Postdoc mid-term evaluation: progress and plans

Abdualazem Fadol Mohammed

Supervisors: Professor Fang Yaquan Professor Sun Zhijia

March 26, 2024

Institute of High Energy Physics & China Spallation Neutron Source, Chinese Academy of Sciences

Overview

- **Research Objectives**
- **List of publications**
- **List of conferences and workshops**
- **Research summary:**
 - **O** Search for heavy resonances with the ATLAS experiment
 - **O** The prospect of quantum machine learning in High Energy Physics
- O Quantum Particle transformer Algorithm Conclusion

- 100

Research objectives

] The first goal is to finalise the search for heavy resonances within the ATLAS experiment.

] Explore the prospect of quantum computing in High Energy Physics:

O The study used CEPC features to demonstrate quantum and classical performance.

- 1000

O The support-vector machine algorithm was used as the basis for the study.

Developing a quantum algorithm based on the transformer technology.

List of publications

Fadol, Abdualazem, et al. "Application of quantum machine learning in a Higgs physics study at

the CEPC." International Journal of Modern Physics A, Vol. 39, No. 01, 2450007 (2024), arXiv:

<u>2209.12788</u>.

ATLAS Collaboration. "Search for heavy resonances in final states with four leptons and missing

transverse energy or jets in pp collision at $\sqrt{s} = 13$ TeV with the ATLAS detector." Submitted to

the Journal of High Energy Physics (JHEP), arXiv: 2401.04742.

List of conferences and workshops

Applications, Sanya, China. December 3, 2023.

Workshop on Computation in Experimental Particle Physics, Shanghai. July 16, 2023.

IAS Program on High Energy Physics (HEP 2023), Hong Kong. February 14, 2023

Miami 2022 Physics Conference, Miami, United States. December 17, 2022.

BenchCouncil International Symposium of Intelligent Computers, Algorithms, and

- 100

Miscellaneous

Briefing

AT

on the

blog

cient

 \mathbf{O}

ATLAS searches for new particles in familiar decays

5 March 2024 | By ATLAS Collaboration

Could the <u>Higgs boson</u> be part of an extended family of particles? Could these new particles be the tools physicists need to discover <u>dark matter</u>? Or explain the matter-antimatter asymmetry of the universe? The two-Higgs-doublet model (2HDM) predicts the existence of a charged Higgs boson, and CP-even (H) and CP-odd (A) Higgs bosons. Expanding this model even further (2HDM+S), these new Higgs bosons could also have a scalar boson cousin (S) that decays into dark-matter particles.

Such theories help the ATLAS Collaboration create targeted searches of LHC collision data. In a <u>new result</u>, researchers conducted a novel search of data collected during Run 2 of the LHC, searching for heavy new particles that could fit the 2HDM or 2HDM+S models. One tested hypothesis considered whether another new scalar particle (R) could decay into H and S bosons, and thus interact with dark matter particles; they also tested whether the new H boson could be a source of matter-antimatter asymmetry. For the first time, researchers considered cases where the new particles decay into Z bosons, leaving a signature in the ATLAS detector with four leptons (electrons or muons) and missing

Search for heavy resonances with the ATLAS experiment

- Search for heavy resonances in final states with four-lepton and missing transverse momentum or jets. Complementing the $H \rightarrow ZZ \rightarrow 4\ell$ inclusive search and searches for models consistent with baryogenesis.
- **Signal topology:** two signal models are investigated.

The R (CP-even) and A (CP-odd) mass ranges are 390-1300 GeV and 320-1300 GeV, respectively.

 \Box The mass of H (CP-even) is between 220 GeV and 1000 GeV. The S mass is 160 GeV.

Analysis overview

Orthogonal signal regions were developed for both signals using a simple cut-based analysis selection: the fourlepton momentum, the significance of the missing transverse momentum, the number of jet multiplicity and the number of b-jets.

Signal modelling

- In a step of 10 GeV for (m_R, m_H) or (m_A, m_H)

interpolated signal distributions.

Background modelling

Backgrounds modelled with an empirical function:

$$f(m_{4\ell}) = H(m_0 - m_{4\ell}) f_1(m_{4\ell}) C_1 + H(m_{4\ell} - m_0) f_2(m_{4\ell}) C_2$$

$$f_{1}(m_{4\ell}) = \frac{a_{1} \cdot m_{4\ell} + a_{2} \cdot m_{4\ell}^{2}}{1 + \exp\left(\frac{m_{4\ell} - a_{1}}{a_{3}}\right)}$$

$$f_{2}(m_{4\ell}) = \left(1 - \frac{m_{4\ell}}{n_{C}}\right)^{b_{1}} \cdot \left(\frac{m_{4\ell}}{n_{C}}\right)^{\left(b_{2} + b_{3} \cdot \ln\left(\frac{m_{4\ell}}{n_{C}}\right)\right)}$$

$$C_{1} = \frac{1}{f_{1}(m_{0})}, \qquad C_{2} = \frac{1}{f_{2}(m_{0})}$$

\Box The parameters a_i are obtained by fitting the function into the simulation.

