科技部国家重点研发计划

大型强子对撞机上CMS和ALICE探测器升级

课题二: CMS 缪子谱仪 GEM 和时间探测器 MTD 升级

CMS时间探测器设计及建造工艺

北京大学: 孙小虎, <u>王锦</u> 2024年年会, 07月13日

- 项目背景和物理意义
- MTD BTL Sensor 设计优化
- 组装工艺的研制及质控
 -Sensor模块的组装工艺和质控
 -Detector模块的组装工艺和质控
 -BTL Tray组装工艺和质控
- 项目研究计划和进展情况

1. 项目背景与目标: MTD探测器

- 为提高测量精度和拓展新物理前沿,LHC对撞机的瞬时亮度将提升约4倍
- 导致pileup效应显著,每次对撞产生达200个对撞顶点(10 cm空间内), 严重影响粒子重建和鉴别
- CMS的高性能时间探测器MTD(MIP timing detector)是为HL-LHC专门设计的新探测器, 拟提供优于60 ps量级的时间测量, 在高pileup中区分对撞顶点,并提供精确TOF信息

目标:

研制时间分辨优于60皮秒的<mark>桶部MTD</mark>,建立MTD探测器组装中心,建造超过500个桶部传感器模块,并建立完善批量生产探测器所需的质控系统

2. Sensor设计优化: SiPM

- 主要针对SiPM的cell大小 等参数进行调整和优化
- 经过大量参数比对,选 取其中时间性能最优的 一组,最终我们在束流 上比较测试了15μm cellsize的SiPM与新参数 20μm和25μm
 - 25μm SiPM有最佳的时间 分辨率
- 東流测试是在CERN

 180 GeV pion)和

 FNAL(120 GeV proton)
 東流上完成的
- 已完成SiPM参数的优化

章立诚

(PKU)

2. Sensor设计优化: LYSO ^{张铭滔} (PKU)

entries

- 测试各个厂商的LYSO晶体
 质量(尺寸、光产额等),
 最终对性能优异的厂商使
 用束流做时间分辨率测试
- 如下比较了厂商Prod1和 Prod5的时间分辨率
- 已完成LYSO优化,开始量 产 prod5 52deg

HPK (25 μm, type1) + LYSO828 (prod5, type1)

140 σ_t [ps] $V_{OV}^{eff} = 1.50 V$ 120 $V_{OV}^{eff} = 3.50 \text{ V}$ 100 80 60 40 20 0 12 14 2 6 8 10 0 4 bar

2.设计优化: 束流测试@CERN 2023

章立诚 张铭滔 (PKU)

- 参与束流测试、数据采集和测 试数据离线分析
- 为MTD桶部sensor设计方案提 供依据

Rotatable table Protractor

3.组装工艺的研制及质控

王锦 (PKU)

王锦 (PKU)

- 正在进行的BTL workshop将会重点研究MTD 时间探测器全部层次模块的组装工艺和质控。
- 经过各个合作组整合,在以往版本进行迭代 升级交叉检验后,基于UVA设计的LYSO+SiPM 耦合工件,改善工艺和可靠性:
 - 集成耦合步骤(刷胶+粘胶并一步),有效减少胶 水暴露在空气中的时间和降低带胶水的SiPM从工件 上脱落的概率

王锦 (PKU)

- 耦合工件性能测试
 - 在pre-production的SiPM和LYSO耦合结果中,呈现出调整耦合工件平台的高度约200微米,SiPM本身PCB背板弯曲导致胶水厚度不均匀等问题和建议
 - 本次workshop期间, production批次的SiPM和LYSO的耦合工艺研究正在开展
 - 通过放射源,测量收集电荷和光产额,以量化耦合对齐和胶水厚度、均匀度等
 - 目前测试还在进行中,对工艺过程中参数和设计的比照实验,将给出进一步的 工艺调整方案

王锦 (PKU)

- 模块组装原料:
 - 采用高强度折射率与晶体 接近的有机硅胶,
 - 保证涂胶过程中的均匀施 胶,以及固化后的高强度 不塌陷
 - 确保SiPM和LYSO稳定连接 的同时,给予尽可能大的 光产率
- 为了工艺的一致性和标 准化流程参考最有利于 胶水均匀平整硬化的条
 件,量化了模块组装后 放置时的湿度范围

