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Research objectives

[ ] The first goal is to finalise the search for heavy resonances within the ATLAS experiment.
[ ] Explore the prospect of quantum computing in High Energy Physics:

O The study used CEPC features to demonstrate quantum and classical performance.

O The support-vector machine algorithm was used as the basis for the study.

[ | Developing a quantum algorithm based on the transformer technology.
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Miscellaneous

ATLAS

EXPERIMENT

Run Number: 349451, Event Number: 3235663311

Brief

Date: 2018-05-03 13:43:06 CEST

iment Ph

ATLAS searches for new particles in familiar decays

5 March 2024 | By ATLAS Collaboration

Could the Higgs boson be part of an extended family of particles? Could these new
particles be the tools physicists need to discover dark matter? Or explain the matter-
antimatter asymmetry of the universe? The two-Higgs-doublet model (Z2ZHDM) predicts the
existence of a charged Higgs boson, and CP-even (H) and CP-odd (A) Higgs bosons.
Expanding this model even further (Z2HDM+S), these new Higgs bosons could also have
a scalar boson cousin (S) that decays into dark-matter particles.

Such theories help the ATLAS Collaboration create targeted searches of LHC collision
data. In a new result, researchers conducted a novel search of data collected during Run
2 of the LHC, searching for heavy new particles that could fit the 2ZHDM or 2ZHDM+S
models. One tested hypothesis considered whether another new scalar particle (R) could
decay into H and S bosons, and thus interact with dark matter particles; they also tested
whether the new H boson could be a source of matter-antimatter asymmetry. For the first
time, researchers considered cases where the new particles decay into Z bosons, leaving
a signature in the ATLAS detector with four leptons (electrons or muons) and missing

A scientific blog on the ATLAS Exper



https://atlas.cern/Updates/Briefing/2HDM-Searches

Search for heavy resonances with the ATLAS experiment

Search for heavy resonances in final states with four-lepton and missing transverse momentum or jets.

Complementing the H — ZZ — 47 inclusive search and searches for models consistent with baryogenesis.

Signal topology: two signal models are investigated.

2HDM+$S 2HDM

The R (CP-even) and A (CP-odd) mass ranges are 390-1300 GeV and 320-1300 GeV, respectively.

The mass of H (CP-even) is between 220 GeV and 1000 GeV. The S mass is 160 GeV.




Analysis overview

Orthogonal signal regions were developed for both signals using a simple cut-based analysis selection: the four-
lepton momentum, the significance of the missing transverse momentum, the number of jet multiplicity and the

number of b-jets.
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Background modelling

Backgrounds modelled with an empirical function:
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The parameters a; are obtained by fitting the function into the simulation.
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Application of quantum machine learning in HEP

] Comparing the performance of the support-vector machines in quantum and classical hardware.

_| With a simple classification problem using the CEPC signature (ete™ — ZH — yyj)).

] Data encoding and processing:
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The performance of the quantum simulator

L

The quantum simulator has the following:

O Statevector Simulator developed by the
Qiskit software package
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https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.StatevectorSimulator.html
https://inspirehep.net/literature/2156652

The performance of quantum computers

Qubit -
Readout assignment error G_G—a 0.9 i
Avg 2.700e-2
w
G
min 1.900e-2 1°

0.8}

CNOT error v I 0.7 :

Avg 1.208e-2

. o ° G
min 8.695e-3 nax 1.536e-2

| IBM Nairobi Hardware |

Background efficiency

0.6}

® Single Door Average Fidelity ® (/Z gate average fidelty B
Fidelity average 0.99915 Fidelity average 0.9808 T
min: 0.999 max: 0.9993 min: 0.9707 max: 0.9909

0.4}

b,
; .& i
=5
£
-
-l
S
i <
i S |
f o, 3
t Q0§
L S
| o; ,
] D ]
E D
- ‘c j,
: o 3
5 QO
SEN® B
]
t W |
\‘ m 3

Nairobi Noise Model (AUC 0811) RN B
0.2 - — IBM Hardware (AUC = 07890017) """"

0.3 _ Origin Hardware (AUC = 0820) __________________ _____ 1 _

[ ] Six qubits were used for both quantum hardware.

e
-
: S 4
£
=
b 2
ST
-
O
-TE
T
O

----------------------------------------------------------------

. . : 0.1
[ ] 100 events were used for the training and testing. : Na,rob, NO,se Mode| . 20

[ ] Comparable performance is observed between 06' - (‘)H 02 03 04 0F 06 07 0 8 0. 9 -

the IBM and Origin quantum hardware.
Signal efficiency

4



The Quantum Particle Transformer

[ ] Jet tagging classification in particle physics

/outgoing particles
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https://inspirehep.net/literature/2029602

The Quantum Particle Transformer

Simplified version of the transformer

O Multihead-Attention based on PyTorch

O Three different linear transformations:

® WQ, WK’ and, WV

OK"
P-MHA(O, K, V) = SoftMax .V
Vi

O Where Q, K, and V are linear projections of the input.

