Rotating gluon system and color confinement

http://arxiv.org/abs/2312.06166

Yin Jiang

Beihang University

	Magnetic field	Rotation
	Pseduo-vector	Pseduo-vector
	Polarize J	Polarize J
	Chiral transportation	Chiral transportation
	Anomalous effects	Anomalous effects
Quark fluctuation In Gluon propagator	Chiral catalysis	Chiral inhibition
	Inverse chiral catalysis	?

Understand confinement with KvBLL CALORON

- BPS dyon is good solution at finite temperature because 1) nonzero topological charge; 3) confinement; 4) periodic along imaginary time axis.
- Focus on the SU(2) gauge group case from now on. There are two kinds of dyons, namely M and L dyon and their anti-dyon. For M and Mbar dyon $F_{\mu\nu}^a = \pm \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} F_{\alpha\beta}^a$ or $E_i^a = \pm B_i^a$.

$$A_4^a = \pm n_a \left(\frac{1}{r} - \rho \operatorname{coth}(\rho r)\right)$$
$$A_m^a = \epsilon_{amk} n_k \left(\frac{1}{r} - \rho \operatorname{csch}(\rho r)\right)$$

Dyon	Action	$A_4^3(\infty)$	$\Phi(\infty)$	q_E	q_M
M	$ ho_M$	$\rho_M - \omega$	$\rho_M - \omega n_3$	+	+
\bar{M}	$ ho_M$	$ ho_{ar{M}} + \omega$	$\rho_{\bar{M}} + \omega n_3$	+	-
	$2\pi T - \rho_L$	$\rho_L + \omega$	$\rho_L + \omega n_3$	-	-
Ē	$2\pi T - \rho_{\bar{L}}$	$ ho_{ar{L}}-\omega$	$\rho_{\bar{L}} - \omega n_3$	-	+

 ρ is a free parameter characterizing the size of the dyon.
 Dyon carries nonzero color magnetic and electric charge. Not good enough.

Understand confinement with KvBLL CALORON

- As a solution of the Yang-Mills equation, KvBLL caloron is good because 1) color neutrality; 2) nonzero topological charge; 3) confinement; 4) periodic along imaginary time axis.
- Constructed with dyons by the AHDM construction. A potential non-trivial gluon field responsible for the confinement. Far from the cores of dyons

$$A_{4}^{caloron} = \frac{\tau_{3}}{2} (\bar{\rho} + \frac{1}{r} + \frac{1}{s})$$

$$A_{\phi}^{caloron} = -\frac{\tau_{3}}{2} (\frac{1}{r} + \frac{1}{s}) \sqrt{\frac{(r_{LM} - r + s)(r_{LM} + r - s)}{(r_{LM} + r + s)(r + s - r_{LM})}}$$

$$F_{p}(T, \omega) = \frac{1}{3(2\pi)^{2}T} \bar{\rho}^{2} (2\pi T - \bar{\rho})^{2}.$$

$$F_{np}(T) = -c[|\bar{\rho}|^{3} (\frac{\Lambda}{\pi T})^{\frac{22|\bar{\rho}|}{6\pi T}} + |2\pi T - \bar{\rho}|^{3} (\frac{\Lambda}{\pi T})^{\frac{22|2\pi T - \bar{\rho}|}{6\pi T}}]$$

 $L = \mathcal{P}e^{i\int_0^\beta dx_4 A_4} \quad : \frac{\overline{\rho}}{2\pi T} = 0.5, Tr(L) = 0 \quad \text{confinement}$

Spin the pure gluon system

- Real angular velocity.
- Caloron and anti-caloron as the background color field.
- Hard boundary. Finite size effect in the perturbative part.
- Running coupling.