王锦 (PKU)

- 模块组装工具GAMBIT:
 - 采用加载磁铁的可活动限位器,配合平台立柱和底面多层可调胶布,对LYSO晶体位置进行校准
 - 在SiPM托盘上采用硬弹簧的设计,既保证SiPM在耦合过程中的稳定,又能够防止SiPM托盘批量生产带来的尺寸误差导致的无法匹配。
 - 采用新版刷胶工具,有效避免了组装过程中人为的误差因素,诸如刷胶速度, 力度等,便于批量化生产;

SiPM刷胶

• LYSO+SiPM耦合工件研制收尾,开始量产

3.1. Sensor模块质控QAQC系统研制^{E编}

LYS0晶体的固有放射性

- 不稳定同位素¹⁷⁶Lu将发生β衰变至¹⁷⁶Hf核的激发态
- Hf核将发生γ级联衰变,包括88 keV,202 keV和307 keV三种能量
- 这种固有的放射性带来的固有放射能谱能够确定接受光子总能量

P(E)

 $= \alpha_{88}\beta(E - 88) + \alpha_{202}\delta(E - 202) + \alpha_{290}\beta(E - 290)$ $+ \alpha_{307}\delta(E - 307)$

$$+ \alpha_{395}\beta(E - 395) + \alpha_{509}\delta(E - 509) + \alpha_{597}\beta(E - 597)$$

单光子能谱

• 单光子能谱表征了单个光子带有的电荷量

以上两者的比值正比于单位能量沉积的光产额

• Light yield $\propto V_{Lysofit}/D_{SPE}$

B. (0.34%)

a)

176Lu

600

b) 3.5

30

3.1. Sensor模块质控QAQC系统研制_(PKU)

• Sensor模块需进行质控, 以测试其信号幅度及其均匀 性

> - 通过放射源辐照,测量 包括幅度、时间分辨率、 谱型、串扰,以及SiPM 在不同温度下的表现和 TEC测试

•质控系统实现批量测试,实现自动化数据采集和放射源的自动化移动

3.1. Sensor模块质控QAQC系统研制_(PKU)

- •质控系统主要包括
 - 前放电子学模块:包括与Sensor模块批量连接的 Module板,用于信号批量放大的TIA板,以及用于和 上位计算机通讯及总控的控制板
 - 恒温暗箱及温度控制系统:采用水冷循环系统,配合 温度传感器实现温度控制和反馈;暗箱设计,使其打 开的便捷同时,确保箱体闭合状态下实现良好暗环境;
 - 放射源的自动化移动:采用步进电机实现放射源的自动化移动,完成批量测试时数据采集所需要的放射源位置同步
 - 采数系统及其他支撑结构已搭建完毕,保证系统的稳定和正常运行。

3.1. Sensor模块质控QAQC系统研制^{E编}

mean: 3.05e+03 RMS: 4.6 %

mean: 3.01e+03 RMS: 3.8 %

15

- 目前, 质控系统设计收尾, 已完成量产电路板, 并提供给其它组装中 心;
- 本次workshop期间,也重点讨论和迭代质控系统的软件更新和QAQC 流程规范化,进一步提升系统稳定性和自动化。

3.2. Detector模块制造工艺及质控 [FKU]

- Detector模块是将Sensor模块,FE前端电子学板及用以热交换的铜壳 集成后的探测器模块层次
- FE前端电子学板搭载TOFHIR2读出芯片,该芯片将获取SiPM处信号的 到达时间等信息(进一步得到飞行时间及时间分辨等)。
- TOFHIR2读出芯片已经经过研究,证明其在整个HL-LHC期间,都能够保证优于60ps量级的时间分辨

3.2. Detector模块制造工艺及质控 IRAN

- Detector模块的组装工艺:
 - <u>热接触</u>是Detector模块组装的重点关注对象。SiPM上TEC外端与铜壳的良接触, FE前端板上重要芯片表面导热胶垫的覆盖,以及避免LYSO晶体与其他组件的接触是组装中的重要步骤。
 - 因此, Detector模块内部的空间布局和填充就显得尤其重要。用以Detector模块的组装工具也经过了数次迭代升级,目前最新版本进行了模块组装测试并基本确定了工艺流程,热接触实现效果良好。

