

CENTRAL CHINA NORMAL UNIVERSITY

NRQCD因子化定理对 重夸克偶素高阶修正的研究

报告人:张余栋 合作者:冯锋桑文龙杨德山周明震白晓卫 日期:2023年12月24日

第一届武汉高校"突破边界,前方高能"研究生论坛

• Two-Loop QCD Corrections to C-even Bottomonium Exclusive Decays to Double J/ψ Y.D.Zhang*, X.W.Bai, F.Feng, W.L.Sang and M.Z.Zhou arXiv: 2310.07453

 Z-boson radiative decays to an S-wave quarkonium at NNLO and NLL accuracy W.L.Sang, D.S.Yang and Y.D.Zhang* Phys. Rev. D 108, no.1, 014021 (2023)

引言

 类似于QED中的正负电子偶素,重夸克偶素是由一对正反重夸克构成的非相 对论性的束缚态。

- 重夸克偶素是研究QCD的理想探针,有助于我们更好地认识QCD的非微 扰效应。
- NRQCD是描述重夸克偶素的QCD有效场论。

 $Quarkonium\ is\ a\ QCD\ bound\ state\ involving\ several\ distinct\ scales$

G. T. Bodwin, E. Braaten and G. P. Lepage Phys. Rev. D 51, 1125-1171 (1995)

NRQCD因子化定理

NRQCD微扰部分可以关于速度和耦合常数双重展开。

NRQCD被认为是模型无关理论,它的输入参量很少。

ONG-RANGE QUARKONIUM

m -

mv –

 mv^2

NRQCD是专门为描述重夸克偶素而发展的QCD有效场论。

NRQCD可以系统地分离短程(微扰效应)和长程(非微扰效应)。

底夸克偶素特征速度: $v^2 \approx 0.1$ 粲夸克偶素特征速度: $v^2 \approx 0.3$

	$c\bar{c}$	$b\overline{b}$	$t\overline{t}$
M	$1.5 \mathrm{GeV}$	$4.7 \mathrm{GeV}$	$180 { m GeV}$
Mv	$0.9~{ m GeV}$	$1.5 \mathrm{GeV}$	$16 { m GeV}$
Mv^2	$0.5~{\rm GeV}$	$0.5~{\rm GeV}$	$1.5~{\rm GeV}$

 QCD
 m > mv > mv²

 perturbative matching
 perturbative matching

 NRQCD
 微扰匹配:短程系数不敏感于长程物理

 non-perturbative matching
 perturbative matching

 pNRQCD
 $\Gamma(H) = \sum_{n} \frac{f_n(\Lambda)}{m^{d_n-4}} (0|\mathcal{O}_n(\Lambda)|0)$

非微扰长程矩阵元

近年来,在NRQCD因子化框架下,对双粲偶素产生的研究取得了重要的理论进展。

1. $e^+ e^- \rightarrow J/\psi \eta_c$ 过程两圈微扰修正被计算,微扰展开收敛性较好,与实验也比较吻合;

2. $e^+ e^- \rightarrow J/\psi \chi_{cJ}$ 过程的两圈修正被计算,截面预言与实验较为符合。

3. $e^+ e^- \rightarrow J/\psi J/\psi$ 过程的高阶修正被计算,通过重新组合微扰展开,得到了精确的收敛的理论预言。

4. $\Upsilon \rightarrow J/\psi \eta_c(\chi_{cJ})$ 过程的两圈微扰修正被研究, 重整化标度依赖性得到改善。

Feng, Jia, Mo, Sang, Zhang, arXiv: 1901.08447 Huang, Gong and Wang, JHEP 02, 049 (2023) Sang, Feng, Jia, Mo, Zhang, PLB 843, 138057(2023) Sang, Feng, Jia, Mo, Pan, Zhang PRL (2023) Zhang, Sang and Zhang, PRL (2022)

 $\eta_b(\chi_{bJ}) \rightarrow J/\psi J/\psi$ 过程的高阶微扰修正如何?

Two-Loop QCD Corrections to C-even Bottomonium Exclusive Decays to Double J/ψ

Y.D.Zhang*, X.W.Bai, F.Feng, W.L.Sang and M.Z.Zhou arXiv: 2310.07453

 $\eta_b(\chi_{b,I}) \to J/\psi + J/\psi$

研究动机

- 2008年, Yu Jia. 基于NRQCD计算了 $\eta_b \to J/\psi + J/\psi$ 的LO相对论修正。 Phys. Rev. D 78, 054003 (2008)
- 2009年, Yu Jia and Jian Xiong Wang, *et al.* 基于NRQCD计算了 $\eta_b \rightarrow J/\psi + J/\psi$ 的NLO辐射修正。 Phys. Lett. B 670 (2009), 350-355
- 2010年, Braguta, *et al.* 基于Light Cone 计算了 $\eta_b \to J/\psi + J/\psi$ 和 $\chi_{bJ} \to J/\psi + J/\psi$ 过程。 Phys. Rev. D 81 (2010), 014012 Phys. Atom. Nucl. 73, 1054-1068 (2010)
- 2011年, Cong Feng Qiao, *et al.* 基于NRQCD计算了 $\eta_b \rightarrow J/\psi + J/\psi$ 的NLO辐射修正。 Phys. Lett. B 702 (2011), 49-54
- 2011年, Feng Feng, *et al.* 基于NRQCD计算了 $\chi_{bJ} \rightarrow J/\psi + J/\psi$ 的NLO相对论修正。 Phys. Rev. D 84 (2011), 094031
- 2014年, Cong Feng Qiao, *et al.* 基于NRQCD计算了 $\chi_{bJ} \rightarrow J/\psi + J/\psi$ 的NLO辐射修正。 Phys. Rev. D 89 (2014) no.7, 074004

