Study of B baryonic decays at LHCb and D decays at BESIII

唐迎澳¹

1 武汉大学孙亮教授粒子物理实验组

2023 年 12 月 24 日

・ロト ・御ト ・油ト ・油ト ・油

1 Introduction

- **2** B baryonic decays at LHCb
- **3** D decays at BESIII

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のへの

Study of B baryonic decays at LHCb and D decays at BESIII

Introduction

FCN

- Large mass of B meson makes possible the decays of $B \rightarrow B\bar{B}'(+Mesons)$
- Searching for B charmless decays with baryons in the final states provide a nice platform of the SM and the CKM mechanism and search for new CP violation source(s)

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
Charmed decay
Charmless decay
• FCNC: NP, new particle, new flavor structure
• A list of B meson purely Charmless Baryonic decays have been observed
 $\bar{B}^0 \rightarrow p\bar{p}, \bar{B}^+ \rightarrow p\bar{p}h$
 $\bar{B}^0 \rightarrow p\bar{p}p\bar{p}, \bar{B}^0_{(s)} \rightarrow p\bar{p}hh$

1

マロト イラト イラト

- Threshold enhancement firstly observed at Belle in the decay of $B^+ o p \bar{p} K^+$
- $B \to B\bar{B}'M$ and $B \to B\bar{B}'MM'$ decays also see the same effect
- Assume that the threshold effect also exists in charmless $B \rightarrow {\bf B_1 \bar{B_1}' B_2 \bar{B_2}'}$ decays
- The firstly observed four-body baryonic charmless decays: $B^0
 ightarrow p ar p p ar p$

Introduction

- Baryon (Lepton) number violation BNV (LNV) have been conserved for decades and only LNF observed at neutrino oscalling
- Sakharov conditions (1967) require both CP violation and Baryon Number violation (BNV): theories beyond SM
- BNV proton decay could be mediated by massive bosons (X&Y) which couple to quarks & leptons B-L as conserved quantity

LHCb detector

- LHCb originally designed for CP violation and rare decays measurements
- Run1+2: 9fb⁻¹ of *pp* collisions (+ heavy ions, fixed target mode)
- Forward spectrometer (2 < η < 5) with excellent vertexing, tracking and particle identification [JINST 3 (2008) S08005]

Searching for $B_S^0 \rightarrow p\bar{p}$ [PRD108.012007]

• First observation of a charmless 2-body baryonic decay in Run1 $B^0 \rightarrow p\bar{p}$ [PRL119232001]

- With $6fb^{-1}$ data set collected by LHCb in **Run2**
- No evidence of the $B^0_S
 ightarrow p ar p$ decay is found
- Determination of its branching fraction requires future data to be collected by LHCb

Update: $\mathcal{B}(B^0 \to p\bar{p}) = (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}$ The world's best upper limit: $\mathcal{B}(B_s^0 \to p\bar{p}) < 4.4(5.1) \times 10^{-9}$ at 90%(95%) C. L.

Searching for $B_{(s)}^0 \rightarrow p\bar{p}p\bar{p}$ [PRL**131**(2023)091901]

- The first purely four-body baryonic decay $\bar{B}^0 \to p\bar{p}p\bar{p}$ is observed using RunI+RunII LHCb data
- No clear evidence of threshold enhancement is found in $\bar{B}^0 \rightarrow p\bar{p}p\bar{p}$ given the statistics, unlike the observed in three-body baryonic B decays

$$\mathcal{B} \left(B^0 \to p\bar{p}p\bar{p} \right) = (2.21 \pm 0.37 \pm 0.38 \pm 0.09) \times 10^{-8} \mathcal{B} \left(\bar{B}^0_s \to p\bar{p}p\bar{p} \right) = (2.40 \pm 1.01 \pm 0.20 \pm 0.19) \times 10^{-8}$$

Searching for $B^0 ightarrow p\mu^-$ [PRD108(2023) 012021]

- First search on LNV&BNV B0(s) $ightarrow
 ho\mu^-$
- LEP method is used to determine the upper limit
- An unbinned maximum likelihood fit is simultaneously in each category

