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Related works
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[2] W.-B. Liu and J. Long, “Symmetry group at future null infinity 1l: Vector theory,” JHEP
07 (2023) 152, 2304.08347.

[3] W.-B. Liu and J. Long, “Symmetry group at future null infinity 11l: Gravitational theory,”
JHEP 10 (2023) 117, 2307.01068.

[4] A. Li, W.-B. Liu, J. Long, and R.-Z. Yu, “Quantum flux operators for Carrollian
diffeomorphism in general dimensions,” JHEP 11 (2023) 140, 2309.16572.

[5] W.-B. Liu, J. Long, and X.-H. Zhou, “Quantum flux operators in higher spin theories,”
2311.11361.

[6] W.-B. Liu and J. Long, “Holographic dictionary from bulk reduction,” under review.
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Related methods versus ours

There are mainly three ways to study the physics of 7*:

> Asymptotic symmetry analysis leads to BMS group, extending the Poincaré group. This
method imposes specified gauge conditions and fall-offs, and then analyzes the
transformations preserving them [Bondi, 1962].

> Amplitude approach leads to equivalence among BMS asymptotic symmetries, soft
theorems, and memory effects [Strominger,2017; Weinberg,1965; Zeldovich,1974].

> Carrollian approach. Carrollian physics is ultra-relativistic limit (¢ — 0) of the Lorentz one.
BMS group is conformal Carrollian group of level 2 [Lévy-Leblond,1965; Duval,2014].

Our methods: We study theories at future null infinity 7+ using bulk reduction. By imposing
the appropriate fall-offs, we reduce bulk theory to 7*, quantize the theory, and realize boundary
symmetry through commutators among quantum flux operators.
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Overview of our methods

Using the above methods, we get a new central charge and regularize it. Moreover, we include
a new operator to close the algebra. This operator concerns (EM) duality transformations. We
summarize various correspondences between the bulk and boundary theories in the right table.

Bulk Boundary
AFS Carrollian manifold
Leading radiative modes Fundamental fields Fa(s)(u, Q)
Other modes Descendant fields
EOMs Constraints C(F, F¥)) =0
Symplectic form Q% (s£; 5) Symplectic form Q(6F;6F)
Leaky fluxes Hamiltonians
# of Propagating DOFs Proportion of central charges

Scattering amplitudes Correlation functions
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Scri plus

> 7* =R x S? has a degenerate metric
ds~27+ =~ = d6? + sin? 9d¢2,

and a vector x = d, to generate time direc-
tion.

> In amplitude approach, one sees 7~ as the
place of in states, and 7* as the place of
out states, which leads to 2d celestial CFT.

> In Carrollian approach, I* is seen as a
boundary along which there is a Carrollian
time evolution. This leads to 3d Carrollian
CFT [Donnay, 2022].

r increase,

while u finite

const. r slices Hy

r increase,

while v finite
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Symmetry and fields

> Carrollian diffeomorphism is generated by
E=1f(u,Q),+ Y (Q)ds € Diff(§%) = C*(I™). (1)

> We first consider Carrollian diffeomorphism as a symmetry of 7+

f=a'n, YA=w?Y), =  F=iV.Y, YA=w"Y),
Poincaré (1900s) original BMS (1960s)
= f=iv.v, Y=0 = f(u,Q), Y=0
extended BMS (2010s) Carrollian diffeomorphism (2020s)

> We expand the fields fa(s)(t, x) = rs‘lFA(s)(u, Q) +0(r'?), eg.,

s=0: @(t,x)=rS(u,Q) +0(r?), (2a)
s=1: aa(t,x)=Aa(u,Q)+0(r ™), (2b)
s=2: gag(t,x) = r’yag+rCas(u, Q) +O0(r°). (2¢)
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Symplectic form

The boundary symplectic forms read (with 327G =1 for gravitational theory)

Q,(6F; 6F) = / dudQSFAS) A 6Fas), (3)
More explicitly, we have
s=0: Q(6;6X) = / dudQs% A 53, (4a)
s=1: Q(5A;6A) = / dudQSAa A SAA, (4b)
s=2: Q(6C6C) = / dudQsCag A §CAB. (4c)
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Fundamental commutators and correlators