(a) $\chi_{b0} \to J/\psi J/\psi$ (b) $\chi_{b2} \to J/\psi J/\psi$

Belle, Phys. Rev. D 85 (2012), 071102

Channel	n^{up}	$\varepsilon(\%)$	$\sigma_{ m sys}(\%)$	\mathcal{B}_R
$\chi_{b0} ightarrow J/\psi J/\psi$	21	5.8	16	7.1×10^{-5}
$\chi_{b1} \to J/\psi J/\psi$	13	6.3	30	2.7×10^{-5}
$\chi_{b2} ightarrow J/\psi J/\psi$	22	5.9	27	4.5×10^{-5}
$\chi_{b0} o J/\psi \psi'$	20	3.4	17	$1.2 imes 10^{-4}$
$\chi_{b1} ightarrow J/\psi\psi'$	5.8	3.8	15	$1.7 imes 10^{-5}$
$\chi_{b2} o J/\psi \psi'$	17	3.5	16	$4.9 imes 10^{-5}$
$\chi_{b0} o \psi' \psi'$	3.0	2.1	20	$3.1 imes 10^{-5}$
$\chi_{b1} o \psi' \psi'$	12	2.2	17	$6.2 imes 10^{-5}$
$\chi_{b2} o \psi' \psi'$	3.3	2.1	12	1.6×10^{-5}

L.B.Chen and C.F.Qiao, Phys. Rev. D 89 (2014) no.7, 074004

-	$\chi_{b0} ightarrow J/\psi J/\psi$	$\chi_{b1} ightarrow J/\psi J/\psi$	$\chi_{b2} ightarrow J/\psi J/\psi$
$\Gamma^{ m NLO}(m eV)$	$13.13\substack{+2.32+1.24+2.10\\-1.93-1.18-5.39}$	$0.58\substack{+0.09+0.01+0.28\\-0.12-0.01-0.40}$	$12.85\substack{+2.47+2.11+0.70\\-2.03-1.90-2.66}$
${ m Br^{NLO}}(10^{-5})$	$1.80\substack{+0.32+0.17+0.29\\-0.26-0.16-0.74}$	$0.63\substack{+0.10+0.01+0.30\\-0.13-0.01-0.43}$	$5.85\substack{+1.12+0.96+0.32\\-0.92-0.86-1.21}$
$\Gamma^{ m LO}({ m eV})$ [16]	5.54	$9.04 imes 10^{-7}$	10.6
$Br^{EXP}(10^{-5})$ [27]	<7.1	$<\!2.7$	$<\!\!4.5$

研究动机

- $\Upsilon \to J/\psi + \eta_c(\chi_{cJ})$
- Y. Jia.
 Phys. Rev. D 76 (2007), 074007
- J. Xu, *et al*.
 Phys. Rev. D 87 (2013) no.9, 094004
- W. L. Sang, *et al.* Phys. Rev. D 92 (2015) no.1, 014025
- Y. D. Zhang, W. L. Sang* and H. F. Zhang. Phys. Rev. Lett. 129 (2022) no.11, 112002

S.D.Yang et al.[Belle], Phys. Rev. D 90 (2014) no.11,112008

Channels	$\mathcal{B}_R(imes 10^{-6})$
$\Upsilon(1S) \to J/\psi + \eta_c$	< 2.2
$\Upsilon(1S) \to J/\psi + \chi_{c0}$	< 3.4
$\Upsilon(1S) \to J/\psi + \chi_{c1}$	$3.90 \pm 1.21 \pm 0.23$
$\Upsilon(1S) \to J/\psi + \chi_{c2}$	< 1.4
$\Upsilon(1S) \to J/\psi + \eta_c(2S)$	< 2.2

FIG. 2: NRQCD results for $Br(\Upsilon \to J/\psi + \eta_c(\chi_{cJ}))$ as functions of μ_R . The uncertainty bands for the theoretical results correspond to the choices of the charm and bottom quark mass. In addition, the uncertainty from the Belle measurement for $J/\psi + \chi_{c1}$ is also illustrated.

Two-Loop QCD Corrections to C-even Bottomonium Exclusive Decays to Double J/ψ Y.D.Zhang*, X.W.Bai, F.Feng, W.L.Sang and M.Z.Zhou. arXiv: 2310.07453

交叉检验

CalcLoop

FIRE

AMFlow

AMFlow

两圈MIs: 约1400个

FIG. 1: Some representative Feynman diagrams for the process $\eta_b(\chi_{bJ}) \to J/\psi J/\psi$ up to $\mathcal{O}(\alpha_s^2)$.

FeynCalc

方法1:

方法2:

FeynArts

两圈图: 3781个

FeynArts

计算结果

短程系

$$\begin{split} \widetilde{\mathsf{KX}} \qquad f_{\lambda_{1},\lambda_{2}}^{H} \ = \ \alpha_{s}^{2} \Big[f_{\lambda_{1},\lambda_{2}}^{H,(0)} + \frac{\alpha_{s}}{\pi} \left(\frac{\beta_{0}}{2} \ln \frac{\mu_{R}^{2}}{m_{b}^{2}} f_{\lambda_{1},\lambda_{2}}^{H,(0)} + f_{\lambda_{1},\lambda_{2}}^{H,(1)} \right) + \frac{\alpha_{s}^{2}}{\pi^{2}} \Big(\frac{3\beta_{0}^{2}}{16} \ln^{2} \frac{\mu_{R}^{2}}{m_{b}^{2}} f_{\lambda_{1},\lambda_{2}}^{H,(0)} + \left(\frac{\beta_{1}}{8} f_{\lambda_{1},\lambda_{2}}^{H,(0)} \right) \\ + \ \frac{3\beta_{0}}{4} f_{\lambda_{1},\lambda_{2}}^{H,(1)} \Big) \ln \frac{\mu_{R}^{2}}{m_{b}^{2}} + \left(2\gamma_{J/\psi} + \gamma_{H} \right) \ln \frac{\mu_{\Lambda}^{2}}{m_{c}^{2}} f_{\lambda_{1},\lambda_{2}}^{H,(0)} + f_{\lambda_{1},\lambda_{2}}^{H,(2)} \Big) \Big] + \mathcal{O} \left(\alpha_{s}^{5} \right), \end{split}$$

