
ML for fast calorimeter 
simulation

Wenxing Fang (IHEP)

第十四届全国粒子物理学术会议 2024.08.15

1



Background

❖ HL-LHC data challenge:

⚫ Event rate increased: luminosity from 2 ×
1034s−1cm−2 to 7.5 × 1034s−1cm−2

⚫ Event size increased: finer-grained detector 
readout

⚫ Aggressive R&D is needed, otherwise the 
resources will be a problem

❖ The MC simulation takes most CPU
resources, dominated by the detector 
simulation of calorimeter

⚫ Traditional fast calorimeter simulation 
methods: shower parameterization (PCA), 
frozen shower, …

⚫ In recent years, ML based methods show 
significant promise as a replacement
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Generative Adversarial Networks (GAN) 

❖ Discriminator tries to discriminate the 
real data and generated data

❖ The generator tries to produce 
generated data which can confuse the 
discriminator

❖ At the end of training, the discriminator 
can not discriminate the real or 
generated data. The generator learns the 
true underlying data distribution
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https://arxiv.org/abs/1406.2661


CaloGAN

❖ The CaloGAN (2017) achieved a fast 
calorimeter simulation based on GAN 
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https://arxiv.org/pdf/1712.10321.pdf


CaloGAN performance 
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The LHCb case
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https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02034.pdf


The LHCb case (performance)
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BESIII experiment

❖ The BESIII experiment focuses 
on physics at the tau-charm 
region, such as non-
perturbative QCD, exotic 
hadrons, BSM, …

 BESIII EMC:

 44 rings of crystal in barrel and 
120 crystals in each ring. The 
front size of each crystals is 5×5 
cm2

 6 rings of crystal in each endcap

➢ Apply GAN for EMC barrel 
fast simulation for e±
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GAN model for the BESIII

❖ The structure is similar to the LHCb one
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Event display (𝑒−)
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e−(Mom = 1.8 GeV, ∆θMom= 0.8°, ∆ϕMom= −6.7°,
∆ZPos = 0.8 cm, ∆ϕPos = −1.0°, Z = −110.4 cm)

e−(Mom = 1.7 GeV, ∆θMom= 1.0°, ∆ϕMom= −5.3°,
∆ZPos = 1.5 cm, ∆ϕPos = −1.0°, Z = −67.7 cm)

G4

e−(Mom = 1.8 GeV, ∆θMom= 0.9°, ∆ϕMom= −7.8°,
∆ZPos = 0. cm, ∆ϕPos = −1.4°, Z = −136.1 cm)

G4

GANGAN

G4

GAN



The BESIII case (performance)
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Dataset:

• MC Bhabha 

events 

𝑒−



The BESIII case (performance)
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The BESIII case (performance)
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❖ Apply the GAN simulation in BESIII offline software
𝑒−



For CEPC experiment

❖ Apply the model for silicon-tungsten ECAL (29 layers). 
The model is extended from 2D to 3D (mainly replace 
2D convolution operation by 3D convolution)
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Dataset:

• photon showers 

in ECAL Barrel

• 31x31x29 voxels

CEPC

https://indico.ihep.ac.cn/event/9960/contributions/113735/attachments/61025/70387/BES_CEPC_20191118.pdf


The ATLAS case

❖ AltFast3 (a detector response fast 
simulation system):

⚫ FastCaloGAN V2 (ML-based)

⚫ FastCaloSim V2 (parametrization-
based) 

⚫ Geant4 (limited to specific cases)

❖ FastCaloGAN:

⚫ WGANs trained for each particle type, 
for each | η | slice.

⚫ Conditioned on truth momentum

⚫ Total 300 GANs
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ACAT2024

https://indico.cern.ch/event/1330797/contributions/5796510/attachments/2816905/4917912/ATL-COM-SOFT-2024-012.pdf
https://indico.cern.ch/event/1330797/contributions/5796510/attachments/2816905/4917912/ATL-COM-SOFT-2024-012.pdf


The ATLAS case (performance)
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proton

e− 𝛾

❖ 3 – 15 speed-up in simulation time with respect 
to Geant4, depending on the physics process

❖ Simulation time in AtlFast3 completely dominated 
by full simulation of the Inner Detector

ACAT2024

https://indico.cern.ch/event/1330797/contributions/5796510/attachments/2816905/4917912/ATL-COM-SOFT-2024-012.pdf
https://indico.cern.ch/event/1330797/contributions/5796510/attachments/2816905/4917912/ATL-COM-SOFT-2024-012.pdf


Normalizing Flows
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reversible



CaloFlow
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❖ The CaloFlow uses the same dataset as CaloGAN and shows 
better physics performance

https://arxiv.org/pdf/2106.05285.pdf


The ILC case
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⚫ Dataset:

• photon showers in ECAL

• 30x30x30 voxels

Link

https://indico.jlab.org/event/459/contributions/11716/attachments/9654/14222/main.pdf


Summary

❖ ML based fast simulation calorimeter is widely studied 
in different experiments

❖ Many promising results and also challenges 

❖ The field is in a rapid development stage, e.g. using 
the latest diffusion model (CaloDiffusion)

❖ Please stay tuned!
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https://arxiv.org/pdf/2006.11239
https://indico.jlab.org/event/459/contributions/11736/attachments/9599/14176/CHEP23_CaloDiffusion.pdf
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Model for BES3
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Model for CEPC
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CaloFlow

❖ The CaloFlow (2021) uses the same dataset as 
CaloGAN and shows much better physics performance
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https://arxiv.org/pdf/2106.05285.pdf


Diffusion model

❖ The diffusion model is proposed in 2020
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❖ Diffusion process: 𝑥0 → 𝑥𝑇

⚫ Adding noise step by step, making 𝑥𝑇 ~ 𝒩(0, 𝐈)

❖ Train a model to invert the diffusion process

❖ When do simulation, start from 𝒩(0, 𝐈) and denoise it 
step by step using the trained model

https://arxiv.org/pdf/2006.11239


CaloDiffusion

❖ CaloDiffusion (a fast calorimeter 
simulation method based on diffusion 
model)

❖ Dataset: 

⚫ ATLAS-like geometry, 5 layer cylinder with 
irregular binning, 368 voxels

❖ Denoise model:

⚫ U-net architecture with 3D convolutions

⚫ Input: Noisy shower

⚫ Condition inputs: incident particle energy, 
diffusion step

⚫ Output: noise

❖ Good agreement with Geant4, some 
properties (e.g. total shower energy), can 
still be improved

❖ Generation time is slower than other ML 
approaches (still faster than Geant4) 26

https://indico.jlab.org/event/459/contributions/11736/attachments/9599/14176/CHEP23_CaloDiffusion.pdf