Yang-Mills equation under rotation

Yang-Mills field under rotation

$$g_{00} = 1 - \vec{v}^2$$
, $g_{mn} = -\delta_{mn}$, $g_{0m} = g_{m0} = -v_m$

$$S = -\frac{1}{4g^2} \int d^4x \sqrt{|\det(g)|} F^a_{\mu\nu} F^{\mu\nu a}$$

Redefine $A_0(new) = A_0(old) + v^j A_j(old)$ and $A_j(new) = A_j(old)$

$$S = -\frac{1}{4g^2} \int d^4x (-2G^a_{0i}G^a_{0i} + G^a_{mn}G^a_{mn})$$

$$G^{a}_{0m} = \partial_{0}A^{a}_{m} - \partial_{m}A^{a}_{0} + f^{abc}A^{b}_{0}A^{c}_{m} + A^{a}_{n}\partial_{n}v_{m} - v_{n}\partial_{n}A^{a}_{m} G^{a}_{mn} = \partial_{m}A^{a}_{n} - \partial_{n}A^{a}_{m} + f^{abc}A^{b}_{m}A^{c}_{n}.$$

Complex for real velocity at finite temperature

□ Find a solution like (use an imaginary velocity temporarily)

$$A^{\text{full}} = (A_4^{\text{static}}(t, \vec{x}; \rho) + \delta A_4, \ \vec{A}^{\text{static}}(t, \vec{x}; \rho)). \ \textbf{GET}$$

$$\delta A_4 = \mp \omega_a rac{ au^a}{2}.$$

Yang-Mills equation under rotation

Gauge transformation is changed

$$A_0 \rightarrow U A_0 U^{\dagger} + i U (\partial_0 + v^j \partial_j) U^{\dagger},$$

 $A_i \rightarrow U A_i U^{\dagger} + i U \partial_i U^{\dagger}.$

Polyakov loop is changed

$$L = \mathcal{P}e^{i\int_0^\beta dx_4(A_4 + v_m A_m)}.$$

□ It can be checked explicitly the caloron's asymptotic solution satisfies the equation automatically, which means there is no polarization term for the caloron. Thus the order parameter is still $\bar{\rho}$

$$A_4^{caloron} = \frac{\tau_3}{2}(\bar{\rho} + \frac{1}{r} + \frac{1}{s}) \qquad A_{\phi}^{caloron} = -\frac{\tau_3}{2}(\frac{1}{r} + \frac{1}{s})\sqrt{\frac{(r_{LM} - r + s)(r_{LM} + r - s)}{(r_{LM} + r + s)(r + s - r_{LM})}}$$

Yang-Mills equation under rotation

The physical meaning of the good analytical result is we have actually switched to the local inertial frame with the so-called vierbein fields

$$e^{\mu}_{\mu}=1, e^{m}_{0}=-v^{m}; \ \xi^{\mu}_{\mu}=1, \xi^{m}_{0}=v^{m}.$$

The new solution leads to the extra field strength tensor going to zero

$$\delta G^a_{4m} = -\partial_m \delta A^a_4 + A^a_n \partial_n v_m - v_n \partial_n A^a_m + \epsilon^{abc} \delta A^b_4 A^c_m$$

This means although the gauge field is changed by the rotation, the strength tensor is the same as that in static case.

Dyon	Action	$A_4^3(\infty)$	$\Phi(\infty)$	q_E	q_M
M	$ ho_M$	$\rho_M - \omega$	$\rho_M - \omega n_3$	+	+
\bar{M}	$ ho_M$	$ ho_{ar{M}}+\omega$	$\rho_{\bar{M}} + \omega n_3$	+	-
	$2\pi T - \rho_L$	$ ho_L + \omega$	$\rho_L + \omega n_3$	-	-
Ī	$2\pi T - \rho_{\bar{L}}$	$ ho_{ar{L}}-\omega$	$\rho_{\bar{L}} - \omega n_3$	-	+

The popular twisted boundary condition

The twisted boundary condition along the imaginary temporal axis works because the extra velocity related terms can be reduced as

$$\begin{aligned} A_n^a \partial_n v_m - v_n \partial_n A_m^a &= (\vec{A^a} \cdot \nabla) \vec{v} - (\vec{v} \cdot \nabla) \vec{A^a} \\ &= -\omega (\partial_\phi A_\varrho^a \hat{\varrho} + \partial_\phi A_\phi^a \hat{\phi} + \partial_\phi A_z^a \hat{z}) \end{aligned}$$