TABLE I: Numerical values for various SDCs with $m_b = 4.7$ GeV and $m_c = 1.5$ GeV.

$m_c = 1.50 \mathrm{GeV}, m_b = 4.70 \mathrm{GeV}$										
Н	(λ_1,λ_2)	$f^{(0)}_{\lambda_1,\lambda_2}$	$f^{(1)}_{\lambda_1,\lambda_2}$	$f^{(2)}_{\lambda_1,\lambda_2}$						
η_b	(1,1)	—	0.551 - 1.410i	21.624 - 10.293i						
2/10	(1,1)	0.439	-0.266 + 2.726i	-86.938 + 29.858i						
7.60	(0,0)	-1.716	-2.830 - 6.283i	184.697 - 75.742i						
χ_{b1}	(1,0)	-	-0.281 + 1.188i	8.812 + 7.876i						
	(1,1)	-0.621	3.801 + 0.233i	84.482 - 2.120i						
2/10	(1,0)	1.685	-9.666 - 1.178i	-221.561 - 1.457i						
X 62	(1,-1)	-3.733	21.499 + 2.214i	465.006 + 10.900i						
	(0,0)	-2.145	11.326 + 2.567i	278.731 + 3.346i						

 $f_{\lambda_1,\lambda_2}^{H,(0)}$, $f_{\lambda_1,\lambda_2}^{H,(0)}$ 和 $f_{\lambda_1,\lambda_2}^{H,(0)}$ 分别表示领头 阶,次领头阶和次次领头阶的短 程系数。

总衰变宽度

	TABLE II: Total	$\Gamma_{\eta_b} = 10^{+5}_{-4} \text{ MeV.}$		
Н	$\Gamma[\chi_{bJ} \to \gamma \Upsilon] (\text{keV})[47]$	$\operatorname{Br}[\chi_{bJ} \to \gamma \Upsilon][\underline{44}]$	$\Gamma_{tot}({ m MeV})$	
χ_{b0}	22.2	$(1.94 \pm 0.27)\%$	$1.144^{+0.185}_{-0.140}$	$\Gamma_{tot}(\chi_{bJ}) = \frac{\Gamma[\chi_{bJ} \to \gamma \Upsilon]}{\Gamma[\chi_{bJ} \to \gamma \Upsilon]}$
χ_{b1}	27.8	$(35.2 \pm 2.0)\%$	$0.079\substack{+0.005\\-0.004}$	$\operatorname{Br}[\chi_{bJ} \to \gamma \Upsilon]$
χ_{b2}	31.6	$(18.0 \pm 1.0)\%$	$0.176\substack{+0.010\\-0.009}$	_