Going to the quantum version, one could replace the
linear transformation with a quantum one.
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The Quantum Particle Transformer

L | Implementing quantum layer instead

P-MHA

V
U @

Q1 K

*
.0
*

(1) Data Loading  (2) Data Processing  (3) Measurement

-

Feature Map
Ansatz

U(inputs) V(weights)

The trainable parameters are added using the

Anzatz with a feature-map that acts as an encoder.
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The Quantum Particle Transformer

[ ] Using the Particle Transformer as signal and
background classifier for:

et

[ ] Kinematics of photons, jets and their
combination were used as input:

OPT’ Py Py Py E,n,and ¢

[ ] Training size: 15k entries for each class.

[ ] Testing size: 10k entries for each class.
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Conclusion

Provided a quick overview of the research performed within the past year.

One paper comparing the performance of a support-vector machine was published:

O A similar performance between classical and quantum was obtained.

O Study the noise effect with a simplified model.

The ATLAS physics analysis paper was submitted to the Journal of High Energy Physics.

We constructed a quantum self-attention based on a quantum neural network.

Which is then used to build a Quantum Particle algorithm.

We submitted a grant application to the NSFC under the Research Fund for International Young Scientists (RFIS-I).

Plans and goals:

O Optimise the performance of both Particle Transformer and Quantum Particle Transformer.

O Figuring out the optimal way to use the available quantum hardware as they are very expensive.
O Generating more events to improve the statistics.

O Publishing the results in a peer-reviewed journal.

19
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IBM quantum computer

[ ] Taking quantum computing out of
the lab:
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https://time.com/6249784/quantum-computing-revolution/?utm_source=twitter&utm_medium=social&utm_campaign=editorial&utm_term=tech_security&linkId=198703144
https://quantum-computing.ibm.com

IBM quantum computer roadmap

2019 @ 2020 © 2021 © 2022 @ 2023 2024 2025 2026+

Run quantum circuits Demonstrate and Run guantum Bring dynamic circuits to Enhancing applications Improve accuracy of Scale quantum applica- Increase accuracy and

on the 1BM cloud prototype quantum programs 100x faster Qiskil Runtime to unlock with elastic computing Qiskit Runtime with tions with circuit knitting speed of quantum
algorithms and with Qiskit Runtime more computations and parallelization of scalable error mitigation toolbox contralling workflows with integration
applications Qiskit Runtime Qiskit Runtime of error correction into

Qiskit Runtime

Madel Prototype quantum software applications @ — Quantum software applications
Developers

Machine learning | Natural science | Optimization

Algonthm Quantum algorithm and application modules Quantum Serverless @
Developers
Machine learning | Natural science | Optimization Intelligent orchestration Circuit Knitting Toolbox Circuit libraries
Kernel Circuits Qiskit Runtime
Developers
Dynamic circuits Threaded primitives )  Error suppression and mitigation Error correction
System Falcon @  Hummingbird ¢  Eagle @  Osprey @  Condor @) Flamingo Kookaburra Scalingto
Maodularity 27 qubits 65 qubits 127 qubits /433 qubits \ 1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits
with classical
and quantum
communication
IBM has ambitious pursuits: Heron @)  Crossbill

133 qubits xp 408 qubits
433-qubit IBM Quantum Osprey

@ three times larger than the Eagle processor

@ going up to 10k-100k qubits



https://research.ibm.com/blog/ibm-quantum-roadmap-2025

Origin quantum computer

[ ] Origin launched 64-qubit QPU:
O Single-qubit gate fidelity > 99.9 % .

O Double-qubit gate fidelities > 98 % .

T O Readout fidelities > 96 % .
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Origin quantum computer provides up to 6 qubits for free. However, another
hardware called Quafu provides up to 136 qubits. The Beijing Academy of Quantum
Information Sciences maintains it. 23

‘3 Taken from Orl in b



https://qcloud.originqc.com.cn/en
https://qcloud.originqc.com.cn/en
http://quafu.baqis.ac.cn/