If we have a solution in static case, the following gauge field is also a solution for the rotational equation with an imaginary velocity

$$A = A(x_4, \varrho, \phi + \omega x_4, z),$$

$$A(x_4 + \beta, \varrho, \phi + \omega x_4 + \omega \beta, z) = A(x_4, \varrho, \phi + \omega x_4, z)$$

 It is not necessarily satisfied(especially for real velocity) because the field profile should satisfy
 NOT USED

$$A(x_4 + \beta, \varrho, \phi, z) = A(x_4, \varrho, \phi, z).$$

9

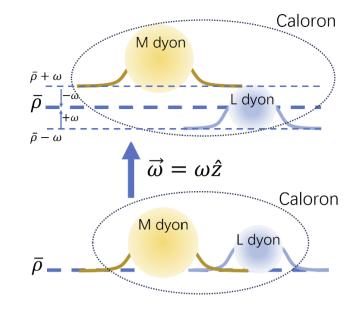
in this work

Construct KvBLL CALORON with dyons

- As a solution of the Yang-Mills equation, single dyon is NOT good because it is color charged;
- □ Combine several dyons, i.e. M and L in SU(2) case.
- 1) Comb(gauge transform) dyons to make them have the same asymptotic behavior at spatial infinity.
- 2) Superpose them using ADHM construction.

Dyon	Action	$A_4^3(\infty)$	$\Phi(\infty)$	q_E	q_M
M	$ ho_M$	$\rho_M - \omega$	$\rho_M - \omega n_3$	+	+
\bar{M}	$ ho_M$	$ ho_{ar{M}}+\omega$	$\rho_{\bar{M}} + \omega n_3$	+	-
L	$2\pi T - \rho_L$	$ ho_L + \omega$	$\rho_L + \omega n_3$	-	-
Ē	$2\pi T - \rho_{\bar{L}}$	$ ho_{ar{L}}-\omega$	$\rho_{\bar{L}} - \omega n_3$	-	+

$$A_4^{calron}(r \to +\infty) = \bar{
ho} rac{ au_3}{2}$$



Once a good semi-classical solution obtained

- Compute the thermodynamic potential.
- Minimize the potential and compute Polyakov loop.
- 1. Nonperturbative part from the caloron. Replace the velocity with a real one

$$F_{np}(T,\omega) = -\frac{c}{2} [sgn(\bar{\rho})(\bar{\rho}+i\omega)^3(\frac{\Lambda}{\pi T})^{\frac{22sgn(\bar{\rho})(\bar{\rho}+i\omega)}{6\pi T}} + sgn(\bar{\rho}_c)(\bar{\rho}_c+i\omega)^3(\frac{\Lambda}{\pi T})^{\frac{22sgn(\bar{\rho}_c)(\bar{\rho}_c+i\omega)}{6\pi T}}]$$
$$-\frac{c}{2} [sgn(\bar{\rho})(\bar{\rho}-i\omega)^3(\frac{\Lambda}{\pi T})^{\frac{22sgn(\bar{\rho})(\bar{\rho}-i\omega)}{6\pi T}} + sgn(\bar{\rho}_c)(\bar{\rho}_c-i\omega)^3(\frac{\Lambda}{\pi T})^{\frac{22sgn(\bar{\rho}_c)(\bar{\rho}_c-i\omega)}{6\pi T}}](\xi)$$

Once a good semi-classical solution obtained

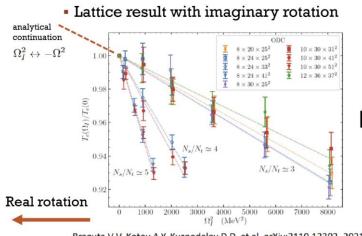
2. Perturbative part of the thermodynamic potential.