计算结果和现象分析

Order	$\Gamma_{0,0}$	$\Gamma_{1,0}$	$\Gamma_{1,1}$	$\Gamma_{1,-1}$	Γ_{Unpol}	$\mathrm{Br_{th}}$	$\operatorname{Br}_{\operatorname{exp}}[:$
LO	_	_	_	_	_	_	
NLO	—	-	$1.080\substack{+1.663 \\ -0.714}$	_	$2.160\substack{+3.325 \\ -1.428}$	$0.022\substack{+0.033+0.014\\-0.014-0.007}$	
NNLO	_	_	$4.084^{+3.987}_{-2.232}$	_	$8.168\substack{+7.973 \\ -4.463}$	$0.082\substack{+0.080+0.054\\-0.045-0.027}$	
LO	$8.542_{-4.393}^{+7.358}$	_	$0.559\substack{+0.482 \\ -0.288}$	_	$9.660\substack{+8.321 \\ -4.968}$	$0.844^{+0.727+0.117}_{-0.434-0.118}$	
NLO	$11.140^{+1.233}_{-2.500}$	_	$0.616\substack{+0.084\\-0.124}$	_	$12.372_{-2.748}^{+1.400}$	$1.081\substack{+0.122+0.150\\-0.240-0.151}$	<7.1
NNLO	$6.449^{+1.710}_{-1.955}$	_	$0.329\substack{+0.371\\-0.012}$	_	$7.107^{+1.741}_{-1.212}$	$0.621\substack{+0.152+0.086\\-0.106-0.086}$	
LO	-	-	-	-	-	_	
NLO	_	$0.007\substack{+0.011\\-0.005}$	_	_	$0.027\substack{+0.042\\-0.018}$	$0.035\substack{+0.053+0.002\\-0.023-0.002}$	<2.7
NNLO	_	$0.014\substack{+0.009\\-0.006}$	_	-	$0.057\substack{+0.035\\-0.026}$	$0.072\substack{+0.044+0.004\\-0.033-0.004}$	
LO	$2.663^{+2.294}_{-1.370}$	$1.643^{+1.416}_{-0.845}$	$0.223\substack{+0.192\\-0.115}$	$8.067^{+6.949}_{-4.149}$	$25.818^{+22.239}_{-13.279}$	$14.669^{+12.636+0.884}_{-7.545-0.789}$	
NLO	$1.094\substack{+0.281\\-0.679}$	$0.604\substack{+0.199\\-0.423}$	$0.075\substack{+0.030\\-0.057}$	$2.943^{+0.987}_{-2.084}$	$9.545^{+3.111}_{-6.655}$	$5.424^{+1.768+0.327}_{-3.781-0.292}$	<4.5
NNLO	$0.071\substack{+0.476\\-0.048}$	$0.020\substack{+0.267\\-0.015}$	$0.001\substack{+0.032\\-0.001}$	$0.157\substack{+1.351 \\ -0.130}$	$0.467\substack{+4.311 \\ -0.360}$	$0.265\substack{+2.450+0.016\\-0.205-0.014}$	
	Order LO NLO NNLO LO NNLO NNLO LO NNLO NNLO	Order $Γ_{0,0}$ LO - NLO - NNLO - LO 8.542 $^{+7.358}_{-4.393}$ NLO 11.140 $^{+1.233}_{-2.500}$ NLO 11.140 $^{+1.233}_{-2.500}$ NLO 6.449 $^{+1.710}_{-1.955}$ LO - NLO - NNLO - NNLO - NNLO - NNLO - NNLO 0.0071 $^{+0.281}_{-0.679}$ NNLO 0.0071 $^{+0.476}_{-0.048}$	$\begin{array}{ c c c c } Order & \Gamma_{0,0} & \Gamma_{1,0} \\ \hline LO & - & - \\ \hline NLO & - & - \\ \hline NLO & - & - \\ \hline NNLO & - & - \\ \hline LO & 8.542^{+7.358}_{-4.393} & - \\ \hline NLO & 11.140^{+1.233}_{-2.500} & - \\ \hline NLO & 11.140^{+1.233}_{-2.500} & - \\ \hline NLO & 6.449^{+1.710}_{-1.955} & - \\ \hline LO & - & - \\ \hline NLO & - & 0.007^{+0.011}_{-0.005} \\ \hline NNLO & - & 0.007^{+0.011}_{-0.005} \\ \hline NNLO & - & 0.014^{+0.009}_{-0.005} \\ \hline NNLO & 1.094^{+0.281}_{-0.679} & 0.604^{+0.199}_{-0.423} \\ \hline NNLO & 0.071^{+0.476}_{-0.048} & 0.020^{+0.267}_{-0.015} \end{array}$	$\begin{array}{ c c c c c c c } \hline \mathrm{Cr}_{0,0} & \Gamma_{1,0} & \Gamma_{1,1} \\ \hline \mathrm{LO} & - & - & - \\ \hline \mathrm{NLO} & - & - & 1.080^{+1.663}_{-0.714} \\ \hline \mathrm{NNLO} & - & - & 4.084^{+3.987}_{-2.232} \\ \hline \mathrm{LO} & 8.542^{+7.358}_{-4.393} & - & 0.559^{+0.482}_{-0.288} \\ \hline \mathrm{NLO} & 11.140^{+1.233}_{-2.500} & - & 0.616^{+0.084}_{-0.124} \\ \hline \mathrm{NNLO} & 11.140^{+1.233}_{-1.955} & - & 0.329^{+0.371}_{-0.012} \\ \hline \mathrm{LO} & - & - & 0.007^{+0.011}_{-0.005} & - \\ \hline \mathrm{NLO} & - & 0.007^{+0.011}_{-0.005} & - \\ \hline \mathrm{NLO} & - & 