding, King, 2101.12724

Zhao, Zhang, 2101.02266;
King, Zhou, 2103.02633; 
Ding, King, Yao,2103.16311;
Varzielas, King, Levy, 2309.15901

Charalampous, King, Leontaris,  Zhou, 2109.11379;
Du, Wang, 2209.08796

Ding,King, Lu, 2108.09655;
Ding,King, Lu, Qu,2206.14675

Ding,Jiang,King, Lu, Qu,2404.xxxxx

We aim to construct elegant 
and predictive flavor theory 
based on GUT

8



lepton is the 4th color 

left-right symmetric, 𝜈𝑅 is predicted

Minimal Supersymmetric Pati-Salam theory

 Pati-Salam Gauge group: 𝑆𝑈 4 𝐶 × 𝑆𝑈 2 𝐿 × 𝑆𝑈 2 𝑅 [Pati, Salam,Phys. Rev. D 10 (1974)]

 The quarks and leptons are unified in two PS representations

 Quark and lepton masses, neutrino masses generated by type I seesaw

𝑟1 3𝑀𝑢 +𝑀𝜈𝐷 = 3𝑀𝑑 +𝑀𝑒 tan𝛽, 𝑟1 𝑀𝑢 −𝑀𝜈𝐷 = 𝑟2 𝑀𝑑 −𝑀𝑒 tan𝛽

symmetry breaking chain

Δ𝑅 = 𝟏𝟎, 𝟏, 𝟑

𝐴 = (𝟏𝟓, 𝟏, 𝟏)

𝑆𝑈 4 𝐶 × 𝑆𝑈 2 𝐿 × 𝑆𝑈 2 𝑅

𝑆𝑈 3 𝐶 × 𝑈 1 𝐵−𝐿 × 𝑆𝑈 2 𝐿 × 𝑆𝑈 2 𝑅

𝑆𝑈 3 𝐶 × 𝑆𝑈 2 𝐿 × 𝑈 1 𝑌

𝑆𝑈 3 𝐶 × 𝑈 1 𝐸𝑀

Φ = 𝟏, 𝟐, 𝟐

ഥΔ𝑅 = (𝟏𝟎, 𝟏, 𝟑)

Σ = (𝟏𝟓, 𝟐, 𝟐)

[see talk by Tianjun Li for top-down 
construction]
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Minimal A4 x PS modular models

 Yukawa couplings are level 3 modular forms related by 𝐀𝟒 modular symmetry, modular forms replace 
“flavons” so that the resulting model is much simpler

 Classifying A4xPS modular models

 A benchmark model:  𝐹𝑐 , 𝐹1, 𝐹2, 𝐹3 ∼ 𝟑, 𝟏′, 𝟏, 𝟏′ , 𝑘𝐹𝑐 , 𝑘𝐹1 , 𝑘𝐹2 , 𝑘𝐹3 , 𝑘Σ = 0, 2, 6, 8, −2
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 Resulting mass matrices 

 𝜒2 analysis to estimate the goodness of fit

Input parameters: 𝑥 ∈ {𝜏, 𝛼1, 𝛽1, 𝛽2, 𝛾1, 𝛾2, መ𝛽1, ො𝛾1, ො𝛾2, 𝛼𝑅1, 𝑟1, 𝑟2}

Observables: 𝑂𝑖 ∈ ቐ
quark sector:𝑚𝑢, 𝑚𝑐 , 𝑚𝑡 , 𝑚𝑑 , 𝑚𝑠, 𝑚𝑏 , 𝜃12

𝑞
, 𝜃13

𝑞
, 𝜃23

𝑞
, 𝛿𝐶𝑃

𝑞

lepton sector:𝑚𝑒 , 𝑚𝜇 , 𝑚𝜏, Δ𝑚21
2 , Δ𝑚31

2 , 𝜃12
ℓ , 𝜃13

ℓ , 𝜃23
ℓ , 𝛿𝐶𝑃

ℓ ,

The 𝜒2 function is minimized: 𝜒min
2 = 7.0272 → excellent agreement with data 

𝜒2 =෍

𝑖

𝑃𝑖 𝑥 − 𝑂𝑖
𝜎𝑖

2

[Ding,Jiang,King, Lu, Qu,2404.xxxxx]
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• Unmeasured observables as predictions

The lightest neutrino mass: 𝑚1 = 4.986 meV, normal ordering

Majorana CP violation phases : 𝛼21 = 0.962𝜋, 𝛼31 = 0.643𝜋

Masses of the heavy right-handed neutrinos: 𝑀1 = 𝑀2 = 𝑀3 = 3.945 × 1011GeV

Effective 0𝜈𝛽𝛽 decay mass: 𝑚𝛽𝛽 = 1.686 meV

 Scan the parameter space with the algorithm of nested sampling

Testing 𝛿𝐶𝑃
ℓ and 𝜃23

ℓ at DUNE and T2HK 
0𝜈𝛽𝛽 decay  is below the sensitivities of future tonn-scale 
experiments such as LEGEND 1000 and nEXO 10y.

