

# Track reconstruction algorithm for drift chambers based on GNN

#### <u>Xiaoqian Jia<sup>1</sup></u>, Xiaoshuai Qin<sup>1</sup>, Teng Li<sup>1</sup>, Xingtao Huang<sup>1</sup>, Xueyao Zhang<sup>1</sup>, Yao Zhang<sup>2</sup> and Ye Yuan<sup>2</sup>

Shandong University, Qingdao
 Institute of High Energy Physics, Beijing

中国物理学会高能物理分会第十四届全国粒子物理学术会议 August 15, 2024

### Outline

**01** BESIII and STCF

02 Methodology

Filtering Noise via GNN

Clustering of Tracks Based on DBSCAN and RANSAC

- **03** Preliminary Results
- **04** Summary

# 01 MDC at BESIII and STCF

#### **Beijing electron-positron collider (BEPCII)**

- Peak luminosity : 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>
- CMS: 2.0 4.95 GeV, τ -charm region
- World's largest J/ψ dataset : 10 billion
- Main Drift Chamber (MDC) at BESIII
  - 43 sense wire layers
  - 5 axial wire super-layers,6 stereo wire super-layers
  - dE/dx resolution : 6%
  - Momentum resolution : 0.5%@1GeV/c

#### Super Tau-Charm Facility (STCF)

- High Luminosity: >  $0.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}@4 \text{GeV}$
- CMS: 2.0 7 GeV
- Main Drift Chamber (MDC) at STCF
  - 48 sense wire layers
  - 4 axial wire super-layers,4 stereo wire super-layers
  - dE/dx resolution : ~6%
  - Momentum resolution : 0.5%@1GeV/c



BESIII detector





BESIII MDC





### 02 Methodology: GNN based tracking pipeline



### 02 Graph and Graph Neural Network

- A type of neural network that are specifically designed to operate on graph-structured data
- ◆ Graph: nodes, edges
- ♦ Graph → Track
  - Nodes → Hits
  - edges  $\rightarrow$  track segments



- GNN key idea: propagate information across the graph using a set of learnable functions that operate on node and edge features
- Graph Neural Network edge classifier
  - High classification score
    - $\rightarrow$  the edge belongs to a true particle track
  - Low classification score
    - $\rightarrow$  it is a spurious or noise edge



### 02 Graph construction at BESIII

To reduce the number of fake edges during graph construction

#### Pattern Map based on MC simulation at BESIII

- Definition of valid neighbors
  - Hits on the same layer
    - Two adjacent sense wires on the left and right
  - Hits on the next layer

The collection of sense wires that could potentially represent two successive hits on a track

- MC sample used to build pattern map
  - Two million single tracks produced with BESIII offline software (BOSS)
  - 5 types of charged particles (e<sup>±</sup>, K<sup>±</sup>, μ<sup>±</sup>, p<sup>±</sup>, π<sup>±</sup>)
  - 0.05 GeV/c < P < 3 GeV/c
- Edge assignment based on Pattern Map
  - Hit with its neighbors on the same layer and next layer
  - Hit with its neighbors' neighbors on one layer apart
- To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut
- Graph representation
  - Node features (raw time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels





A wire on layer13 and tits neighbors on layer14

# 02 Graph construction at STCF

#### **Geometric cut at STCF**

- Edge assignment
  - Hit and two adjacent hits on the left and right sides (same layer)
  - Within a certain opening angle (the next layer and one layer apart)
- Angle range
  - No sense wire efficiency
  - The junction of U-V superlayers (layers 11 and 29) appropriately amplify the threshold
- Graph representation
  - Node features (raw time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels

threshold:atan(3/1.)

2

10<sup>1</sup>





### **02** GNN edge classifier based on PyTorch

- Input network
  - Node features embedded in latent space
- Graph model
  - Edge network computes weights for edges using the features of the start and end nodes
  - Node network computes new node features using the edge weight aggregated features s of the connected nodes and the nodes' current features
  - MLPs
  - 8 graph iterations
- Strengthen important connections and weaken useless or spurious ones



### 02 Clustering based on DBSCAN



- a) Original MC data sample
  - $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$
  - π<sup>+</sup>, π<sup>-</sup> : Pt (0.2GeV 1.4GeV)
- b) Remove noise via GNN
- c) Transform to Conformal plane

•  $X = \frac{2x}{x^2 + y^2} \quad Y = \frac{2y}{x^2 + y^2}$ 

• Circle passing the origin transform into a straight line

- d) Transform to ' $\alpha$ ' parameter plane
  - Hits connected in the X-Y plane in a straight line
  - α as the angle between the straight line and X axis
  - The parameter space as cosα and sinα
- e) DBSCAN clustering in ' $\alpha$ 'parameter plane
  - Density-Based Spatial Clustering of Application with Noise
  - Hits in a cluster are considered to be in the same track

### 02 Clustering salvage algorithm RANSAC

- Random sample consensus (RANCAS)
  - Estimate a mathematical model from the data that contains outliers
  - Its good robustness to noise and outliers
  - Model can be specified
- RANCAS is triggered by the events that DBSCAN processing fails
  - Polar coordinate space
  - linear model
  - Inliers  $\rightarrow$  a track , outliers  $\rightarrow$  other tracks
  - Stop condition: outliers < threshold