0.014^{+0.009}_{-0.005} & - \\ \hline \mathrm{NNLO} & - & 0.014^{+0.009}_{-0.006} & - \\ \hline \mathrm{LO} & 2.663^{+2.294}_{-1.370} & 1.643^{+1.416}_{-0.423} & 0.223^{+0.192}_{-0.115} \\ \hline \mathrm{NLO} & 1.094^{+0.281}_{-0.679} & 0.604^{+0.199}_{-0.423} & 0.075^{+0.030}_{-0.057} \\ \hline \mathrm{NNLO} & 0.071^{+0.476}_{-0.048} & 0.020^{+0.267}_{-0.015} & 0.001^{+0.032}_{-0.001} \end{array}$	Order $\Gamma_{0,0}$ $\Gamma_{1,0}$ $\Gamma_{1,1}$ $\Gamma_{1,-1}$ LONLO1.080_{-0.714}^{+1.663}-NNLO4.084_{-2.232}^{+3.987}-LO $8.542_{-4.393}^{+7.358}$ - $0.559_{-0.288}^{+0.482}$ -NLO11.140_{-2.500}^{+1.233}- $0.616_{-0.124}^{+0.084}$ -NLO11.140_{-2.500}^{+1.955}- $0.329_{-0.012}^{+0.371}$ -NLO $6.449_{-1.955}^{+1.710}$ - $0.329_{-0.012}^{+0.371}$ -NLO- $0.007_{-0.005}^{+0.011}$ NLO- $0.007_{-0.005}^{+0.011}$ NLO- $0.014_{-0.006}^{+0.099}$ NLO1.094_{-0.679}^{+0.281} $0.604_{-0.423}^{+0.192}$ $0.075_{-0.057}^{+0.030}$ $2.943_{-2.084}^{+0.987}$ NNLO $0.071_{-0.048}^{+0.281}$ $0.020_{-0.015}^{+0.267}$ $0.001_{-0.001}^{+0.032}$ $0.157_{-1.30}^{+1.351}$	Order $\Gamma_{0,0}$ $\Gamma_{1,0}$ $\Gamma_{1,1}$ $\Gamma_{1,-1}$ Γ_{Unpol} LONLO1.080 $^{+1.663}_{-0.714}$ -2.160 $^{+3.325}_{-1.428}$ NNLO4.084 $^{+3.987}_{-2.232}$ -8.168 $^{+7.973}_{-4.463}$ LO8.542 $^{+7.358}_{-4.4393}$ -0.559 $^{+0.482}_{-0.288}$ -9.660 $^{+8.321}_{-4.463}$ NLO11.140 $^{+1.233}_{-2.500}$ -0.616 $^{+0.084}_{-0.124}$ -12.372 $^{+1.400}_{-2.748}$ NLO6.449 $^{+1.710}_{-1.955}$ -0.329 $^{+0.371}_{-0.012}$ -7.107 $^{+1.741}_{-1.212}$ LONLO-0.007 $^{+0.011}_{-0.005}$ 0.027 $^{+0.042}_{-0.018}$ NNLO-0.014 $^{+0.009}_{-0.006}$ 0.057 $^{+0.035}_{-0.026}$ LO2.663 $^{+2.294}_{-1.370}$ 1.643 $^{+1.416}_{-0.845}$ 0.223 $^{+0.192}_{-0.115}$ 8.067 $^{+6.949}_{-4.149}$ 25.818 $^{+22.239}_{-13.279}$ NLO1.094 $^{+0.281}_{-0.679}$ 0.604 $^{+0.199}_{-0.067}$ 0.091 $^{+0.032}_{-0.067}$ 2.943 $^{+0.987}_{-0.848}$ 9.545 $^{+3.111}_{-6.6655}$ NNLO0.071 $^{+0.476}_{-0.408}$ 0.020 $^{+0.267}_{-0.015}$ 0.001 $^{+0.032}_{-0.015}$ 0.467 $^{+4.311}_{-0.366}$	Order $\Gamma_{0,0}$ $\Gamma_{1,0}$ $\Gamma_{1,1}$ $\Gamma_{1,-1}$ Γ_{Unpol} Br_{th} LONLO1.080 $^{+1.663}_{-0.714}$ -2.160 $^{+3.325}_{-1.428}$ 0.022 $^{+0.033+0.014}_{-0.007}$ NNLO4.084 $^{+3.987}_{-2.327}$ -8.168 $^{+7.973}_{-4.463}$ 0.082 $^{+0.080+0.054}_{-0.045-0.027}$ NNLO4.084 $^{+3.987}_{-2.327}$ -8.168 $^{+7.973}_{-4.463}$ 0.082 $^{+0.080+0.054}_{-0.045-0.027}$ LO8.542 $^{+7.358}_{-4.393}$ -0.559 $^{+0.482}_{-0.288}$ -9.660 $^{+4.961}_{-4.463}$ 0.844 $^{+0.727+0.117}_{-0.121}$ NLO11.140 $^{+1.233}_{-2.500}$ -0.616 $^{+0.084}_{-0.124}$ -12.372 $^{+1.400}_{-2.748}$ 1.081 $^{+0.122+0.150}_{-0.045-0.027}$ NNLO6.449 $^{+1.710}_{-1.955}$ -0.329 $^{+0.371}_{-0.012}$ -7.107 $^{+1.741}_{-1.212}$ 0.621 $^{+0.152+0.086}_{-0.028-0.012}$ NLO-0.007 $^{+0.011}_{-0.005}$ NLO-0.007 $^{+0.011}_{-0.006}$ 0.027 $^{+0.042}_{-0.018}$ 0.035 $^{+0.053+0.002}_{-0.023-0.004}$ NLO1.094 $^{+0.281}_{-0.377}$ 1.643 $^{+0.482}_{-0.445}$ 0.223 $^{+0.192}_{-0.115}$ 8.067 $^{+6.949}_{-4.149}$ 2.818 $^{+3.111}_{-3.279}$ 1.4669 $^{+12.636+0.884}_{-7.545-0.789}$ NLO1.094 $^{+0.281}_{-0.679}$ 0.604 $^{+0.093}_{-0.057}$ 0.943 $^{+0.093}_{-0.057}$ 9.445 $^{+3.111}_{-0.366}$ 0.265 $^{+2.450+0.016}_{-0.225-0.014}$ NLO0.071 $^{+0.476}_{-0.048}$ </td