O VVV

O Other $(q\bar{q} \rightarrow ZZ(EW), t\bar{t}, t\bar{t}V, WZ)$

Results

- □ No significant deviation above the Standard Model backgrounds was observed.
- □ The largest deviation is observed at $(m_A, m_H) = (510, 380)$ GeV with local significance of 2.5 σ .
- □Upper limits were set on the cross-section times the branching ratio. □The $R \rightarrow SH \rightarrow 4\ell + E_T^{\text{miss}}$ search:
 - The observed (expected) upper limit ranges from 6.8–119.2 (7.6–75.8) fb.
 - For m_H and m_R in (220, 100) and (390,1300) GeV.

 $\Box \text{The } A \to ZH \to 4\ell + X \text{ search:}$

- The observed (expected) upper limit ranges from 2.1-32.3 (2.7-25.8) fb.
- For m_H and m_A in (220, 100) and (320,1300) GeV.

Application of quantum machine learning in HEP

- \Box With a simple classification problem using the CEPC signature ($e^+e^- \rightarrow ZH \rightarrow \gamma \gamma j j$).
- **Data encoding and processing:**

Comparing the performance of the support-vector machines in quantum and classical hardware.

The performance of the quantum simulator

The quantum simulator has the following:

O Statevector Simulator developed by the Qiskit software package

O Six quantum bits or simply qubits

A total of 12000 events were used.

<u>ArXiv: 2209.12788</u>

The performance of quantum computers

Six qubits were used for both quantum hardware.

- □ 100 events were used for the training and testing.
- Comparable performance is observed between the IBM and Origin quantum hardware.

Particle Transformer

- Simplified version of the transformer
 - **O Multihead-Attention based on PyTorch**
 - **O** Three different linear transformations:

• W_Q , W_K , and, W_V

$$P-MHA(Q, K, V) = SoftMax\left(\frac{QK^T}{\sqrt{d_k}}\right) \cdot V$$

O Where Q, K, and V are linear projections of the input.

Going to the quantum version, one could replace the linear transformation with a quantum one.

Implementing quantum layer instead

Using the Particle Transformer as signal and background classifier for:

Kinematics of photons, jets and their combination were used as input:

$$O_{p_{\mathbf{T}}}, p_{x}, p_{y}, p_{z}, E, \eta$$
, and ϕ

Training size: 15k entries for each class. **Testing size: 10k entries for each class.**

Conclusion

Provided a quick overview of the research performed within the past year. One paper comparing the performance of a support-vector machine was published: O A similar performance between classical and quantum was obtained. • Study the noise effect with a simplified model. ☐ The ATLAS physics analysis paper was submitted to the Journal of High Energy Physics. We constructed a quantum self-attention based on a quantum neural network. Which is then used to build a Quantum Particle algorithm. **Plans and goals:**

• Optimise the performance of both Particle Transformer and Quantum Particle Transformer. O Figuring out the optimal way to use the available quantum hardware as they are very expensive. O Generating more events to improve the statistics. O Publishing the results in a peer-reviewed journal.

- We submitted a grant application to the NSFC under the Research Fund for International Young Scientists (RFIS-I).

Additional Slides

IBM quantum computer

 \Box IBM provides up to 7 qubits for free with an opportunity to apply for a researcher account with more qubits.

Credited to Thomas Prior for TIME

IBM quantum computer roadmap

	2019 🥑	2020 🥝	2021 🤡	2022 🥝	2023	2024	2025	2026+
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase ac speed of qu workflows v of error corr Qiskit Runti
lodel evelopers					Prototype quantum software applications $\mathfrak{Y} \longrightarrow$		Quantum software applications	
evelopers							Machine learning Natural science Opt	
lgorithm evelopers		Quantum algorithm and a	pplication modules	0	Quantum Serverless 🐌			
		Machine learning Natural science Optimization				Intelligent orchestration	Circuit Knitting Toolbox	Circuit libra
ernel	Circuits	Ø	Qiskit Runtime 🛛 📀					
evelopers				Dynamic circuits 🥑	Threaded primitives 🥹	Error suppression and mitigation		Error corre
ystem Iodularity	Falcon 27 qubits	Hummingbird 65 qubits	Eagle 2000 127 qubits	Osprey 433 qubits	Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K with classic and quantu communica
] IBM has ambitious pursuits:					Heron 👌	Crossbill 408 gubits		DO MAI
433-qubit IBM Quantum Osprey							• Qubit	
three tire	three times larger than the Eagle processor						gainiw •	
going up to 10k-100k qubits								

Origin quantum computer

Origin quantum computer provides up to 6 qubits for free. However, another hardware called Quafu provides up to 136 qubits. The Beijing Academy of Quantum

KF-C64-200