D decays at BESIII

$D^+ \to K_1(1270)^- e^+ \nu_e$ and $D^0 \to \bar{K}_1(1270)^0 e^+ \nu_e$ [PRL123(2019)231801, PRL127(2021)131801]

- BESIII collects the world largest $\psi(3770)$ data providing opportunities to study D decays
- Benefit the understanding of the mixing angle of 1P1 and 3P1 states, K1(1270)-K1(1400) , which is much controversial in theory
- Test if isospin holds in decay $D^{0(+)}
 ightarrow {\cal K}_1(1270) e^+ v_e$
- Help to understand photon helicity in $B \rightarrow K_1 \gamma$ that provides a direct test of SM [PRL125,051802(2020)]

$D^+ \to K_1(1270)^- e^+ \nu_e$ and $D^0 \to \bar{K}_1(1270)^0 e^+ \nu_e$ [PRL123(2019)231801, PRL127(2021)131801]

- Data 2.93 fb $^{-1}$ @ $\sqrt{s} = 3.773$ GeV
- Double tag method to select candidates
- Maximum likelihood fit to $m(K\pi\pi)$ and M^2_{miss}

$$\mathcal{B}\left(D^{+} \to K_{1}(1270)e^{+}\nu\right) = \\ (2.21 \pm 0.37 \pm 0.38 \pm 0.09(ext.)) \times 10^{-4} \\ \mathcal{B}\left(D^{0} \to K_{1}(1270)e^{+}\nu\right) = \\ (1.17 \pm 0.13 \pm 0.12 \pm 0.13(ext.)) \times 10^{-4} \\ \frac{\Gamma\left(D^{0} \to K_{1}^{-}(1270)e^{+}v_{e}\right)}{\Gamma\left(D^{+} \to \bar{K}_{1}^{0}(1270)e^{+}v_{e}\right)} = 1.29 \pm 0.20 \pm 0.17 \pm 0.20(\times 5) \\ (5) \frac{10}{10} + 1.2 \times 10^{-12} + 1.23 \times 10^{-1$$

- Amplitude analysis of $D_s^+ \to K^- K^+ \pi^+ \pi^+ \pi^-$ [JHEP07(2022)051] First study focusing on $D_s^+ \to AV$ decays, helps to improve the understanding of background processes of $D_s^+ \to \pi^+ \pi^- \pi^- X$ in the measurement of $R(D^*)$
- Amplitude analysis of $D_s^+ \rightarrow \pi^+\pi^-\pi^+$ [PRD106(2022)112006] Improve understanding of scalar mesons f0(X) due to large coupling: > 80% S-wave contribution

•

Prospects

• Ongoing studies to $B
ightarrow \bar{\Lambda} p h h'$ and $B
ightarrow \bar{\Lambda} \Lambda h h'$

Decays	Observables	Feasibility	Probe for NP
$B o ar\Lambda^0$ pp $ar p$	BF, CPV, angular, exotic	****	*
$B ightarrow ar{\Lambda}^0 m{ ho} \pi^+ \pi^-$	CPV, angular asym., amplitudes	* * **	****
$B ightarrow ar{\Lambda}^0$ pK π	BFs	****	***
$B o ar\Lambda^0 {m ho} \pi^+ \pi^+$			
$B \to \bar{\Lambda}^0 p \phi(K^+ K^-)$	CPV, angular asym.	****	****
$B o ar{\Lambda}^0$ рКК	BFs, CPV,	* * **	*
	$car{c}/\Lambda(1520)$ contributions		
$B ightarrow ar{\Lambda}^0 m{ ho} \mu^+ \mu^-$	BF	***	****

- Ongoing studies of *D* Decays:
- * Searching for $D\to {\it K}_1(1270)(\to {\it K}\omega)e^+\nu_e$ with generic tagging method
- * Measurement of the $D^*(2010)^+ D^+$ Mass Difference

*

. . .

イロト イポト イラト イラト