FIG. 2: Theoretical predictions for $Br[\eta_b(\chi_{bJ}) \to J/\psi J/\psi]$ as a function of μ_R at various levels of accuracy in α_s .

 $\sigma(pp \to \chi_{b0} + X) = 1.5 \,\mu\text{b}$ $\sigma(pp \to \chi_{b2} + X) = 2.0 \,\mu\text{b}$ $\sigma(pp \to \eta_b + X) = 15 \,\mu\text{b}$ Braguta, et al Phys. Rev. D 72, 094018 (2005) $\mathcal{L} = 100 \,\text{fb}^{-1} \qquad \text{Br}[J/\psi \to \ell\bar{\ell}] = 12\%$ $(5 - 10) \times 10^3 \,\eta_b(\chi_{bJ}) \to J/\psi J/\psi \to \ell\bar{\ell}\ell\bar{\ell}\ell$

计算结果和现象分析

TABLE IV: Theoretical predictions on various unpolarized decay widths (in units of eV) and branching fractions ($\times 10^{-5}$).

п		0.2	267	0.2	286	0.3	308	0.3	333	0.3	864	0.4	100	$\eta_b \qquad \chi_{b0}$	-
п	Order	Г	Br	Γ	Br	Г	Br	Г	Br	Г	Br	Г	Br		
	LO	-	-	_	_	_	-	-	_	_	-	_	_		-
η_b	NLO	2.407	0.024	2.341	0.023	2.231	0.022	2.059	0.021	1.796	0.018	1.401	0.014		-
	NNLO	9.245	0.092	8.944	0.089	8.468	0.085	7.749	0.077	6.688	0.067	5.151	0.052	0.5 NNLO	
	LO	14.978	1.309	12.664	1.107	10.563	0.923	8.690	0.760	7.065	0.618	5.722	0.500	0.0 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.28 0.30 0.32 0.34 0.36 0.38	0.40
χ_{b0}	NLO	21.144	1.848	17.267	1.509	13.826	1.209	10.831	0.947	8.299	0.725	6.250	0.546	$\frac{14}{20}$	-
	NNLO	12.177	1.064	9.951	0.870	7.956	0.695	6.202	0.542	4.708	0.412	3.502	0.306		
	LO	-		-	—	-	_	-	-	_	-	—	—	8 8 8 x 10	
χ_{b1}	NLO	0.044	0.055	0.037	0.047	0.031	0.039	0.024	0.030	0.016	0.021	0.009	0.012		
	NNLO	0.099	0.125	0.082	0.104	0.065	0.082	0.048	0.061	0.032	0.040	0.017	0.022		
	LO	33.173	18.848	30.015	17.054	27.096	15.396	24.423	13.877	22.002	12.501	19.848	11.277	7 0 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.28 0.30 0.32 0.34 0.36 0.38	0.40
χ_{b2}	NLO	13.545	7.696	11.845	6.730	10.253	5.825	8.764	4.979	7.370	4.187	6.058	3.442	r r	
	NNLO	0.410	0.233	0.438	0.249	0.459	0.261	0.472	0.268	0.473	0.269	0.58	0.260	FIG. 3: Branching fractions of $\eta_b(\chi_{bJ}) \to J/\psi J/\psi$ as a function of r.	

 η_b 和 $\chi_{b0,1}$ 的分支比随着质量增加而减小,但 χ_{b2} 的NNLO结果与粲夸克质量几乎无关。

Z-boson radiative decays to an S-wave quarkonium at NNLO and NLL accuracy W.L.Sang, D.S.Yang and Y.D.Zhang* Phys. Rev. D 108, no.1, 014021 (2023)

 $Z \to \eta_O / J / \psi / \Upsilon + \gamma$

研究动机

• G.T.Bodwin, H.S.Chung, J.H.Ee and J.Lee Phys. Rev. D 97 (2018) no.1, 016009

 $Z \rightarrow J/\psi + \gamma$ NLO+NLL(+18%)

 $Z \rightarrow \Upsilon(1S) + \gamma$ NLO+NLL(+11%)

由于过程中涉及 m_Z 和 $m_Q(Q = c, b)$ 两个标度,NRQCD因子化的短程系数中 包含 m_Z^2/m_Q^2 的大对数项,因此需要根据Light Cone做重求和计算。

• W.L.Sang*, D.S.Yang and Y.D.Zhang Phys. Rev. D 106, no.9, 094023 (2022)

TABLE III: Squared leading-twist SDCs $|\mathcal{C}_{0,1}^{H}|^2$ at various levels of accuracy. We take $\mu_R = m_Z$ and $\mu_{\Lambda} = 1$ GeV.

H	$\mathcal{K}_{H}^{\mathrm{LL}}$	LO	LO+LL	NLO	NLO+LL	NNLO	NNLO+LL
χ_{c0}	0.859	7.96	5.87	8.01	6.47	8.85	7.90
χ_{c1}	1.222	48.13	71.88	51.15	57.38	47.07	50.63
χ_{c2}	0.859	16.04	11.86	10.89	8.37	8.87	7.54
h_c	0.859	24.00	17.73	17.31	13.41	13.51	11.50
χ_{b0}	0.930	7.65	6.59	7.85	7.21	8.87	8.58
χ_{b1}	1.145	49.08	64.25	47.72	50.31	45.52	46.78
χ_{b2}	0.930	16.36	14.18	11.30	10.23	9.90	9.47
h_b	0.930	24.00	20.77	17.68	16.02	15.26	14.61

$$Z \to \chi_{QJ}(h_Q) + \gamma$$

对于 χ_{c0} , χ_{c2} 和 h_c 衰变道,LL重求和对LO结果近-25%的压低。 对于 χ_{c1} 衰变道,LL重求和对LO结果近+50%的增高。

FIG. 1: Some representative Feynman diagrams for the process $Z \to H + \gamma$ up to $\mathcal{O}(\alpha_s^2)$.

短程系数

$$\mathcal{C}_{\lambda_{1},\lambda_{2}}^{H} = \mathcal{C}_{\lambda_{1},\lambda_{2}}^{H,(0)} \left[1 + \frac{\alpha_{s}}{\pi} \mathcal{C}_{\lambda_{1},\lambda_{2}}^{H,(1)} + \frac{\alpha_{s}^{2}}{\pi^{2}} \left(\frac{\beta_{0}}{4} \ln \frac{\mu_{R}^{2}}{m_{Q}^{2}} \mathcal{C}_{\lambda_{1},\lambda_{2}}^{H,(1)} + \gamma_{H} \ln \frac{\mu_{\Lambda}^{2}}{m_{Q}^{2}} + \mathcal{C}_{\mathrm{reg},\lambda_{1},\lambda_{2}}^{H,(2)} + \mathcal{C}_{\mathrm{nonreg},\lambda_{1},\lambda_{2}}^{H,(2)} \right) \right] + \mathcal{O}(\alpha_{s}^{3}),$$