# 02 Track fitting

#### Genfit2

- A Generic Track-Fitting Toolkit
- Experiment-independent framework
- PANDA, Belle II, FOPI and other experiments
- Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements
- Configuration: Detector geometry and materials
- Input : Signal wire position, initial values of position and momentum, particle hypothesis for e,  $\mu$ ,  $\pi$ , k, p
- Fitting procedure:
  - Start 1st try: drift distance roughly estimated from TDC、 ADC of sense wires
  - Iteration to update information of drift distance, left-right assignment, hit position on z direction and entrancing angle in the cell et al.



### **03** Performance of filtering noise at BESIII

#### Dataset

- Single-particle ( $e^{\pm}$ ,  $K^{\pm}$ ,  $\mu^{\pm}$ ,  $p^{\pm}$ ,  $\pi^{\pm}$ ) MC sample
- 0.2 GeV/c < P < 3.0 GeV/c
- Mixed with BESIII random trigger data as background (~45% hits)
- Train: Validation: Test = 4: 1: 1
- Hit selection performance
  - The preliminary results show that GNN provides high efficiency and purity of hits selection



Efficiency and purity can be balanced by adjusting the model parameter

### **03** Preliminary tracking performance at BESIII

- Particle reconstructed performance
  - $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$  from MC simulation
  - track eff =  $\frac{N_{\text{rec tracks}}}{N_{\text{total tracks}}}$
  - The preliminary results presents promising performance





### **03** Performance of filtering noise at STCF

- Dataset
  - $J/\Psi \rightarrow \rho 0 \pi 0 \rightarrow \gamma \gamma \pi + \pi -$  from MC simulation
  - Mixing background (Luminosity-related, Beam-gas effect, Touschek effect ) within the framework
- Hit selection performance
  - The background includes 'track' background, after removal, the noise level is 348

• *Hit selection Efficiency* : 
$$\frac{N_{signal}^{\text{predicted}}}{N_{signal}^{real}}$$
 91.7%

• *Hit selection Purity* : 
$$\frac{N_{signal}^{\text{predicted}}}{N_{all}^{\text{predicted}}}$$
 97.0%

• Remove noises rate: 
$$\frac{N_{noise}^{\text{predicted}}}{N_{noise}^{real}}$$
 99.0%



### **03** Performance of filtering noise at STCF

Dataset

- $J/\Psi \rightarrow \rho 0 \pi 0 \rightarrow \gamma \gamma \pi + \pi -$  from MC simulation
- Mixing background (Luminosity-related, Beam-gas effect, Touschek effect ) within the framework
- The reconstruction efficiency after GNN filtering noise is significantly improved
- $\blacklozenge$  At large  $\mid \cos \theta \mid$ , the tracking efficiency decreases due to fewer signal and more noise



### **03** Performance of filtering noise at STCF

Dataset

- $J/\Psi \rightarrow \rho 0 \pi 0 \rightarrow \gamma \gamma \pi + \pi -$  from MC simulation
- Mixed with 600 random trigger noises
- Hit selection performance
  - Preliminary results shows promising performance





### 04 Summary

A novel tracking algorithm prototype based on machine learning method at BESIII and STCF is under development

- GNN to distinguish the hit-on-track from noise hits.
- Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks
- Preliminary results on MC data shows promising performance

#### Outlook

- Further optimization of the cluster model is needed
- Performance verification concerning events with more tracks and long lived particle
- Check the reconstruction time



# Thank you !



### **STCF background**

五种类型的噪声占比 (hit level)

噪声R-Z空间分布

#### 'Track' noise 在各类本底中的占比

Background Type Distribution





### **DBSCAN** (Density-Based Spatial Clustering of Applications with Noise)

- A density-based clustering algorithm that can automatically discover clusters of arbitrary shapes and identify noise points
- Robust to outliers
- Not require the number of clusters to be told beforehand

Parameter

- Epsilon (radius of the circle to be created around each data point)
- MinPoints (the minimum number of data points required inside that circle for that data point to be classified as a Core point)
- Choose MinPoints based on the dimensionality (≥dim+1), and epsilon based on the elbow in the k-distance graph





### **RANSAC** (Random Sample Consensus)

- Basic idea: randomly select a subset of data points, fit a model based on these points, and then judge whether the remaining data points belong to the inlier set by calculating their distances to the model
- Accurately estimate model parameters even in the presence of noise and outliers
- The specific steps
  - Randomly select a small subset of data, called the inlier set
  - Fit a model based on the inlier set
  - Calculate the distances between the remaining data points and the model, \_\_\_\_\_\_
    and classify these points as inliers or outliers based on a certain threshold
  - If the number of inliers reaches a preset threshold, the algorithm exits and the current model is considered good
  - If the number of inliers is not enough, repeat steps 1-4 until the maximum iteration times are reached
- Parameters such as threshold and iteration times need to be preset