> From the boundary symplectic form, we could work out the commutators

[Z(u,Q), 2, Q)] = éé(u— u')o(Q -, (5a)
[An(, 9), As (i, Q)] = 2 yasd(u~ 1)6(@ - ), (5b)
[Cas (), Cep(u, )] = 5 Xagcpd(u -~ 1)5(@ - ). (5¢)

> These fundamental commutators are of a unified form
[ ’ ’ ’ ’ ’
[Facs)(u,Q), Fps)(u', Q)] = EXA(S)B(S)(S(U -u)o(Q-Q). (6)

> We also have fundamental correlator

[ ’ ’ _ 6(9 B Q,)
(Ol Fas) (u, Q) Fp(s) (1", Q) [0) = Xas)B(s) - — 7o)
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Hamiltonians

> We could use
ieQSF,6F) = 6He (8)
to find the corresponding Hamiltonians
T° = / dudQ f(u, Q)Facs) FA®,
My, = %/ dudQ Ya(Q)(Fg(s)VeFoes) - FB(S)VCFD(S))PAB(S)CD(S).
> One could also find these from Fourier transforming Poincaré flux densities which come

from stress tensor T,,.

> Normal order will be imposed to obtain quantized operators.
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Fluxes as generators

> All the physical operators have the same form
/dudQ : FA(S)éFA(S) L (10)
> For supertranslations, we obtain
$¢Facs) = 0¢Facs) = ilT7, Facs)) = fFacs). (11)
> For superrotations, we have Ay = ¢y — $f=%uv.Yv acting on fields as
A Faisy =Aas) (Y5 F) = ilMS, Fags)l. (12)
> More explicitly, they act on fields as
1
Aacs) (Y5 Fiu,Q) =YPVEFBO pppig cacs) + EVCYDFB(S) PpB(s)cA(s)

1
:EVB YBFA(S) + YBVBFA(S) - sVia YB] FAB(S—l)' (13)
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Commutation relations and central charges

> The commutators are

(77,751 = C3 () + TS, .. (142)
[‘7;5’M ] IT AV f’ (14b)
MY MZ] = iM]y 7, +i505 0y 7)- (14¢)
> Central charge for s =0 is
_ i@ (0
0.1 =222 [ dude (1% - 67). (15)
48
> It is interesting to find C(Tszl) = C(;Zz) = 2C(T5=0).
> (14a) is a Virasoro algebra.
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Duality transformations |

> We need a new operator concerning duality transformation
o; = / dudQ : FAS§ Fae : . (16)

> This is helicity flux, evaluating the difference between the numbers of particles with
right-hand and left-hand helicity.

> Duality transformations rotate the field strength tensors and their duals.

> The infinitesimal transformations at 7+ are

s=1: (5€AA = EZA, (552,4 = —EAA, (173)
s=2: (55CAB=€EAB, 5eEAB=—€CAB- (17b)

> ZA and EAB are dual vector field and shear tensor

Ap = egaAB, Cag = €caCS = QapcpCP. (18)
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Duality transformations Il

> Original EM duality transformations correspond to g = const., belonging to SO(2) [Oliver,
1892; Dirac, 1931].

> We first compute the helicity flux 025:2) for gravity, which is a potential observable about
gravitational radiation.

> g € C°(S?) lifts so(2) to a infinite-dimensional algebra, also generalizes global
transformation to be local.

> It is first time to find the appearance of internal symmetry in the algebra regarding
spacetime symmetry.

> At last, we need to complete the algebra

[7;3 Og] = 09 (193)
M5, 0g] = iOyay g, (19b)
[0g1,Og] = 0. (19¢)
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Future interests

We have mainly analyzed the symmetry of bosonic field theories. There are various topics
derserving further study:

> Reduce Dirac field, and even higher spin fermionic field to boundary. This will finally lead
to the consideration of supersymmetry.

> Generalize to general dimensions and general null hypersurfaces. One of main difficulties
lies at the analogy of helicity in higher dimensions.

> Find why duality operator O, appears. Moreover, study the algebra including gauge
transformation and its EM dual counterpart.

> Calculate scattering amplitudes which are observables in QFT.

> Construct flat holography: find how to intrisically define boundary field theory from bulk
reduction, construct a detailed dictionary, and contribute to bulk quantum gravity.
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Thanks for your attention!
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