

大型强子对撞机上CMS和ALICE探测器升级 2024年年会

课题一: CMS高粒度量能器和一级触发升级

(高能物理研究所,清华大学)

报告人:赵京周

中国科学院高能物理研究所-2024年7月13日

- 课题总体介绍
 - 课题目标及验收指标
- 一级触发升级部分工作进展
 - iRPC后端触发电子学背景介绍
 - iRPC后端触发电子学工作进展
- 总结

课题一介绍

课题一: CMS高粒度量能器和一级触发升级(中国科学院高能物理研究所、清华大学)

➤ CMS高粒度量能器子课题(中国科学院高能物理研究所、清华大学)

➤ CMS一级触发升级子课题(中国科学院高能物理研究所)

端部量能器升级

课题目标及验收指标

课题目标:

建立高粒度量能器硅模块中心,研究百平米量级硅探测器模块的制作工艺,掌握高粒度量能器关键的制作 技术,完成160块以上8寸硅模块的批量建造(约3.2平米);

参与CMS一级触发电子学板的设计和部分生成工作;基于触发电子学板搭建端盖RPC后端触发电子学量产样机系统,并进行数据读出及簇查找算法的开发。

验收指标:

指标1: 高粒度量能器硅模块 160块硅模块 指标2: 高粒度量能器硅模块精度控制 X-Y方向好于 100微米

指标3: 高速数据传输速率

单通道>=16Gbps

	预期成果				考核指标 2				考核方式
课题目标'	预期成果名称			预期成果类型	指标 名称	立项时已有指 标值/状态	中期指标 值/状态 '	完成时指标 值/状态	(方法)及 评价手段⁴
(限 500 字以 内。)建立高粒 度量能研究和 案量缺一个心,研究和 发生。 一个心,研究有一个。 一个心,研究有一个。 一个心,研究有一个。 一个心,研究有一个。 一个心,研究有一个。 一个心,研究有一个。 一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心, 一个心,一个心,一个心,一个心,一个心, 一个心,一个心,一个心, 一个心,一个心,一个心,一个心, 一个心,一个心,一个心, 一个心,一个心,一个心, 一个心,一个心, 一个心,一个心, 一个心,一个心, 一个心,	主要成果	1	CMS 高量 能器系 统	□新理论 □新原理 □新产 品 □新技术 □新方法 □ 关键部件 □数据库 □软件 □应用解决方案 ■实验装 置/系统 □临床指南/规范 □工程工艺 □标准 □论文 □发明专利 □其他	指标 1. 1: 高粒度量 能器硅模块	0	5 块硅模块 原型机	160 块硅模块	CMS 合作组检 验合格
一级触发电子学 板的设计和部分 生产工作,并基					指标 1.2: 高粒度量 能器硅模块精度控 制	无	X-Y 万问精 度好于 200 微米	X-Y 方向精度 好于 100 微米	实验测试
于触发电子学板 搭建端盖 RPC 后 端触发电子学量 产样机系统,并 进行查找算法的开 发。发表文章 1 篇,培养研究生 2-4 名。		2	CMS 端 盖 RPC 后端 电 天 统	□新理论 □新原理 □新产 品 □新技术 □新方法 □ 关键部件 □数据库 □软件 □应用解决方案 ■实验装 置/系统 □临床指南/规范 □工程工艺 □标准 □论文 □发明专利 □其他	指标 2.1: 高速数据 传输速率	单通道速率达 到 10Gbps (MTCA 原理样 机)	完成数据 读出及压 缩解压缩 原理验证	单 通 道 ≥ 16Gbps	实验测试
	序号		록号	报告类型。	数量	提う	提交时间 公开		些别及时限 ⁶
科技报告考核指	1			年度科技报告	5	项目扩	执行年度	延期	15年公开
标	2			中期科技报告	1	项目中期 延期		15年公开	
甘油口标片夹材料	<u>3</u> 结题科技报告 1 项目结题 延期 5							15年公开	

课题目标、预期成果与考核指标表

CMS高粒度量能器课题

• 模块精度(7块)达到好于100微米,达到项目考核指标

本报告后续部分为一级触发升级进展: 一级触发升级子课题背景

LHC 亮度将达到 5×10^34 Hz/cm2 (pileup ~140), 甚至至7.5×10^34 Hz/cm2 (pileup~200), 事例率及事例堆积将增加。 为了提升RPC探测器的压低本底的能力, 对探测器的电子学进行升级。

CMS RPC二期升级中包含两部分:

- 1. 现在运行的RPC Link系统升级设计,提升时间分辨。
- 2. RE31/RE41位置新安装iRPC探测器。

本课题针对iRPC部分的升级,进行后端触发电子学量产样机开发。

System to improve timing resolution for existing RPC (| η | < 1.9)

Extend the RPC coverage up to |η | = 2.4 to increase redundancy in high eta region in stations 3 and 4

一级触发升级进展

- iRPC 后端触发电子学方案顺利通过CMS评审
 - 确定了iRPC FEB-iRPC后端触发电子学-EMTF 的连接关系。
 - · 完成了第一版与EMTF的接口文档; 顺利完成了CMS ESR。
- 关键技术点一进展: Serenity板出完成设计,已出样板
- 关键技术点二进展:数据压缩及传输研究部分进展
 - 提出Check-Sort-Push(CSP)数据压缩机传输机制,已被合作组采 纳和应用。
- 关键技术点三进展: Cluster finder算法研究初步结果

顺利通过CMS ESR

- 完成了第一版与EMTF的接口文档;
- 2024年2月15日顺利完成了CMS ESR。
 - https://indico.cern.ch/event/1357604/

RPC Backend Electronics and Trigger ESR

iRPC Backend/Trigger system

- iRPC backend system
 - ➢ 1 ATCA Crate
 - ➤ 1 DTH400
 - ➤ 1 DAQ800
 - ➢ 8 ATCA serenity boards
- Functionality
 - Fast/Slow control(TTC),
 - Monitor
 - Data readout,
 - Trigger Primitive(Cluster)Generation

¹ link including 1 tx and 1 rx

iRPC FEB-BE-EMTF mapping(update)

20240213 version for 2024 CMS ESR

Serenity板卡设计进展

Function of Serenity-S1

- Single FPGA design(Serenity-S1)
- Supports VU13P-A2577 package,
- 25Gbps 12ch Firefly transceivers
- 124 bi-dir links @25 Gbps
- New->Zynq functionality via Xilinx Kria
 SoM
- Zhen-An LIU in Serenity Steering committee.
- Jingzhou ZHAO in Technical and Layout Group.
 - Schematic design
 - PCB layout and review
 - Serenity test
- Serenity-S1 first version in pilot production stage

RPC后端触发电子学 MTCA Demo系统开发

- ◆ 在ATCA硬件生产出来前,开发了基于MTCA的iRPC后端触发电子学Demo系统,用于后端触发电子学的原理验证。
 - ➢ 采用高能所触发团队设计的基于MTCA的触发电 子学板(BE)
- ◆ 在合作组提出了高能所基于时间优先的数据传输方案 (Check-Sort-Push, CSP),并被合作组采用。
- ◆ 对宇宙线实验簇信息进行了初步研究
- ◆ 该系统也用于探测器的质量检测

基于MTCA的后端触发电子学Demo系统架构图

Clark PPGA Clark Pan Out

高能所触发团队开发触发电子学板

CSP机制效果- 传输延迟

- Check-Sort-Push (CSP) 数据发送机制
- ▶ 基于时间优先的思想
- 平衡各通道的发送延迟, 减小后端触发电子学部分的接收等待时间,减小 cluster的产生延迟
- ➤ 发送机制提交合作组,被 采纳并实现在前端电子学 板中。
- ▶ 效果:
 - 传输延迟和通道号不再 有依赖关系
 - 在高本底情况下,最大 延迟从60BX(左图)降低 到30BX(右图)

详见下午刁伟卓报告: CMS iRPC Check-Sort-Push*数据传输机制研究* https://indico.ihep.ac.cn/event/21307/contributions/160358/

Without CSP

With CSP

Pair function机制效果分析

- 前端数据合并机制
 HR and LR data pair function
- one strip tdc data from HR and LR concentrate in one GBT frame, and throw away only have HR or LR tdc data.

CSP效果研究 - DAQ窗口

- 使用CSP,在24 BX的窗口下好击中的比例大于99.8%
- 在只有束流或者束流+γ本底下,好击中的比例在12BX(目标窗口)从93%增长到99%
- CSP使得更小的DAQ窗口成为可能

电子学发送延时研究

■ 在触发系统中延时(latency)是衡量触发系统的重要参数;■ 研究了一级buffer和二级buffer合适的缓存深度设置,减小buffer延时。

前端电子学架构

2024/7/13

簇查找算法研究取得了重要进展

CMS Muon Preliminary

CERN 904

- 系统关键问题之一: 簇查找算法的研究有了重要进展
- 通过搭建对宇宙线和束流实验取得了大量的数据,对
 缪子簇特性进行了详细的研究
- 对簇(团)特性的研究有了初步结果
 - ▶ 簇(团)大小
 - ▶ 簇(团)大小与径向位置的关系
 - ▶ 簇(团)时间选择参考