TABLE I: NRQCD pre	edictions to the [.]	various helicity	SDCs. For sim	plicity, we define	the symbols
$f_1 \equiv rac{g_V^d}{g_V^u} = -rac{3-4S_W^2}{3-8S_W^2}, \; f$	$f_2 \equiv rac{g_V^u - g_V^d}{g_V^u} = rac{6}{3}$	$\frac{-12S_W^2}{3-8S_W^2}, \ \bar{f}_1 \equiv \frac{g_0^2}{g_0^2}$	$rac{W}{V}_{V}=-rac{3-8S_{W}^{2}}{3-4S_{W}^{2}}$ a	and $ar{f}_2\equivrac{2g_V^d-2g_V^u}{g_V^d}$	$=\frac{12-24S_W^2}{3-4S_W^2},$
where g_V^u and g_V^d correspondences	pond to the valu	les of g_V for up-	type quark and	down-type quark	respectively.

H	(λ_1,λ_2)	$\mathcal{C}^{(1)}_{\lambda_1,\lambda_2}$	$\mathcal{C}^{(2)}_{\mathrm{reg},\lambda_1,\lambda_2}$	$\mathcal{C}_{\mathrm{nonreg},\lambda_1,\lambda_2}^{(2)}$
m	(0.1)	1.035 - 1.670i	$-60.56 + 27.66i - (0.88 + 0.74i)n_L$	$-(2.52 - 4.28i)n_c + (0.70 - 1.26i)f_1n_b$
'/c	(0,1)	1.050 - 1.079i	$+(0.02 - 0.75i)n_c - (0.05 + 0.77i)n_b$	$-(5.06-0.99i)f_2$
	(1 1)	0.020 - 2.088i	$-59.12 + 40.50i - (0.36 + 1.12i)n_L$	$1.51 \pm 1.40i$
T/al	(1,1)	0.929 - 2.000i	$+(0.17 - 1.12i)n_c - (0.07 + 1.15i)n_b$	$1.51 \pm 1.45i$
J/ψ	(0,1)	0.122 - 1.684i	$-50.17 + 28.13i - (0.54 + 0.74i)n_L$	$1.42 \pm 1.56i$
			$-(0.06+0.75i)n_c - (0.40+0.77i)n_b$	$1.42 \pm 1.50i$
m	(0.1)	-0.197 - 1.698i	$-46.21 + 13.95i - (1.17 + 0.13i)n_L$	$(7.07 - 2.89i)\bar{f_1}n_c - (0.74 - 4.07i)n_b$
16	(0,1)	-0.127 - 1.028i	$+(0.72 - 0.14i)n_c - (0.25 + 0.16i)n_b$	$-(3.37-0.87i)ar{f}_2$
	(1 1)	-0.454 - 2.065i	$-37.76 + 22.93i - (0.87 + 0.37i)n_L$	-1.47 - 1.50i
r	(1,1)	-0.454 - 2.005i	$+(0.81 - 0.38i)n_c - (0.30 + 0.40i)n_b$	-1.41 - 1.50i
	(0 1)	-0.985 - 1.665i	$-35.71 + 15.10i - (0.85 + 0.14i)n_L$	-1.43 - 1.56i
		0.500 - 1.000i	$+(0.83 - 0.15i)n_c - (0.33 + 0.17i)n_b$	1.001 = 0.011

13

• 有限阶截断

短程系数用Light Cone表示为 $\mathcal{C}_{0,1}^{H} \equiv \mathcal{C}_{0,1}^{H,(0)} \mathcal{K}^{H} = \mathcal{C}_{0,1}^{H,(0)} \int_{0}^{1} dx T_{H}(x, m_{Z}, \mu) \hat{\phi}_{H}(x, m_{Q}, \mu) + \mathcal{O}(m_{Q}^{2}/m_{Z}^{2})$ LCDA遵循ERBL演化方程 $\mu^2 \frac{d}{d\mu^2} \hat{\phi}_H(x, m_Q, \mu) = \int_{\alpha}^{1} dy V_H(x, y; \alpha_s(\mu)) \, \hat{\phi}_H(y, m_Q, \mu)$ 求解得到两个K因子 $\mathcal{K}^{P,\mathrm{NLL}} = 1 + rac{lpha_s(m_Z)}{4\pi} C_F \left[(3 - 2\ln 2) \left(\ln rac{m_Z^2}{m_Q^2} - i\pi \right) + \ln^2 2 + 3\ln 2 - rac{\pi^2}{3} - 9
ight]$ $+\left(\frac{\alpha_s(m_Z)}{4\pi}\right)^2 C_F \left\{ \left[C_F \left(\ln^2 2 - 8\ln 2 - \frac{\pi^2}{6} + \frac{9}{2} \right) + \frac{\beta_0}{2} \left(3 - 2\ln 2 \right) \right] \ln^2 \frac{m_Z^2}{m_Q^2} \right\}$ + $C_F\left(\frac{7}{2}\zeta(3) - \frac{4}{3}\ln^3 2 + \frac{5}{3}\pi^2\ln 2 + 6\ln^2 2 + 21\ln 2 - \frac{5}{3}\pi^2 - \frac{51}{2}\right)$ $-2i\pi\left(\ln^2 2 - 8\ln 2 - \frac{\pi^2}{6} + \frac{9}{2}
ight) - C_A\left(\frac{3}{2}\zeta(3) - \frac{4}{3}\ln 2 - 1
ight)$
$$\begin{split} & -\beta_0 \left(\ln^2 2 - \frac{2}{3} \ln 2 + \frac{\pi^2}{6} - \frac{1}{2} \right) \left] \ln \frac{m_Z^2}{m_Q^2} \right\} + \dots, \\ & \tilde{\mathcal{C}}_{0,1}^{H,\text{LL}} \equiv \mathcal{C}_{0,1}^{H,(0)} \mathcal{K}^{H,\text{LL}}, \\ & \tilde{\mathcal{C}}_{0,1}^{H,\text{NLL}} \equiv \mathcal{C}_{0,1}^{H,(0)} \mathcal{K}^{H,\text{NLL}}, \\ & \tilde{\mathcal{C}}_{0,1}^{H,\text{NLL}} \equiv \mathcal{C}_{0,1}^{H,(0)} \mathcal{K}^{H,\text{NLL}}, \end{split}$$
 $+\left(\frac{\alpha_s(m_Z)}{4\pi}\right)^2 \ln \frac{m_Z^2}{m_Q^2} \left\{ C_F^2 \left| 4\ln^2 2 - 4\ln 2 \right| - 4C_F \beta_0 \ln 2 \right\} + \dots \right\}$