[Ding,Jiang,King, Lu, Qu,2404.xxxxx]
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Renormalizable SO(10) GUT

 The quarks and leptons plus a right-handed neutrino are embedded into a single 16 spinor 
representation of SO(10)

→right-handed neutrino ⇒ seesaw mechanism

 Renormalizable Yukawa couplings:  fermion× fermion× Higgs  

Higgs: 10, 126, 120H   Minimal SO(10) contains only 𝐻 ∼ 10, ഥΔ ∼ 126

16 16 10 120 126S A S    10 and 126 symmetric, 120 antisymmetricfermion× fermion:

Yukawa superpotential:
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decomposition of Higgs fields under the SM gauge symmetry (3) (2) (1)C L YSU SU U 

RH neutrino Majorana mass, type-I seesaw LH neutrino Majorana mass, type-II seesaw

 Fermion mass matrices

quarks:

charged leptons:

neutrinos:

type-II seesaw type-I seesaw

𝑀𝜈 = 𝑀𝐿 −𝑀𝜈𝐷
𝑇 𝑀𝜈𝑅

−1𝑀𝜈𝐷

In comparison with SM, the complexity lies in the parameters r1,2,3 and ce,μ which are the mixing 
parameters relating the SM Higgs doublets to the SO(10) Higgs multiplets

[see talks by Jessica Turner, Bowen Fu]
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SO(10)xA4 modular GUT

 Assignment under A4

matter fields (unique): Higgs fields:

A4 modular invariant Yukawa superpotential: completely specified by the weights kF , k10,120,126

 General form of Yukawa matrix: sum over all contributions of modular forms  

symmetric

similarly for 

antisymmetric

[Ding, King, Lu,2108.09655] 15



 Benchmark models

• The Higgs sector of minimal SO(10) 
models is simpler, while more free 
parameters in Yukawa than the 
next-to-minimal SO(10) 

Minimal model 1: 10 126
(2 ,2 ) (10, 6)F Fk k k k  

Next-to-minimal model 1: 10 120 126
(2 ,2 ,2 ) (4, 8, 0)F F Fk k k k k k   

8 terms

6 terms

[Ding, King, Lu,2108.09655]

• Only the mixture of type-I+II 
seesaw can be compatible with 
data in minimal SO(10) . 
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Numerically fitting the model on fermion masses 
and mixing angles evolved at the GUT scale
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 Leptogenesis in modular SO(10) GUT

The right-handed neutrino masses and Yukawa couplings are fixed  by fermion masses and mixing. 
The evolution of baryon asymmetry is described by density matrix equations

[Ding, King, Lu, Qu, 2206.14675]

Fermion masses and flavor mixing 
and baryon asymmetry in a model! 

[Blanchet, Bari, Jones, 
Marzola, 1112.4528 ]

18



Modular
symmetry 

GUTs

Summary and outlook 

 The modular flavor symmetry is a promising approach to address the flavor structure, it 
unifies the three generations of fermion, Yukawa couplings  are modular forms which are 
holomorphic functions of 𝜏. The structure of flavor models are significantly simplified.

 GUTs unify quarks and leptons as well as gauge coupling constants. 

 Modular symmetry + GUTs allows to construct highly constrained and predictive flavor 
theory  testable at neutrino oscillation and 0𝜈𝛽𝛽 decay experiments. 

 GUT symmetry breaking and the interplay of modular symmetry with proton decay, GW etc
should be carefully studied for a complete theory of flavor.

19



Thank you for your attention!
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Backup



Modular invariance as flavor symmetry

Modular invariance is motivated by more fundamental theory such as string theory at high energy scale 
torus compactification 

[Ferrara et al, 1989; 
Feruglio, 1706.08749]

4D effective Lagrangian :

2 1/ , Im 0    The shape of a torus T 2 is characterized by a modulus 

The torus (lattice) is left invariant by modular transformations 
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(2, ) : 1, , , , integersSL Z ad bc a b c d 

 Finite modular groups as 𝐺𝑓: the quotient over the 
principal congruence subgroups Γ(𝑁)

(2, ) / ( ), (2, ) / ( )N NSL Z N SL Z N     



A4 modular  group and modular forms of level 3

triplets

𝑆

𝑇

𝐴4: 𝑆
2 = 𝑇3 = 𝑆𝑇 3 = 1

 A4 has only 4 irreducible representations: 1, 1’, 1’’,3

singlets

 tensor product

 modular forms at level 3

weight 1 modular forms:

tensor product→ higher weight modular forms

A4 is the symmetry group of the tetrahedron

1/24

1

( ) (1 )n

n

q q 



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𝑞 ≡ 𝑒2𝜋 𝑖𝜏



 The integral weight modular forms are homogeneous polynomials  of the lowest weight one 
modular forms which can be constructed from the Dedekind eta function and Klein forms. 

N=3:

N=4:

N=5:

1/24 2

1

( ) (1 ) ,n i

n

q q q e   




  

[Ding, King, 2311.09282]


