Contribution ID: 70 Type: Oral report

Baryon density dependence of viscosities of the QGP at hadronization

Wednesday, 14 August 2024 15:25 (15 minutes)

The Phi meson and Omega baryon provide unique probes of the properties of the quark-gluon plasma (QGP) at hadronization in relativistic heavy-ion collisions. Using the quark recombination model with the quark phasespace information parameterized in a viscous blast wave, we perform Bayesian inference of the shear and bulk viscosities of the QGP at hadronization with a temperature of T \approx 160 MeV by analyzing the phi and Omega data in Au+Au collisions at $\sqrt{s}NN = 19.6-200$ GeV and Pb+Pb collisions at $\sqrt{s}NN = 2.76$ TeV, corresponding to a baryon chemical potential variation from μ B \approx 0 to 200 MeV. We find that the shear viscosity to enthalpy ratio of the QGP at hadronization decreases as μ B increases, while the corresponding specific bulk viscosity is essentially constant for μ B < 200 MeV. Our results suggest that the QGP at hadronization (T \approx 160 MeV) with finite baryon density is more close to perfect fluid than that with zero baryon density.

Primary author: Dr YANG, Zhidong (Hubei University)

Co-authors: Prof. CHEN, Lie-Wen (Shanghai Jiaotong University); Prof. SUN, Yifeng (Shanghai Jiaotong

University)

Presenter: Dr YANG, Zhidong (Hubei University)

Session Classification: 分会场三

Track Classification: 重离子物理