$$F_{p}^{\omega}(T,\omega) = -\sum_{\substack{s,m=1\\n=-\infty}}^{+\infty} \frac{e^{\frac{sn\omega}{T}}}{\pi^{2}sR^{3}} \frac{4\xi_{n}^{(m)}\cos(s\frac{\bar{p}}{T})}{J_{n+1}(\xi_{n}^{(m)})^{2}} K_{1}(s\frac{\xi_{n}^{(m)}}{TR})$$

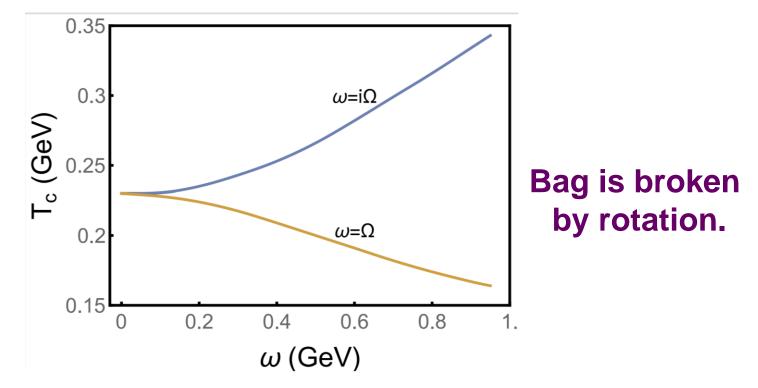
3. Mystical running coupling.

$$g(\omega) = (1 + 0.1\omega/\Lambda)g$$

Which of them gives the vortical catalysis?

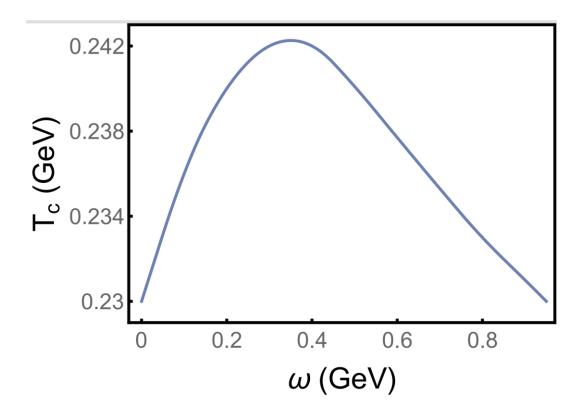


Constant running coupling



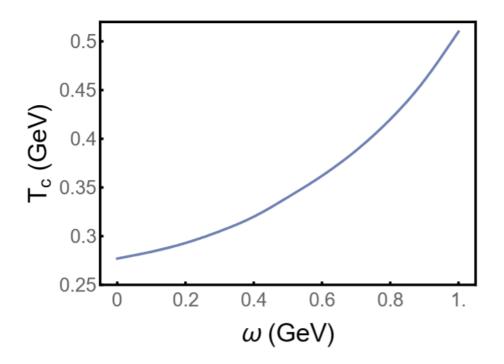
- Rotation helps to free color charge.
- The perturbation part will not be helpful to confine the color charge.
- Finite-size and polarization help to free color charge.

Running coupling constant



- Competition between running coupling and the other two contributions.
- The increasing range is short and unsignificant. It may disappear if the coupling dependence on rotation is weaker.

When the running coupling dominates



Running coupling helps to confine color charge.
 The only ambiguity in this computation.

Outlook

- Achieved in these works
- Modified QCD vacuum and fluctuation contribution(finite size and polarization) are not powerful enough to enhance the critical temperature.
- The increase coupling constant may be the only reason to give us vortical catalysis.
- Double check the coupling running behavior.
- Obtain solutions with their center at arbitrary positions. Study the inhomogeneousness of the system.
- Consider dyon ensemble beyond dilute limit.
- Compute spatial dependent results to compare with lattice QCD.

Thank you for your attention!