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VI8 \VIDC at BESIII and STCF

Beijing electron-positron collider (BEPCII)
* Peak luminosity : 1033cm™2 s 1
e CMS: 2.0-4.95 GeV, t-charm region
*  World’s largest J/ dataset : 10 billion
€ Main Drift Chamber (MDC) at BESIII
e 43 sense wire layers
e 5 axial wire super-layers,6 stereo wire super-layers .. ! = T=
« dE/dx resolution : 6% BESIII detector BESIII MDC
*  Momentum resolution : 0.5%@1GeV/c

Scintillator

291 cm >

Super Tau-Charm Facility (STCF)
* High Luminosity: > 0.5 x 103> cm™ s @4GeV
* CMS:2.0-7 GeV
€ Main Drift Chamber (MDC) at STCF
e 48 sense wire layers
e 4 axial wire super-layers,4 stereo wire super-layers
e dE/dx resolution : ~“6%
* Momentum resolution : 0.5%@1GeV/c

STCF MDC
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Traditional tracking of drift chamber

MDC hits produced
by charged particles

@ Build candidate tracks and perform hits assignment

Ui s yine g * Global approach : Hough Transform (HOUGH)

* Local approach : Template Matching (PAT) Track Segment Finding (TSF)
Combinatorial Kalman Filter (CKF)

Track fitting € Estimate the track parameters

* Global fit : Least Square Method, Runge-Kutta Method

e Recursive fit : Kalman filter

Vertex and physics
object reconstruction
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m Methodology: GNN based tracking pipeline

MDC Hit

(nodes)
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Stage 1: EC- GNN

——» Graph construction — Edge classification —Space transformation — Clusters collectionr—
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Track finding
Stage 2: DBSCAN+RANSAC

Track fitting

GENFIT2

o0 00

Two stages have their own hyperparameters, can be trained/optimized separately
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m Graph and Graph Neural Network

€ A type of neural network that are specifically designed to operate on graph-structured data
@ Graph: nodes, edges

® Graph 2 Track %,

* Nodes = Hits nod N \ /

* edges - track segments . /
G = (N, E)

€ GNN key idea: propagate information across the graph using a set of learnable functions that operate on node and
edge features

@ Graph Neural Network edge classifier
* High classification score

- the edge belongs to a true particle track
* Low classification score

= it is a spurious or noise edge

[
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: : . Message-passing
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m Graph construction at BESIII

To reduce the number of fake edges during graph construction

Pattern Map based on MC simulation at BESII|

@ Definition of valid neighbors
* Hits on the same layer
Two adjacent sense wires on the left and right
* Hits on the next layer
The collection of sense wires that could potentially represent two successive hits on a track
€ MC sample used to build pattern map
* Two million single tracks produced with BESIII offline software (BOSS)
* 5 types of charged particles (e*, K*, u?, p*, %)
* 0.05GeV/c<P<3GeV/c
€ Edge assignment based on Pattern Map
e Hit with its neighbors on the same layer and next layer
e Hit with its neighbors' neighbors on one layer apart
@ To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut A wire on layer13 and bt
@ Graph representation nelighbors on layerl4
* Node features (raw time, position coordinates r, ¢ of the sense wires), adjacency matrices, edge labels
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m Graph construction at STCF

Geometric cut at STCF

@ Edge assighment

* Hit and two adjacent hits on the left and right sides (same layer)

* Within a certain opening angle (the next layer and one layer apart)
@ Angle range

* No sense wire efficiency

* The junction of U-V superlayers (layers 11 and 29) appropriately amplify the threshold
@ Graph representation

* Node features (raw time, position coordinates r, ¢ of the sense wires), adjacency matrices, edge labels

layer29 —— threshold:atani3/1.} 10? layer29 —— threshold:atani3/1.)
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m GNN edge classifier based on PyTorch

@ Input network
* Node features embedded in latent space
€ Graph model
* Edge network computes weights for edges using the features of the start and end nodes
* Node network computes new node features using the edge weight aggregated features s of the connected
nodes and the nodes’ current features
* MLPs
e 8 graph iterations

@ Strengthen important connections and weaken useless or spurious ones

A fully
connected
ﬁ. 2—|a‘g|"er l'IDdE - & @ ﬁ ™
network network .
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m Clustering based on DBSCAN

x-y plane (raw hits)

x-y plane (GNN remove noise)
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d) Transform to ‘a’ parameter plane

* The parameter space as cosa and sina

Cluster on a space

.’.’. .

classl
class2
outlier

Hits connected in the X-Y plane in a straight line

e) DBSCAN clustering in ‘a’parameter plane

e Circle passing the origin transform into a straight line
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Density-Based Spatial Clustering of Application with Noise

a as the angle between the straight line and X axis

Hits in a cluster are considered to be in the same track




m Clustering salvage algorithm RANSAC

€ Random sample consensus (RANCAS)

* Estimate a mathematical model from the data that contains outliers

Signals selected
* Its good robustness to noise and outliers by GNN

* Model can be specified DBSCAN

@® RANCAS is triggered by the events that DBSCAN processing fails

# signals in any
class > threshold

e Polar coordinate space

* linear model

* Inliers > atrack, outliers > other tracks RANSAC

e Stop condition: outliers < threshold

—— RANSAC regressor
o pi
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noise
+ Inliers