上面的 $\mathcal{K}^{P,\mathrm{NLL}}$ 和 $\mathcal{K}^{V,\mathrm{NLL}}$ 分别对应 $H = \eta_Q$ 和 $H = J/\Psi(\Upsilon)$ 两种情形。

• 所有阶求和

LCDA和hard-kernel分别做Gegenbauer展开 $\hat{\phi}_H(x, m_Q, \mu) \equiv \sum_{n=0} \hat{\phi}_{H,n}(\mu) x(1-x) C_n^{(3/2)}(2x-1)$ $T_H(x, m_Z, \mu) = \sum_{n=0}^{\infty} \frac{4(2n+3)}{(n+1)(n+2)} T_{H,n}(\mu) C_n^{(3/2)}(2x-1)$ 求解得到 $\mathcal{K}^H = \sum \sum T_{H,n}(m_Z) U^H_{n,k}(m_Z, m_Q) \hat{\phi}_{H,k}(m_Q)$ $\mathcal{K}^{H} = \mathcal{K}^{H(0,0)} + \frac{\alpha_{s}(m_{Z})}{4\pi} \mathcal{K}^{H(1,0)} + \frac{\alpha_{s}(m_{Q})}{4\pi} \mathcal{K}^{H(0,1)}$ $\mathcal{C}^{H, ext{LL}}_{0,1}\,\equiv\,\mathcal{C}^{H,(0)}_{0,1}\mathcal{K}^{H(0,0)}\,,$ $\mathcal{C}^{H,\mathrm{NLL}}_{0,1}\,\equiv\,\mathcal{C}^{H,(0)}_{0,1}\mathcal{K}^H\,,$ 固定阶短程系数 NRQCD短 所有阶求和 有限阶截断 程系数 短程系数 短程系数 $\mathcal{C}_{0,1}^{H,\mathrm{LO}+(\mathrm{N})\mathrm{LL}} = \mathcal{C}_{0,1}^{H,\mathrm{LO}} - \widetilde{\mathcal{C}}_{0,1}^{H,(\mathrm{N})\mathrm{LL}} \big|_{\alpha^0} + \mathcal{C}_{0,1}^{H,(\mathrm{N})\mathrm{LL}},$ $\mathcal{C}_{0,1}^{H,\mathrm{NLO}+(\mathrm{N})\mathrm{LL}} = \mathcal{C}_{0,1}^{H,\mathrm{NLO}} - \widetilde{\mathcal{C}}_{0,1}^{H,(\mathrm{N})\mathrm{LL}}\big|_{\alpha_{\circ}^{1}} + \mathcal{C}_{0,1}^{H,(\mathrm{N})\mathrm{LL}},$ $\mathcal{C}_{0.1}^{H,\mathrm{NNLO}+(\mathrm{N})\mathrm{LL}} = \left. \mathcal{C}_{0,1}^{H,\mathrm{NNLO}} - \widetilde{\mathcal{C}}_{0,1}^{H,(\mathrm{N})\mathrm{LL}} \right|_{\alpha_{\alpha}^{2}} + \mathcal{C}_{0,1}^{H,(\mathrm{N})\mathrm{LL}},$ 14 计算结果和现象分析

[8] Luchinsky arXiv:1706.04091[14] Y.Grossman, M.Konig and M.Neubert, *et al.* JHEP 04, 101 (2015)

- ullet 对于 η_b 和 Υ 的产生,高阶修正可以忽略不计,而对于其他两个衰变道,修正可以达到10% 左右 。
- ▶ NLL的重求和可以显著改变NRQCD的预言结果,特别是对于 $Z o J/\psi + \gamma$ 过程。
- 我们画出 $Z \rightarrow \eta_Q/J/\psi/\Upsilon + \gamma$ 的分支比关于夸克质量的函数,发现分支比随着夸克质量的增加而单调减小。 ● 在未来的超级Z工厂中,Z玻色子产率可以达到 7×10^{11} 。预计将产生介或 J/ψ 的事例数可以达到 5×10^4 ,
- 在未来的超级Z工厂中,Z玻色子产率可以达到 $7 imes 10^{11}$ 。预计将产生 Υ 或 J/ψ 的事例数可以达到 $5 imes 10^4$, 产生 $\eta_{c,b}$ 的事例数大约 10^4 ,期待未来可以在超级Z工厂测量到这些衰变道。

恳请各位老师和同学批评指正

谢谢 THANKS