3.2. Detector模块制造工艺及质控 [FKU]

- 基于前文所述, Detector module的质控QAQC主要涉及热耦 合检查
 - ➤ 需检测电子冷却贴片TEC与导热外壳 接触是否良好
 - ▶ 上电后TEC是否正常工作,提供预期 的电压梯度
 - 初步设计
 - ➤ Arduino板与31685 RTD数字转 换板连接
 - ➤ 温度测量点主要为SiPM一侧 (通过FE板传出),以及导热 外壳copper housing(通过连 接PT1000至铜壳外侧实现)
- 目前,北大已建立单模块6通道
 热传导质控系统,下一步将进一
 步着手于该质控系统的自动化实
 现,提高质控系统的工作效率

Detector模 块质控搭建c

预期效果

3.3. 探测器整机Tray组装工艺的研制及质控 ^{王锦、钱思天 (PKU)} _{张顺亮 (THU),李乐言}

MTD BTL Tray:

单个Tray将会覆盖横向10度,纵向2.5米的探测器范围,总共72条Tray覆盖整个MTD时间探测器的桶部

Tray组装工艺的研制

- 2024年3月,在CERN进行了一系列tray组装工艺的研制,建立了第一个Readout Unit(首次完成detector module单RU的全部组装)
- 单个RU的全部组装涉及冷却板cooling plate,电子学系统CC board、PCC board及Detector模块的组装。组装后的 RU搭载了12个Detector模块,实现了时 间、温度等的获取,冷却板及上搭载的 温控循环确保了模块及芯片的正常工作。

3.3. 探测器整机Tray组装工艺的研制及质控 ^{王锦、钱思天 (PKU)} _{张顺亮 (THU),李乐言}

- 北大已经生产用以测试的首批小批量5套冷却盘,并发往CERN、米兰、弗吉尼亚和加州理工,进行组装研究、冷却测试,以及模拟性质的运输测试(搭载定位系统、冲击力传感器等组件进行运输过程分析,以确认正式批量生产时,运输包装的设计)
- 组装过程中的离线测试需要额外的供电系统,为此需要的供电switch board
 和供电线缆的测试已经完成

3.3. 探测器整机Tray组装工艺的研制及质控 ^{王锦、钱思天 (PKU)} _{张顺亮 (THU), 李乐言}

- ▶ 目前正在CERN进行1号tray的建造,在现有工艺的基础上,将结合先前测试结果和实时反馈,敲定最终tray工艺。
- ▶ 基于Serenity板的tray质控系统正在建立中。
 - 该系统将与tray连接,完成离线质控以及安装至CMS探测器后运行期间, 温度获取、偏压控制、数据采集等功能。
 - 对于1号tray,也将在近期组装完毕后,进行相应的质控研究,同时进一步优化tray质控系统

4. 项目研究计划和进展情况

4.Detector module workshop

胡震(THU)

4.Gluing & Assembly Workshop 王锦

4.MTD BTL Tray Workshop ^{王锦} 秦俊凯(THU)

4.年度主要进展

- 1. Sensor设计优化
 - 1. 完成硅光电倍增器SiPM设计参数优化
 - 2. 完成晶体LYSO参数优化
- 2. Sensor模块的制造工艺设计
 - 1. 完成LYSO+SiPM耦合所需专用机械工件的设计和制造
 - 2. 完成首批小批量生产(~10个)
- 3. Sensor模块质控QAQC系统研制
 - 1. 完成质控系统设计搭建
 - 2. 完成质控系统生产,并提供给合作组其它组装中心
- 4. Detector模块制造工艺及质控
 - 1. 初步搭建热学质控系统
- 5. 探测器整机Tray组装工艺的研制及质控
 - 1. 正在打磨Tray组装工艺
 - 2. 正在建立基于Serenity板的质控系统

备 控	量 能	产 力	及	

通过CMS审核

MTD里程碑

工艺定型

具 质

Backup

1. 项目背景: CMS实验

CMS

LHC大型强子对撞机 国际粒子对撞能量前沿 全长27公里 质心对撞能量14TeV

CMS实验物理目标: 希格斯粒子性质研究,精确检验标 准模型,寻找新物理等 CMS国际合作组: ~40个国家,~200个大学和研究机构, ~4000名科学家和工程技术人员 探测器建造费用: 550M 瑞郎 二期升级总经费: 283 M 瑞郎 中国组预期贡献:~1%

