《大型强子对撞机上CMS和ALICE探测器升级》2024年年会

2024年7月13日

Review: ITS2 & ITS3

ITS2

7 Layers:

 \rightarrow 3 inner barrel (IB) and 4 outer barrel (OB) Large active area and granularity

\rightarrow 10m² active silicon area, 12.5 x 1E9 pixels Built with ALPIDE chips

→180nm CMOS MAPS, 15 x 30 mm², 512 x 1024 pixels

* <u>M. Mager, for ALICE Collab, NIM-A 824, 434 (2016)</u> ITS3 TDR: <u>CERN-LHCC-2024-003</u> ITS3: replacement of ITS2 inner barrel

Bent wafer-scale sensor ASIC

- →65 nm CMOS MAPS
- → Fabricated with stitching
- \rightarrow Power density < 40 mW/cm²
- 3 layers with 6 sensors Air cooling between layers

Closer to interaction point

- →Beampipe: 18.2 mm \rightarrow 16.0 mm
- →Layer 0 position: ~24 mm → 19.0 mm

ITS3 Chip development roadmap

with gap in the implant

Cross-sections of three different pixel designs implemented

layout(top view)

CERN-LHCC-2024-003 ; ALICE-TDR-021

MLR1 Chips

APTS

Analogue Pixel Test Structure

Source-follower

Matrix: 6×6 pixels Pitch: 10, 15, 20, 25 µm Direct analogue readout of central 4×4 submatrix AC/DC coupling 3 process modifications Purpose: testing pixel cell

DPTS

Digital Pixel Test Structure

Matrix: 32×32 pixels Pitch: 15 μm

Asynchronous digital readout Time-over-Threshold information Only modified with gap process modification

Purpose: testing pixel front-end

CE-65 Circuit Explorate

Circuit Exploratoire 65

1.5 mm

Matrix: 64x32, 48x32 pixels Pitch: 15, 25 µm Readout: rolling shutter analog Purpose: testing pixel with rolling shutter

APTS-SF Design

Readout with Source Follower

CE-65 rolling shutter readout

CHIP CLK-Я PIXEL MATRIX ISTART: -BIAS SF NMOS PIX Amp (AC) Amp (DC) SF (DC) SELE(BIAS_SF_PMIS_PIX ğ: A,B,C: 22x32 A,B,C: 21x32 A,B,C: 21x32 D: 16x32 D: 16x32 D: 16x32 -HV RESET -VRESET ROW Column buffers -1/ BIAS SF COL * * * x64(48) COL CLK COLUMN SELECTOR Output buffer BIAS SF MAT 50

The output of a particular pixel is selected using a row and column selector block, and buffered to make it available on the output pad.

The MOSS chip contains 20 half units and 6.72 million pixels.

MOSS – Architecture

1 of 10 REPEATED UNITS

Investigate effects of layout density

MOSS power distribution and IOs

Monolithic Stitched Sensor Prototype

Readout Model – Matrix Readout

Readout- Asynchronous & priority tree

響の

MOSAIX Architecture

MONOLITHIC STITCHED SENSORS

Principles of stitching. Left: design reticle with sub-frames.

Circuits on wafer

The stitching technique is used to manufacture devices that are much larger than the dimensions of the design reticle

Right: resulting circuits on the wafer

Metal traces cross stitching boundaries for power distribution and long range on-chip control and data transfer Figure 4.1: Half-layer 0. (a) Exploded view and (b) assembled view.

⁽a) C-side FPC H-rings C-side C-side FPC A-side FPC H-rings C-side FPC A-side FPC H-rings C-side FPC A-side FPC A-s

Prospects for the future

ALICE

	Vertex Detector	Middle Layers	Outer Tracker	ITS3	
Position resolution (µm)	2.5	10		5	
Pixel size (µm ²)	O(10 x 10)	O(50 x 50)		O(20 x 20)	
Time resolution (ns RMS)	100	100 100		100* / O(1000)	
In-pixel hit rate (Hz)	94 42 (barrel) / 12 (foward) 1 (barrel) / 16 (forward)			54	
Fake-hit rate (/ pixel / event)	<10-7				
Power consumption (mW / cm ²)	70	20		35	
Particle hit density (MHz / cm ²)	94	0.6 (barrel / forward)	0.06 (barrel) 0.6 (forward	8.5	
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)*	2 x 10 ¹⁵	6 x 10 13 (barrel) 6 x 1013 (forward)	3 x 10 ¹³ (barrel) 6 x 10¹³ (forward)	3 x 10 ¹²	
Total Ionising Dose (Mrad)*	11	3 (barrel) / 3 (forward)	0.5 (barrel) / 3 (forward)	0.3	
Pixel grouping	20x highe	r radiation load			

25x more pixels

- VD: 5 x 5 pixels of 10 μm x 10 μm acting independently
- ML/OT: macro pixel combining 25 pixels of 10 μm x 10 μm