簇(团)宇宙线研究平台

宇宙线事例中簇团径向大小分布

最小时间在击中簇中的位置分布

2024/7/13

簇查找算法研究取得了重要进展

详见下午侯庆峰报告:CMS iRPC 簇查找算法的设计实现

宇宙线实验中簇查找算法效率

7000

6000

5000

4000

3000

2000

1000

Post-Implementation

100

Graph | Table

https://indico.ihep.ac.cn/event/21307/contributions/160357/ RE31_904 通过对簇特性的研究,确定了粗查 Density CMS Muon Preliminary simulation HV = 7200 V cluster size (emlualtor) mean = -9.77Total entry:19991 RE4/1 $\sigma = 26.66$ 找算法的方案。 Match rate:1.0 6ucy run1442 7.0kV Nevent = 20000Freque 通过软件对算法的精度进行了模拟。 0.008 通过宇宙线及束流实验得到了初步 0.006 0.004 的结果。 0.002 对FPGA资源的使用有了比较可靠的一 0.000 -100 -80 -60 -40 -20 0 20 40 3 4 5 60 80 100 cluster size (reference) $\Delta y(mm)$ 评估。 径向分段数为16时位置准确度 软件簇大小与数据源的匹配图 Seg Length **CMS** Muon Preliminary Seg Length CERN 904 Lab Efficiency Utilization Post-Synthesis **Nseg RE41 RE31** LUT Algorithm 86'0 8 152.5 mm 183 mm LUTRAM -1% FE-6% BRAM 28% DSP -1% 16 76.25 mm 91 mm 10 -1% 0.97 GT 30% BUFG . 8% 0.96 32 38 mm 46mm MMCM Threshold: 40 fC PLL -3% Chamber type: RE3/1 0.95 25 50 75 Seg=16 Utilization (%) 0.94 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 High Voltage(kV) VCU13P的资源使用(18⁸ links)

2024/7/13

•

٠

٠

٠

iRPC QC3质量检测系统开发

- ♦ iRPC MTCA后端触发电子学系统用 于iRPC QC3质量检测
- iRPC QC3 : Chamber during construction and with cosmics @ assembly sites: Gas leak, dark current, cosmic (noise, eff, cluster size, HV).
- Developed and set up two systems
 - Gent system: Jianing helped set up this system in July.2023
 - 904 system: Qingfeng set up
 904 backend system
- ▶ 904测试系统已完成40块iRPC chamber的测试。

人才培养及文章发表

■ 人才培养情况:

- 研究生在读: 2人: 侯庆峰, 刁伟卓
- 博士毕业1人: 宋嘉宁

■ 文章:

- J.Song, J.Zhao, Z.-A. Liu, etc., Research and Development of Time Resolution and Timing Reference Adjustment for CMS improved Resistive Plate Chambers(iRPC), RDTM 已发表
- 文章《Check-Sort-Push and its application in CMS iRPC subsystem》已 完成草稿,拟投TNS

总结及下一步计划

■ 总结: 一级触发升级子课题按计划进行顺利

- iRPC后端触发电子学顺利通过CMS ESR评审。
- 当前阶段基于MTCA开发了后端触发电子学Demo系统
 - ▶ 对数据发送机制进行研究,提出并被采纳了CSP协议。
 - ▶ 对簇(团)特征进行了研究,并实现了新版簇查找算法,取得重要进展。
- 积极参与serenity板卡的设计,已出样板。

■ 下一步计划:

- MTCA后端触发电子学系统P5安装
- Serenity板卡的测试
- MTCA iRPC后端触发电子学固件到ATCA的移植与开发

感谢各位领导专家!

大型强子对撞机上CMS和ALICE探测器升级2024年年会

- 1. IEEE RT2024国际会议, 口头报告Check-Sort-Push and its application in CMS iRPC subsystem
- 2. RPC后端触发电子学进展,赵京周,2023 CMS中国组年会,2023年7月2日
- 3. Timing reference distribution and alignment study for CMS iRPC, 刁伟卓, 2023 CMS中国组年会, 2023年7月3日
- 4. CMS iRPC Backend and Trigger Status, zhao jingzhou, CLHCP2023, 16-20/11/2023
- 5. Data anallsys for iRPC BE/TRG beam test, Weizhuo DIAO, CLHCP2023, 16-20/11/2023