1. 项目背景: MTD探测器

- 为提高测量精度和拓展新物理前沿,LHC对撞机的瞬时亮度将提升约4倍
- 导致pileup效应显著,每次对撞产生达200个对撞顶 点(10 cm空间内),严重影响粒子重建和鉴别
- CMS的高性能时间探测器MTD(MIP timing detector) 是为HL-LHC专门设计的新探测器,拟提供优于60 ps 量级的时间测量,在高pileup中区分对撞顶点,并提 供精确TOF信息

1. MTD引入时间轴

 传统方案:进一步 提高径迹室空间分 辨率

 新方案:测 量顶点的发 生时间

物理意义

- MTD可有效压 低pileup,整 体提高物理测 量的精度
 - 提高单希格斯 粒子测量精度 20-30%
 - 提高双希格斯 粒子信号接受 度20%

物理意义

 MTD提供TOF 信息,拓展新 物理探索的前 沿

> 降低超对称 粒子寻找中 40%的可约本 底

• 大幅提高长 寿命粒子的 敏感度

信号本底区分度

研究内容: 指标

序号	指标	指南要求	本项目	考核方式	说明
1	指标1.1: 高速数据传输 速率	好于 16Gb/s	单通道≥16Gbps	实验测试	满足指南要求
2	指标1.2: 高粒度量能器 硅模块	无	160	CMS合作组检验合格	额外指标
3	指标1.3: 高粒度量能器 硅模块精度控制	无	X-Y方向精度好于100 微米	实验测试	额外指标
4	指标2.1 GEM探测器 有效增益	无	>10000(量产大面积 GEM探测器)	X射线测试	额外指标
5	指标2.2 GEM探测器模 块	无	40	CMS合作组检验合格	额外指标
6	指标2.3 MTD时间分辨	好于 60ps	优于60皮秒(大面积传 感器模块成品)	通过放射源或束流测试 其时间分辨	满足指南要求
7	指标2.4桶部传感器模块	无	500	通过质控系统测试其信 号品质(信号幅度一致 性等)	额外指标
8	指标3.1: 芯片面积和功 耗	芯片面积90mm×140mm, 像 素大小约 15µm×15µm, 功 耗 低至 20mW/cm ²	芯 片 面 积 达 90 mm×140 mm, 像素大 小约15 um×15 um, 功 耗低至20 mW/cm ²	合作组安排测试,提供 测试结果	满足指南要求
9	指标3.2: FoCal双光子 位置分辨	优于5 mm	优于5 mm	合作组安排测试,提供 测试结果	满足指南要求

L

研究内容、路线与创新点

目标:

研制时间分辨优于60皮秒的桶部MTD,建立MTD探测器组装中心,建造超过500个桶部传感器模块,并建立完善批量生产探测器所需的质控系统

亮点:

- 桶部MTD是CMS
 桶部首次达到数
 十皮秒时间分辨
 的时间探测器
- CMS将是LHC上 大型通用探测器 中唯一在桶部有 数十皮秒级时间 测量的探测器

原理与优势

MTD时间探测器的原理与优势

Experiment	r	$\sigma_{\rm T}$	$r/\sigma_{\rm T}$ (×100)
	(m)	(ps)	$(m \times ps^{-1})$
STAR-TOF	2.2	80	2.75
ALICE-TOF	3.7	56	6.6
CMS-MTD	1.16	30	3.87

- ➤ LYSO晶体接收到pp对撞产生的次级粒子时将作为通道传输光信号;
- ➢ SiPM接收信号转换为电信号,快速响应电信号记录飞行时间。
 - SiPM体积小,时间响应快,对磁场不 敏感,抗辐照,增益1.5-4×10⁵
 - 光子探测效率: 20-40%
 - 时间分辨率的计算
- ▷ 30ps 时间分辨率意味着:
- 大部分顶点发生在前后200ps内;
- 30ps可以把这400ps的顶点分割成10多 个bin而primary vertex来自其中一个 bin,剩下的bin可直接判为Pileup