# signals in any
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+ Outliers

RANSAC on
this class

Remaining
signals
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m Track fitting

Genfit2

* A Generic Track-Fitting Toolkit

* Experiment-independent framework
* PANDA, Belle I, FOPI and other experiments I <
* Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements
@ Configuration: Detector geometry and materials
@ Input : Signal wire position, initial values of position and momentum, particle hypothesis for e, u, 1, k, p
@ Fitting procedure:
e Start 1st try: drift distance roughly estimated from TDC, ADC of sense wires

* Iteration to update information of drift distance, left-right assignment, hit position on z direction and entrancing

angle in the cell et al.
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m Performance of filtering noise at BESIII

@ Dataset
* Single-particle (e*, K*, p*, p*, m* ) MC sample
e 0.2GeV/c<P<3.0GeV/c
* Mixed with BESIIl random trigger data as background (~45% hits)
e Train: Validation: Test=4:1:1

@ Hit selection performance

* The preliminary results show that GNN provides high efficiency and purity of hits selection

Npredicted [ 4000

signal

* Hit selection Efficiency : yreal 98.7%

signal

|'T 3000

[ 2000

[ 1000

predicted
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Efficiency and purity can be balanced by adjusting the model parameter
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m Preliminary tracking performance at BESIII

@ Particle reconstructed performance
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Performance of filtering noise at STCF

& Dataset

e J/W-S>p0n0->yymn+n- from MC simulation

* Mixing background (Luminosity-related, Beam-gas effect, Touschek effect ) within the framework

Oscar2.5.0 - RhoPi - NoiselLevel

‘ H |t Se I ection pe rfo rm a n Ce 400 Oscar2.5.0 - RhoPi - NoiseLevel-Filtered

800 - average: 368 average: 348
* The background includes ‘track’ background, ™] iﬁ:g;:f’gg?“"d Ziltered B%irg background
600 . verage .
after removal, the noise level is 348
© 400 @
Npredicted N : 200
*  Hit selection Efficiency : =222 91.7%
. Nr.eal . 100
signal ol ]
° 200 0 the nuﬁrgober of n?)l\)soe 1000 1200 ° 200 43’]06 numbefggnmse 50 1o0e
predicted The number of hits that GNN failed to handle oo
. . . ] l : 3, 10°
* Hit selection Purity : — = arzrsq 97.0% mean: 3.4
Nall aE‘ 0.96
predicted § *:EJ 0.92 g
* Remove noises rate: 25— 99.0% e
noise 5 10!
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Performance of filtering noise at STCF

@ Dataset

e J/W->p0n0 > yymn+n- from MC simulation

* Mixing background (Luminosity-related, Beam-gas effect, Touschek effect ) within the framework

@ The reconstruction efficiency after GNN filtering noise is significantly improved

@ Atlarge | cos 8 |, the tracking efficiency decreases due to fewer signal and more noise
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m Performance of filtering noise at STCF

@ Dataset
e J/W-S>p0n0->yymn+n- from MC simulation
e  Mixed with 600 random trigger noises

@ Hit selection performance

* Preliminary results shows promising performance

Number of residual noise in RhoPi

Signal selection purity
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m Summary

@ A novel tracking algorithm prototype based on machine learning method at BESIII and STCF is under development
* GNN to distinguish the hit-on-track from noise hits.
* Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks

@ Preliminary results on MC data shows promising performance

Outlook

@ Further optimization of the cluster model is needed
@ Performance verification concerning events with more tracks and long lived particle

@ Check the reconstruction time
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- STCF background
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- D BSCAN (Density-Based Spatial Clustering of Applications with Noise)

————

@ A density-based clustering algorithm that can automatically discover clusters of arbitrary LT e T
.r’ L ] .\\
shapes and identify noise points Foe A/ \

@ Robust to outliers N e S

€ Not require the number of clusters to be told beforehand

® Parameter

° © ‘o.
Epsilon (radius of the circle to be created around each data point) ".{W"’:}‘:
MinPoints (the minimum number of data points required inside that circle for that "
data point to be classified as a Core point) . s "'.‘j O
Choose MinPoints based on the dimensionality (2dim+1), and epsilon based on the ’“.?‘.-.{'

elbow in the k-distance graph



RANSAC (Random Sample Consensus)

@ Basic idea: randomly select a subset of data points, fit a model based on these points, and then judge whether the

remaining data points belong to the inlier set by calculating their distances to the model

@ Accurately estimate model parameters even in the presence of noise and outliers .| /

@ The specific steps -

100 4

* Randomly select a small subset of data, called the inlier set

Response

0- ¢ L wlem, PagebNlig s

* Fit a model based on the inlier set

—100 A

~ RANSAC regressor
« Inliers
« Outliers

e Calculate the distances between the remaining data points and the model, .|

and classify these points as inliers or outliers based on a certain threshold T3 5 % BREEEEER
e If the number of inliers reaches a preset threshold, the algorithm exits and the current model is considered
good
e |If the number of inliers is not enough, repeat steps 1-4 until the maximum iteration times are reached

€ Parameters such as threshold and iteration times need to be preset



