

₿€SШ

Visualization for physics analysis improvement and applications in BESIII

Zhi-Jun Li (李志军) Zheng-Yun You (尤郑昀) 2024.8.15

Front. Phys. 19, 64201 (2024) Arxiv: 2404.07951 lizhj37@mail2.sysu.edu.cn

- Introduction
- BESIII visualization software
- Application in analysis
- Summary

Statistical cut-based analysis

SON LINE SEN UNTER

JHEP01(2024)126

Visualization based analysis

Characteristic	Statistical cut-based analysis	Visualization
Processing a large number of events	✓ <i>✓</i>	×
Quantifying the statistical features of multiple events	1	×
Relying on other software and experience	1	×
Highly intuitive	×	1
Comprehensive detailed information for a single event	×	1

- The statistical cut-based method is the basic data analysis method
- The visualization method can help further improve the physics analysis by overcoming the limitations of only using high-level event information with the statistical cut-based method
- The visualization method is a beneficial approach to complement the statistical cut-based method
- Direct application of visualization in specific physics analysis is still limited

- Introduction
- BESIII visualization software
- Application in analysis
- Summary

BESIII

✓ BEijing Spectrometers III

- ✓ a general-purpose spectrometer for т-charm physics study
- \checkmark records symmetric e^+e^- collisions provided by the Beijing Electron Positron Collider II storage ring

BESIII Visualization software

✓ Developed with ROOT

DQM

Poor data quality

- **D**ata **Q**uality **M**onitoring (DQM)
- ✓ Online monitoring of experimental status
- ✓ Play an important role for DQM

Schematic diagram for outreach or article

• Charged lepton flavor violation process $J/\psi \rightarrow e^+\mu^-$

• Charmonium rare weak decay $J/\psi \rightarrow D^- \mu^+ \nu_\mu$

 D^{-}

• Search for massless dark photon $D^0 \rightarrow \gamma \gamma'$

• Search for dark scalar $\eta o \pi^0 S$

Dark scalar

- Introduction
- BESIII visualization software
- Application in analysis
- Summary

- Application in analysis
- Invisible decay of *A*
- Rare weak decay $J/\psi \rightarrow D^- \mu^+ \nu_\mu$
- CLFV decay $\psi(2S) \rightarrow e^+ \mu^-$
- Semi-leptonic decay $\Lambda_c^+ \rightarrow n e^+ \nu_e$

Invisible decay of Λ

12

• $J/\psi \to \Lambda \overline{\Lambda}$

• Tag $\overline{\Lambda}$ with $\overline{\Lambda} \to \overline{p}\pi$

- Λ invisible decay has no interaction with the detector
- E_{EMC} : Energy sum of all the showers deposited in EMC
- Using E_{EMC} to extract the invisible signals

Data: also peak around zero energy position "Dark matter"?

Check the "dark matter" with BesVis

"dark matter" candidate ٠

Fake dark matter

PhysRevD.105.L071101

Check the "dark matter" with BesVis

- Timing information from MDC and TOF are used to calculate the event start time TO.
- In case no TOF hit is associated with any tracks, **the TO resolution will be large** and the shower out of the time window will be dropped.
- Requiring that \bar{p} must leave cluster information in either of TOF layers \Rightarrow "dark matter" disappear

- Application in analysis
- Invisible decay of \varLambda
- Rare weak decay $J/\psi \rightarrow D^- \mu^+ \nu_{\mu}$
- CLFV decay $\psi(2S) \rightarrow e^+\mu^-$
- Semi-leptonic decay $\Lambda_c^+ \rightarrow n e^+ \nu_e$

Rare weak decay $J/\psi \rightarrow D^- \mu^+ \nu_\mu$

- Statistical cut-based analysis
- $J/\psi \rightarrow D^-\mu^+\nu_\mu \rightarrow K^+\pi^-\pi^-\mu^+\nu_\mu$

Check $K^+K^-\pi^+\pi^-$ background with BesVis

- Signal simulation
- the four charged tracks can intersect at a single point

- Background events
- the four charged tracks cannot intersect at a single point

Track II

Track IV

 μ from $K \rightarrow \mu v$

Track I

One of the kaon have the decay: $K o (\pi^0) \mu v$

- Application in analysis
- Invisible decay of Λ
- Rare weak decay $J/\psi \rightarrow D^- \mu^+ \nu_\mu$
- CLFV decay $\psi(2S) \rightarrow e^+ \mu^-$
- Semi-leptonic decay $\Lambda_c^+ \rightarrow n e^+ \nu_e$

CLFV decay $\psi(2S) \rightarrow e^+\mu^-$

Cut based analysis:

E: Energy deposited in EMC P: Momentum

Depth in MUC

- Select an electron and a muon
- Clear background
- Could further suppress the background? (important for the sensitivity of the NP)

19

Check e^+e^- background with BesVis

Events from continue energy data

Background type I

- Background type II
- ✓ The electron escapes from the **EMC gap** with a small deposited energy in EMC
- ✓ The escaped electron interacts in the outer detector material and produces secondary particles hitting MUC ⇒ fake $e^+\mu^-$ signals, vetoed with angle cut

- Application in analysis
- Invisible decay of \varLambda
- Rare weak decay $J/\psi \rightarrow D^- \mu^+ \nu_\mu$
- CLFV decay $\psi(2S) \rightarrow e^+ \mu^-$
- Semi-leptonic decay $\Lambda_c^+
 ightarrow ne^+
 u_e$

Semi-leptonic decay $\Lambda_c^+ \rightarrow ne^+ v_e$

- Detection for neutron mainly relies on the EMC but complex
- The main background $\Lambda_c^+ \rightarrow \Lambda e^+ v_e$, $\Lambda \rightarrow n\pi^0$
- The ability of EMC to identify the additional π^0 from the antineutron background will determine the feasibility of this analysis in BESIII.

- Distinguishing anti-neutron and anti-Lambda baryon with the EMC cluster shape is feasible.
- Feasible but achieving this task is still highly complex

 Λ^+

- Introduction
- BESIII visualization software
- Application in analysis
- Summary

Summary

in physics analysis, especially in search for rare physics signals